Part Number Hot Search : 
SS510 MAX11 C4002 TDA73 04365 00100 USD24 AD831
Product Description
Full Text Search
 

To Download KX4N03W Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  s m d ty p e w w w . k e x i n . c o m . c n 1 m os f e t features l o w c i s s c i s s = 580 p f t y p . b ui l t -in g -s pr o t e c t ion diode agai n s t e s d l o w on - s t a t e re s i s t a n c e r d s (o n ) 1 = 6 7 . 0 m m ax . (v g s = 10 v , i d = 2 . 0 a ) r d s (o n ) 2 = 8 6 . 0 m m ax . (v g s = 4 . 5 v , i d = 2 . 0 a ) r d s (o n ) 3 = 9 5 . 0 m m ax . (v g s = 4 . 0 v , i d = 2 . 0 a ) tssop-8 unit: mm +0.1 -0.1 6.45 +0.1 -0.1 4.45 0.15 +0.03 -0.03 1 4 8 5 1 :drain1 2, 3 :source1 4 :gate1 5 :gate2 6, 7 :source2 8 :drain2 source2 body diode gate protection diode gate2 drain2 source1 body diode gate protection diode gate1 drain1 du al n- ch an n el m osf et kx 4n03w a b s o l u te m a x i m u m ra ti n g s t a = 2 5 s y m b o l r a t i n g u n i t v d s 6 0 v g s 2 0 c o n t i n u o u s d r a i n c u r r e n t t c = 2 5 i d 3 . 8 i d m 1 5 . 2 p o w e r d i s s i p a t i o n ( n o t e . 1 ) t a = 2 5 p d 1 w t j 1 5 0 t st g - 5 5 t o 1 5 0 v a p u l s e d d r a i n c u r r e n t ( n o t e . 1 ) p a r a m e t e r d r a i n - s o u r c e v o l t a g e g a t e - s o u r c e v o l t a g e j u n c t i o n t e m p e r a t u r e s t o r a g e t e m p e r a t u r e r a n g e n o t e . 1 : p w 1 0 s , d u t y c y c l e 1 % m a r k i n g 4 n 0 3 k a * * * m a r k i n g
s m d ty p e w w w . k e x i n . c o m . c n 2 m o s f e t du al n- ch an n el m osf et kx 4n03w e l e c tr i c a l ch a r a c te r i s ti c s t a = 2 5 c h a r a c t e r i s t i c s s y m b o l t e s t c o n d i t i o n s m i n . t y p . m a x . u n i t z e r o g a t e v o l t a g e d r a i n c u r r e n t i d ss v d s = 6 0 v , v g s = 0 0 1 v ua i t n e r r u c e g a k a e l e t a g g ss v g s = 2 0 v , v d s = 0 v 10 ua v e g a t l o v f f o - t u c e t a g g s(o f f ) v d s = 1 0 v , i d = 1 m a 1 . 5 2 . 5 v f o r w a r d t r a n s f e r a d m i t t a n c e | y f s | v d s = 1 0 v , i d = 2 . 0 a 2 . 5 s d r a i n t o s o u r c e o n - s t a t e r e s i s t a n c e r d s(o n )1 v g s = 1 0 v , i d = 2 . 0 m 7 6 a ? r d s(o n )2 v g s = 4 . 5 v , i d = 2 . 0 m 6 8 a ? r d s(o n )3 v g s = 4 . 0 v , i d = 2 . 0 m 5 9 a c e c n a t i c a p a c t u p n i i s s v d s = 1 0 f p 0 8 5 v c e c n a t i c a p a c t u p t u o o s s v g s = 0 f p 0 0 1 v re v e r s e t r a n s f e r c a p a c i t a n c e c rs s f = 1 f p 0 5 z h m t e m i t y a l e d n o - n r u t d (o n ) v d d = 3 0 v , i d = 2 . 0 s n 0 1 a t e m i t e s i r r v g s = 1 0 s n 9 v t e m i t y a l e d f f o - n r u t d (o f f ) r g = 6 3 2 n s t e m i t l l a f f 4 n s q e g r a h c e t a g l a t o t g v d d = 4 8 c n 2 1 v q e g r a h c e c r u o s o t e t a g g s v g s = 1 0 c n 2 v q e g r a h c n i a r d o t e t a g g d i d = 3 . 