Part Number Hot Search : 
20N36 V8069QCL 1N473 HY57V16 IRF9Z32 00002 TD62604P 000AKCY
Product Description
Full Text Search
 

To Download IRF7314QPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet ? power mosfet  IRF7314QPBF www.irf.com 1 thermal resistance parameter max. units r ja maximum junction-to-ambient  62.5 c/w so-8 v dss r ds(on) max i d -20v 0.058@v gs = -4.5v -5.2a 0.098@v gs = -2.7v -4.42a d1 d1 d2 d2 g1s2 g2 s1 top view 8 12 3 4 5 6 7 description absolute maximum ratings parameter max. units v ds drain-source voltage -20 v i d @ t a = 25c continuous drain current, v gs @ 10v -5.2 i d @ t a = 70c continuous drain current, v gs @ 10v -4.3 a i dm pulsed drain current  -43 p d @t a = 25c maximum power dissipation  2.4 w p d @t a = 70c maximum power dissipation  1.7 w linear derating factor 16 mw/c v gs gate-to-source voltage 12 v e as single pulse avalanche energy  610 mj i ar avalanche current  -5.2 a e ar repetitive avalanche energy see fig.14, 15, 16 mj t j , t stg junction and storage temperature range -55 to + 175 c these hexfet ? power mosfets in a dual so-8package utilize the lastest processing techniques to achieve extremely low on-resistance per silicon area. additional features of these hexfet power mosfets are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating. these benefits combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. the 175c rating for the so-8 package provides improved thermal performance with increased safe operating area and dual mosfet die capability make it ideal in a variety of power applications. this dual, surface mount so-8 can dramatically reduce board space and is also available in tape & reel. ? advanced process technology ? dual p-channel mosfet ? ultra low on-resistance ? 175c operating temperature ? repetitive avalanche allowed up to tjmax ? lead-free benefits 
downloaded from: http:///

 2 www.irf.com parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) showing the i sm pulsed source current integral reverse (body diode)  p-n junction diode. v sd diode forward voltage CCC CCC -1.0 v t j = 25c, i s = -3.0a, v gs = 0v   t rr reverse recovery time CCC 44 66 ns t j = 25c, i f = -3.0a q rr reverse recovery charge CCC 54 81 nc di/dt = -100a/s   source-drain ratings and characteristics     -43 -3.0  parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage -20 CCC CCC v v gs = 0v, i d = -250a ? v (br)dss / ? t j breakdown voltage temp. coefficient CCC 0.009 CCC v/c reference to 25c, i d = -1ma CCC 0.049 0.058 v gs = -4.5v, i d = -5.2a    0.082 0.098 v gs = -2.7v, i d = -4.42a  v gs(th) gate threshold voltage -0.7 CCC CCC v v ds = v gs , i d = -250a g fs forward transconductance 6.8 CCC CCC s v ds = 10v, i d = -5.2a CCC CCC -1.0 v ds = -16v, v gs = 0v CCC CCC -25 v ds = -16v, v gs = 0v, t j = 150c gate-to-source forward leakage CCC CCC -100 v gs = -12v gate-to-source reverse leakage CCC CCC 100 v gs = 12v q g total gate charge CCC 19 29 i d = -5.2a q gs gate-to-source charge CCC 2.1 3.2 nc v ds = -16v q gd gate-to-drain ("miller") charge CCC 9.3 14 v gs = -4.5v t d(on) turn-on delay time CCC 18 CCC v dd = -10v t r rise time CCC 26 CCC i d = -1.0a t d(off) turn-off delay time CCC 41 CCC r g = 6.0 ? t f fall time CCC 38 CCC v gs = -4.5v   c iss input capacitance CCC 913 CCC v gs = 0v c oss output capacitance CCC 512 CCC pf v ds = -15v c rss reverse transfer capacitance CCC 260 CCC ? = 1.0mhz electrical characteristics @ t j = 25c (unless otherwise specified) 
 ? r ds(on) static drain-to-source on-resistance i dss drain-to-source leakage current     repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 45mh r g = 25 ? , i as = -5.2a.   surface mounted on fr-4 board,  10sec   pulse width  300s  duty cycle  s d g downloaded from: http:///

 www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.1 1 10 100 -v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) -1.5v 20s pulse width tj = 25c vgs top -7.5v -5.0v -4.5v -3.5v -3.0v -2.7v -2.0v bottom -1.5v 0.1 1 10 100 -v ds , drain-to-source voltage (v) 0.1 1 10 100 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 20s pulse width tj = 175c -1.5v vgs top -7.5v -5.0v -4.5v -3.5v -3.0v -2.7v -2.0v bottom -1.5v -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d -4.5v -5.2a 0.1 1 10 100 1.0 2.0 3.0 4.0 5.0 v = -15v 20s pulse w idth ds -v , gate-to-source voltage (v) -i , drain-to-source current (a) gs d t = 25 c j t = 175 c j downloaded from: http:///

