Part Number Hot Search : 
AD8801AN 2N440 AD792 BD139T 1N3001A KMM366 IB1212S 04598
Product Description
Full Text Search
 

To Download IRF7N1405 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
   www.irf.com 1 
  
 



 seventh generation hexfet ? power mosfets from international rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon unit area. this benefit, combined with the fast switching speed and ruggedized device design that hexfet power mosfets are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications. these devices are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high-energy pulse circuits. features:  low r ds(on)  avalanche energy ratings  dynamic dv/dt rating  simple drive requirements  ease of paralleling  hermetically sealed  light weight smd-1 
 

 

  surface mount pd - 94643a IRF7N1405 55v, n-channel hexfet ? power mosfet surface mount (smd-1) product summary part number bv dss r ds(on) i d IRF7N1405 55v 0.0053 ? 55a* absolute maximum ratings parameter units i d @ v gs = 10v, t c = 25c continuous drain current 55* i d @ v gs = 10v, t c = 100c continuous drain current 55* i dm pulsed drain current  220 p d @ t c = 25c max. power dissipation 100 w linear derating factor 0.8 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy  245 mj i ar avalanche current  55 a e ar repetitive avalanche energy  10 mj dv/dt peak d iode recovery dv/dt  1.8 v/ns t j operating junction -55 to 150 t stg storage temperature range package mounting surface temp. 300 (for 5s) weight 2.6 (t ypical) g o c a
IRF7N1405 2 www.irf.com electrical characteristics @ tj = 25c (unless otherwise specified) parameter min typ max units t est conditions bv dss drain-to-source breakdown voltage 55 ? ? v v gs = 0v, i d = 250 a ? bv dss / ? t j temperature coefficient of breakdown ? 0.061 ? v/c reference to 25c, i d = 1.0ma voltage r ds(on) static drain-to-source on-state ? ? 0.0053 ? v gs = 10v, i d = 55a resistance v gs(th) gate threshold voltage 2.0 ? 4.0 v v ds = v gs , i d = 250 a g fs forward transconductance 68 ? ? s v ds =25v, i ds = 55a  i dss zero gate voltage drain current ? ? 25 v ds = 55v ,v gs =0v ? ? 250 v ds = 44v, v gs = 0v, t j =125c i gss gate-to-source leakage forward ? ? 100 v gs = 20v i gss gate-to-source leakage reverse ? ? -100 v gs = -20v q g total gate charge ? ? 200 v gs =10v, i d = 55a q gs gate-to-source charge ? ? 40 nc v ds = 44v q gd gate-to-drain (?miller?) charge ? ? 80 t d (on) turn-on delay time ? ? 20 v dd = 28v, i d = 55a, t r rise time ? ? 90 v gs = 10v, r g = 2.4 ? t d (off) turn-off delay time ? ? 200 t f fall time ? ? 150 l s + l d total inductance ? 4.0 ? measured from the center of drain l pad to the center of source pad c iss input capacitance ? 5100 ? v gs = 0v, v ds = 25v c oss output capacitance ? 1290 ? p f f = 1.0mhz c rss reverse transfer capacitance ? 300 ? na  nh ns a thermal resistance parameter min typ max units t est conditions r thjc junction-to-case ? ? 1.25 c/w note: corresponding spice and saber models are available on the international rectifier website. 
  
 



 source-drain diode ratings and characteristics parameter min typ max units t est conditions i s continuous source current (body diode) ? ? 55* i sm pulse source current (body diode)  ? ? 220 v sd diode forward voltage ? ? 1.3 v t j = 25c, i s = 55a, v gs = 0v  t rr reverse recovery time ? ? 130 ns t j = 25c, i f = 55a, di/dt 100a/ s q rr reverse recovery charge ? ? 380 nc v dd 25v  t on forward turn-on time intrinsic turn-on time is negligible. turn-on speed is substantially controlled by l s + l d . a 
 

 


www.irf.com 3 IRF7N1405 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 15 -60 -40 -20 0 20 40 60 80 100 120 140 160 0.0 0.5 1.0 1.5 2.0 2.5 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 55a 44.555.566.57 v gs , gate-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 25v 20 s pulse width t j = 150c t j = 25c 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 20 s pulse width tj = 150c vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 20 s pulse width tj = 25c vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 4.5v
IRF7N1405 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 0 1500 3000 4500 6000 7500 9000 v , drain-to-source voltage (v) c, capacitance (pf) ds v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted gs iss gs gd , ds rss gd oss ds gd c rss c oss c iss 0 20 40 60 80 100 120 140 q g total gate charge (nc) 0 4 8 12 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 44v v ds = 28v vds= 11v i d = 55a for test circuit see figure 13 0.1 1 10 100 1000 v ds , drain-tosource voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1ms 10ms operation in this area limited by r ds (on) 100s 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( ) v gs = 0v t j = 150c t j = 2 5 c
www.irf.com 5 IRF7N1405 fig 10b. switching time waveforms fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature   
 
   
 1     0.1 %     !"#"$" + -   v gs v ds 90% 10% v gs t d(on) t r t d(off) t f 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) 25 50 75 100 125 150 0 20 40 60 80 100 120 t , case temperature ( c) i , drain current (a) c d limited by package
IRF7N1405 6 www.irf.com fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit fig 13b. gate charge test circuit fig 13a. basic gate charge waveform q g q gs q gd v g charge  r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v  v gs t p v (br)dss i as d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - 25 50 75 100 125 150 0 100 200 300 400 500 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom 24.6a 34.8a 55a
www.irf.com 7 IRF7N1405  repetitive rating; pulse width limited by maximum junction temperature.  i sd 55a, di/dt 220a/ s, v dd 55v, t j 150c  pulse width 300 s; duty cycle 2%  v dd = 25 v, starting t j = 25c, l= 0.16  peak i as = 55a, v gs = 10v, r g =  ? footnotes: p ad assignments case outline and dimensions ? smd-1 ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 ir leominster : 205 crawford st., leominster, massachusetts 01453, usa tel: (978) 534-5776 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . data and specifications subject to change without notice. 03/2007


▲Up To Search▲   

 
Price & Availability of IRF7N1405

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X