8 c n 3 a b o d y d i o d e f o r w a r d v o l t a g e v f (s-d ) i f = 3 . 8 a , v g s = 0 v 0 8 . 0 v t e m i t y r e v o c e r e s r e v e r rr i f = 3 . 8 a , v g s = 0 s n 3 3 v r e v e r s e r e c o v e r y c h a r g e q rr d i / d t = 1 0 0 a /u c n 8 5 s test circuit 3 gate charge v gs = 20 0 v pg. r g = 25 50 d.u.t. l v dd test circuit 1 avalanche capability pg. d.u.t. r l v dd test circuit 2 switching time r g pg. i g = 2 ma 50 d.u.t. r l v dd i d v dd i as v ds bv dss starting t ch v gs 0 = 1 s duty cycle 1% v gs w a v e f o r m v ds w a v e f o r m v gs v ds 10% 0 0 90% 90% 90% v gs(on) v ds t on t off t d(on) t r t d(off) t f 10% 10% v 60 i d =250a, v gs =0v v dss drain-source breakdown v oltage
s m d ty p e w w w . k e x i n . c o m . c n 3 m os f e t du al n- ch an n el m osf et kx 4n03w t y p i c a l ch a r a c te r i s i ti c s 25 50 75 100 125 150 20 40 60 80 100 120 0 dera ting f a ct or of fo r w ard bias safe oper a ting area dt - der ating f actor - % t a - ambient t emper ature - ?c 0 t c - case temperature - ?c p t - total power dissipation - w 0 0 25 total power dissipation vs. case temperature 50 75 100 125 150 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 single pulse mounted on ceramic board of 50 cm x1.1 mm 2unit: p d ( f e t 1 ) : p d ( f e t 2 ) = 1 : 1 2 2unit 1unit drain current vs. drain to source voltage v ds - drain to source voltage - v i d - drain current - a 0.2 0 0.8 1.0 0.4 0.6 0 4 8 12 16 4.5 v v gs = 10 v 4.0 v 10 1 0.1 0.01 0.001 0.0001 0.00001 0 1 2 3 4 100 25 ? c 75 ? c v gs - gate to source v oltage - v 25 ? c v ds = 10 v forward transfer characteristics i d - drain current - a t a = 125? c gate cut-off voltage vs. channel temperature t ch - channel temperature - ?c v gs(off) - gate cut-off voltage - v v d s = 1 0 v i d = 1 m a 50 50 100 0 5 1 0 1 1.5 2 2.5 3 forward bias safe operating area 10.0 100.0 i d - drain current - a 1.0 v ds - drain to source voltage - v 100 10 1 0.1 0.1 0.01 s ingl e p u l s e mounted on ceramic board of 50 cm x1.1 mm p d ( f e t 1 ) : p d ( f e t 2 ) = 1 : 1 2 1 0 m s 10 0 m s d c (1un i t ) d c (2un i t ) 1 m s r ds(on) limited (@v gs = 10 v) i d (puls e ) i d ( d c ) p w = 1 0 0 s
s m d ty p e w w w . k e x i n . c o m . c n 4 m osf e t . du al n- ch an n el m osf et kx 4n03w t y p i c a l ch a r a c te r i s i ti c s 1 10 100 0.1 v ds = 10 v i d - drain current - a | y fs | - forward transfer admittance - s 1 10 0.10 0.010 0.01 100 75 ?c 125 ?c 25 ?c t a = 25 ?c forward transfer admittance vs. drain current drain to source on-state resistance vs. drain current 1 0.1 0 0 1 0 1 1 0 . 0 i d - drain current - a r ds(on) - drain to source on-state resistance - m ? t a = 125?c 75?c 25?c 25?c v gs = 4.0 v 0 40 80 120 160 drain to source on-state resistance vs. drain current 1 0.1 0 0 1 0 1 1 0 . 