Part Number Hot Search : 
APT75G A1791N SI9422 TSHA550 C109D1U5 MSGB39WP 278R05 EM871
Product Description
Full Text Search
 

To Download AD9212 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  octal, 10-bit, 40 msps/65 msps, serial lvds, 1.8 v adc data sheet AD9212 rev. e information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their respective owners. one technology way, p.o. box 9106, norwood, ma 02062-9106, u.s.a. tel: 781.329.4700 www.analog.com fax: 781.461.3113 ?2006C2011 analog devices, inc. all rights reserved. features 8 analog-to-digital converters (adcs) integrated into 1 package 100 mw adc power per channel at 65 msps snr = 60.8 db (to nyquist) enob = 9.8 bits sfdr = 80 dbc (to nyquist) excellent linearity dnl = 0.3 lsb (typical); inl = 0.4 lsb (typical) serial lvds (ansi-644, default) low power, reduced signal option (similar to ieee 1596.3) data and frame clock outputs 325 mhz, full-power analog bandwidth 2 v p-p input voltage range 1.8 v supply operation serial port control full-chip and individual-channel power-down modes flexible bit orientation built-in and custom digital test pattern generation programmable clock and data alignment programmable output resolution standby mode applications medical imaging and nondestructive ultrasound portable ultrasound and digital beam-forming systems quadrature radio receivers diversity radio receivers tape drives optical networking test equipment general description the AD9212 is an octal, 10-bit, 40 msps/65 msps adc with an on-chip sample-and-hold circuit designed for low cost, low power, small size, and ease of use. operating at a conversion rate of up to 65 msps, it is optimized for outstanding dynamic performance and low power in applications where a small package size is critical. the adc requires a single 1.8 v power supply and lvpecl-/ cmos-/lvds-compatible sample rate clock for full performance operation. no external reference or driver components are required for many applications. the adc automatically multiplies the sample rate clock for the appropriate lvds serial data rate. a data clock (dco) for capturing data on the output and a frame clock (fco) for signaling a new output byte are provided. individual channel power-down is supported and typically consumes less than 2 mw when all channels are disabled. functional block diagram 05968-001 serial lvds ref select AD9212 agnd vin ? a vin + a vin ? b vin + b vin ? d vin + d vin ? c vin + c sense vref a v dd dr v dd 10 10 10 10 pdwn reft refb d ? a d + a d ? b d + b d ? d d + d d ? c d + c fco? fco+ dco+ dco? clk+ dr g nd clk? serial port interface csb sclk/ dtp sdio/ odm rbias serial lvds serial lvds serial lvds adc adc adc adc data rate multiplier 0.5v serial lvds vin ? e vin + e vin ? f vin + f vin ? h vin + h v in ? g v in + g 10 10 10 10 d ? e d + e d ? f d + f d ? h d + h d ? g d + g serial lvds serial lvds serial lvds adc adc adc adc figure 1. the adc contains several features designed to maximize flexibility and minimize system cost, such as programmable clock and data alignment and programmable digital test pattern generation. the available digital test patterns include built-in deterministic and pseudorandom patterns, along with custom user- defined test patterns entered via the serial port interface (spi). the AD9212 is available in a rohs-compliant, 64-lead lfcsp. it is specified over the industrial temperature range of ?40c to +85c. product highlights 1. small footprint. eight adcs are contained in a small package. 2. low power of 100 mw per channel at 65 msps. 3. ease of use. a data clock output (dco) operates up to 300 mhz and supports double data rate (ddr) operation. 4. user flexibility. spi control offers a wide range of flexible features to meet specific system requirements. 5. pin-compatible family. this includes the ad9222 (12-bit) and ad9252 (14-bit).
AD9212 data sheet rev. e | page 2 of 56 table of contents features .............................................................................................. 1 ? applications ....................................................................................... 1 ? general description ......................................................................... 1 ? functional block diagram .............................................................. 1 ? product highlights ........................................................................... 1 ? revision history ............................................................................... 3 ? specifications ..................................................................................... 4 ? ac specifications .......................................................................... 5 ? digital specifications ................................................................... 6 ? switching specifications .............................................................. 7 ? timing diagrams .......................................................................... 8 ? absolute maximum ratings .......................................................... 10 ? thermal impedance ................................................................... 10 ? esd caution ................................................................................ 10 ? pin configuration and function descriptions ........................... 11 ? equivalent circuits ......................................................................... 13 ? typical performance characteristics ........................................... 15 ? theory of operation ...................................................................... 20 ? analog input considerations .................................................... 20 ? clock input considerations ...................................................... 23 ? serial port interface (spi) .............................................................. 31 ? hardware interface ..................................................................... 31 ? memory map .................................................................................. 33 ? reading the memory map table .............................................. 33 ? reserved locations .................................................................... 33 ? default values ............................................................................. 33 ? logic levels ................................................................................. 33 ? applications information .............................................................. 36 ? design guidelines ...................................................................... 36 ? evaluation board ............................................................................ 37 ? power supplies ............................................................................ 37 ? input signals................................................................................ 37 ? output signals ............................................................................ 37 ? default operation and jumper selection settings ................. 38 ? alternative analog input drive configuration...................... 39 ? outline dimensions ....................................................................... 56 ? ordering guide .......................................................................... 56 ?