 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 0 400 800 1200 1600 2000 -v , drain-to-source voltage (v) c, capacitance (pf) ds v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted gs iss gs gd , ds rss gd oss ds gd c iss c oss c rss 0 8 16 24 32 40 0 2 4 6 8 10 q , total gate charge (nc) -v , gate-to-source voltage (v) g gs i = d -5.2a v = -16v ds 0.1 1 10 100 0.2 0.5 0.8 1.1 1.4 -v ,source-to-drain voltage (v) -i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 175 c j 1 10 100 1000 0.1 1 10 100 operation in this area limited by r ds(on) single pulse t t = 175 c = 25 c j c -v , drain-to-source voltage (v) -i , drain current (a) i , drain current (a) ds d 100us 1ms 10ms downloaded from: http:///

 www.irf.com 5 fig 10. maximum effective transient thermal impedance, junction-to-ambient fig 9. maximum drain current vs. case temperature fig 10b. switching time waveforms fig 10a. switching time test circuit 25 50 75 100 125 150 175 0.0 1.0 2.0 3.0 4.0 5.0 6.0 t , case temperature ( c) -i , drain current (a) c d 0.01 0.1 1 10 100 0.00001 0.0001 0.001 0.01 0.1 1 10 100 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thja a p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thja 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response)      
 1     0.1 %          + - v ds 90% 10% v gs t d(on) t r t d(off) t f downloaded from: http:///

 6 www.irf.com fig 12. typical on-resistance vs. drain current fig 11. typical on-resistance vs. gate voltage fig 13b. gate charge test circuit d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 13a. basic gate charge waveform q g q gs q gd v g charge  fig 14. maximum avalanche energy vs. drain current 25 50 75 100 125 150 175 0 400 800 1200 1600 starting tj, junction temperature ( c) e , single pulse avalanche energy (mj) as i d top bottom -2.1a -4.4a -5.2a 2.0 4.0 6.0 8.0 -v gs, gate -to -source voltage (v) 0.030 0.040 0.050 0.060 0.070 0.080 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( ? ) i d = -5.2a 0 1 02 03 04 05 0 -i d , drain current ( a ) 0.030 0.130 0.230 0.330 0.430 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( ? ) vgs = -2.7v vgs = -4.5v downloaded from: http:///

 www.irf.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16:(for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type.2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse.5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 700 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 10% duty cycle i d = -5.2a 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 1.0e+00 1.0e+01 1.0e+02 tav (sec) 0.01 0.1 1 10 100 - a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses 0.01 downloaded from: http:///

 8 www.irf.com so-8 package outlinedimensions are shown in millimeters (inches) so-8 part marking e1 de y b aa1 h k l .189 .1497 0 .013 .050 bas ic .0532 .0040 .2284 .0099 .016 .1968 .1574 8 .020 .0688 .0098 .2440 .0196 .050 4.80 3.80 0.33 1.35 0.10 5.80 0.25 0.40 0 1.27 bas ic 5.00 4.00 0.51 1.75 0.25 6.20 0.50 1.27 mi n max mil l ime t e r s inches mi n max dim 8 e c .0075 .0098 0.19 0.25 .025 basic 0.635 basic 87 5 65 d b e a e 6x h 0.25 [.010] a 6 7 k x 45 8x l 8x c y 0.25 [.010] c a b e1 a a1 8x b c 0.10 [.004] 4 3 12 f oot p r i nt 8x 0.72 [.028] 6.46 [.255] 3x 1.27 [.050] 4. ou t l i ne conf or ms t o j e de c ou t l i ne ms - 012 aa. not e s : 1. dimens ioning & tolerancing per asme y14.5m-1994. 2. cont rol l ing dime ns ion: mil l ime t e r 3. dime ns ions are s hown in mil l ime t e rs [inche s ]. 5 dime ns ion doe s not incl u de mol d pr ot ru s ions . 6 dime ns ion doe s not incl u de mol d pr ot ru s ions . mold protrus ions not to exceed 0.25 [.010]. 7 dimens ion is t he lengt h of lead for soldering to a s ubst rat e. mold protrus ions not to exceed 0.15 [.006]. 8x 1.78 [.070] dat e code (yww) xxxx international rect ifier logo f 7101 y = last digit of the year part number lot code ww = week example : t his is an irf7101 (mos fet ) p = designates lead-free product (opt ional) a = as s e mb l y s i t e code    
   
              
 
 

    
            downloaded from: http:///

 www.irf.com 9 330.00 (12.992) max. 14.40 ( .566 ) 12.40 ( .488 ) notes : 1. controlling dimension : millimeter. 2. outline conforms to eia-481 & eia-541. feed direction terminal number 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) notes: 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters(inches). 3. outline conforms to eia-481 & eia-541. so-8 tape and reeldimensions are shown in millimeters (inches) ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 08/2010 data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on irs web site. downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRF7314QPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X