0 i d - drain current - a r ds(on) - drain to source on-state resistance - m ? t a = 125?c 75?c 25?c 25?c v gs = 4.5 v 0 40 80 drain to source on-state resistance vs. drain current 1 0.1 0 0 1 0 1 1 0 . 0 i d - drain current - a r ds(on) - drain to source on-state resistance - m ? t a = 125?c 75?c 25?c 25?c v gs = 10 v 0 40 80 120 160 drain to source on-state resistance vs. channel temperature t ch - channel temperature - ?c i d = 2.0 a 50 0 50 100 150 10 30 50 70 90 110 130 r ds (on) - drain to source on-state resistance - m ? v gs = 4.0 v 4.5 v 10 v 0 0 25 50 75 100 125 150 2 4 6 8 10 12 14 16 18 20 r ds (on) - drain to source on-state resistance - m v gs - gate to source voltage - v i d = 2.0 a drain to source on-state resistance vs. gate to source voltage
s m d ty p e w w w . k e x i n . c o m . c n 5 m os f e t du al n- ch an n el m osf et kx 4n03w t y p i c a l ch a r a c te r i s i ti c s capacitance vs. drain to source voltage v ds - drain to source voltage - v c iss , c oss , c rss - capacitance - pf 1 0 0.1 1 0 0 10 0 0 100 0 0 1 10 100 f = 1 mhz c iss c rss c oss 0.1 1 10 i d - drain current - a t d(on) , t r , t d(off) , t f - switching time - ns 10 100 1 switching characteristics v dd = 30 v v gs(on) = 10 v r g = 6 t d( o f f ) t d(o n ) t f t r 0.01 0.1 1 10 100 0.4 0.6 0.8 1 1.2 source to drain diode forward voltage i f - source to drain current - a v f(s-d) - body diode forward voltage - v v gs = 0 v reverse recovery time vs. drain current i f - drain current - a t rr - reverse recovery time - ns di/dt = 100 a / s v gs = 0 v 1 0.1 1 0 1.0 10 100 100 dynamic input/output characteristics v gs - gate to source voltage - v q g - gate charge - nc v ds - drain to source voltage - v 0 0 2 4 6 8 10 12 2 4 6 8 10 12 v dd = 48 v 30 v 12 v i d = 3.8 a
s m d ty p e w w w . k e x i n . c o m . c n 6 m os f e t du al n- ch an n el m osf et kx 4n03w t y p i c a l ch a r a c te r i s i ti c s pw - pulse width - s transient thermal resistance vs. pulse width r th(t) - transient thermal resistance - ?c/ w 0.01 1 10 100 1000 0.0001 0.001 0.01 0.1 1 10 100 1000 r th(ch-a) = 73.5?c/ w (2un i t ) r th(ch-a) = 125?c/ w (1un i t ) single pulse mounted on ceramic board of 50 cm x1.1 mm 2unit: p d ( f e t 1 ) : p d ( fe t 2 ) = 1 : 1 2 single avalanche current vs. inductive load l - inductive load - h i as - single avalanche current - a 10 v dd = 30 v r g = 25 v gs = 20 0 v starting t ch = 2 5 ? c i as = 3.8 a e as = 33 mj 10 100 1m 10m 1 single avalanche energy derating factor starting t ch - starting channel temperature - ?c energy derating factor - % 25 50 75 100 125 150 v dd = 30 v r g = 25 v gs = 20 0 v i as 3.8 a 0 20 40 60 80 100 120


▲Up To Search▲   

 
Price & Availability of KX4N03W

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X