data sheet AD9212 rev. e | page 3 of 56 revision history 12/11rev. d to rev. e changes to output signals section and figure 70 ...................... 37 changed default operation and jumper selection settings section .............................................................................................. 38 added endnote 2 in ordering guide ........................................... 56 5/10rev. c to rev. d deleted lfcsp cp-64-3 package ..................................... universal changes to output_phase register, table 16 ............................... 33 deleted figure 85; renumbered sequentially ............................. 55 updated outline dimensions ........................................................ 55 changes to ordering guide ........................................................... 55 12/09rev. b to rev. c updated outline dimensions ........................................................ 55 changes to ordering guide ........................................................... 56 7/09rev. a to rev. b changes to figure 5 ......................................................................... 10 changes to figure 49 and figure 50 ............................................. 21 changes to figure 63 and figure 64 ............................................. 28 updated outline dimensions ........................................................ 55 12/07rev. 0 to rev. a changes to features .......................................................................... 1 changes to figure 1 ........................................................................... 1 changes to crosstalk parameter ..................................................... 3 changes to logic output (sdio/odm) ........................................ 5 changes to figure 2 to figure 4 ....................................................... 7 changes to figure 59 ...................................................................... 24 changes to table 9 endnote .......................................................... 26 changes to digital outputs and timing section ........................ 27 added table 10 ................................................................................ 27 changes to table 11 and table 12 ................................................. 27 changes to rbias pin section ...................................................... 28 deleted figure 63 to figure 66 ...................................................... 28 moved figure 65 .............................................................................. 28 changes to serial port interface (spi) section ............................ 30 changes to hardware interface section ....................................... 30 changes to table 15 ........................................................................ 31 changes to reading the memory map table section ................ 32 added applications information and design guidelines sections ............................................................................................. 35 changes to input signals section .................................................. 36 changes to output signals section ............................................... 36 changes to figure 70 ...................................................................... 36 changes to default operation and jumper selection settings section .............................................................................................. 37 changes to alternative analog input drive configuration section .............................................................................................. 38 changes to figure 73 ...................................................................... 38 change to figure 75 ........................................................................ 40 changes to figure 76 ...................................................................... 41 changes to figure 80 ...................................................................... 45 changes to table 17 ........................................................................ 52 updated outline dimensions ........................................................ 55 changes to ordering guide ........................................................... 55 10/06revision 0: initial version
AD9212 data sheet rev. e | page 4 of 56 specifications avdd = 1.8 v, drvdd = 1.8 v, 2 v p-p differential input, 1.0 v internal reference, ain = ?0.5 dbfs, unless otherwise noted. table 1. AD9212-40 AD9212-65 parameter 1 temperature min typ max min typ max unit resolution 10 10 bits accuracy no missing codes full guaranteed guaranteed offset error full 1.5 8 1.5 8 mv offset matching full 3 8 3 8 mv gain error full 0.4 1.2 3.2 4.3 % fs gain matching full 0.3 0.7 0.4 0.9 % fs differential nonlinearity (dnl) full 0.1 0.4 0.3 0.65 lsb integral nonlinearity (inl) full 0.15 0.5 0.4 1 lsb temperature drift offset error full 2 2 ppm/c gain error full 17 17 ppm/c reference voltage (1 v mode) full 21 21 ppm/c reference output voltage error (vref = 1 v) full 2 30 2 30 mv load regulation @ 1.0 ma (vref = 1 v) full 3 3 mv input resistance full 6 6 k analog inputs differential input voltage range (vref = 1 v) full 2 2 v p-p common-mode voltage full avdd/2 avdd/2 v differential input capacitance full 7 7 pf analog bandwidth, full power full 325 325 mhz power supply avdd full 1.7 1.8 1.9 1.7 1.8 1.9 v drvdd full 1.7 1.8 1.9 1.7 1.8 1.9 v iavdd full 252 260 390 405 ma idrvdd full 49.5 53 54 58 ma total power dissipation (including output drivers) full 542 560 800 833 mw power-down dissipation full 3 11 3 11 mw standby dissipation 2 full 83 95 mw crosstalk ain = ?0.5 dbfs full ?90 ?90 db overrange 3 full ?90 ?90 db 1 see the an-835 application note , understanding high speed adc testing and evaluation , for a complete set of definitions and how these tests were completed. 2 can be controlled via the spi. 3 overrange condition is specific with 6 db of the full-scale input range.
data sheet AD9212 rev. e | page 5 of 56 ac specifications avdd = 1.8 v, drvdd = 1.8 v, 2 v p-p differential input, 1.0 v internal reference, ain = ?0.5 dbfs, unless otherwise noted. table 2. AD9212-40 AD9212-65 parameter 1 temperature min typ max min typ max unit signal-to-noise ratio (snr) f in = 2.4 mhz full 61.2 60.8 db f in = 19.7 mhz full 60.2 61.2 60.8 db f in = 35 mhz full 61.2 58.5 60.8 db f in = 70 mhz full 61.0 60.7 db signal-to-noise and distortion ratio (sinad) f in = 2.4 mhz full 61.2 60.7 db f in = 19.7 mhz full 60.0 61.0 60.6 db f in = 35 mhz full 61.0 57.0 60.5 db f in = 70 mhz full 60.8 60.4 db effective number of bits (enob) f in = 2.4 mhz full 9.87 9.81 bits f in = 19.7 mhz full 9.71 9.87 9.81 bits f in = 35 mhz full 9.87 9.43 9.81 bits f in = 70 mhz full 9.84 9.79 bits spurious-free dynamic range (sfdr) f in = 2.4 mhz full 87 81 dbc f in = 19.7 mhz full 72 85 79 dbc f in = 35 mhz full 79 62 77 dbc f in = 35 mhz 25c 69 77 dbc f in = 70 mhz full 74 72 dbc worst harmonic (second or third) f in = 2.4 mhz full ?87 ?81 dbc f in = 19.7 mhz full ?85 ?72 ?79 dbc f in = 35 mhz full ?79 ?77 ?62 dbc f in = 35 mhz 25c ?77 ?69 dbc f in = 70 mhz full ?74 ?72 dbc worst other (excluding second or third) f in = 2.4 mhz full ?90 ?86 dbc f in = 19.7 mhz full ?85 ?72 ?86 dbc f in = 35 mhz full ?85 ?85 ?70 dbc f in = 70 mhz full ?85 ?85 dbc two-tone intermodulation distortion (imd) ain1 and ain2 = ?7.0 dbfs f in1 = 15 mhz, f in2 = 16 mhz 25c 80.0 77.0 dbc f in1 = 70 mhz, f in2 = 71 mhz 25c 77.0 77.0 dbc 1 see the an-835 application note , understanding high speed adc testing and evaluation , for a complete set of definitions and how these tests were completed.
AD9212 data sheet rev. e | page 6 of 56 digital specifications avdd = 1.8 v, drvdd = 1.8 v, 2 v p-p differential input, 1.0 v internal reference, ain = ?0.5 dbfs, unless otherwise noted. table 3. AD9212-40 AD9212-65 parameter 1 temperature min typ max min typ max unit clock inputs (clk+, clk?) logic compliance cmos/lvds/lvpecl cmos/lvds/lvpecl differential input voltage 2 full 250 250 mv p-p input common-mode voltage full 1.2 1.2 v input resistance (differential) 25c 20 20 k input capacitance 25c 1.5 1.5 pf logic inputs (pdwn, sclk/dtp) logic 1 voltage full 1.2 3.6 1.2 3.6 v logic 0 voltage full 0 0.3 0.3 v input resistance 25c 30 30 k input capacitance 25c 0.5 0.5 pf logic input (csb) logic 1 voltage full 1.2 3.6 1.2 3.6 v logic 0 voltage full 0 0.3 0.3 v input resistance 25c 70 70 k input capacitance 25c 0.5 0.5 pf logic input (sdio/odm) logic 1 voltage full 1.2 drvdd + 0.3 1.2 drvdd + 0.3 v logic 0 voltage full 0 0.3 0 0.3 v input resistance 25c 30 30 k input capacitance 25c 2 2 pf logic output (sdio/odm) 3 logic 1 voltage (i oh = 800 a) full 1.79 1.79 v logic 0 voltage (i ol = 50 a) full 0.05 0.05 v digital outputs (d + x, d ? x), (ansi-644) logic compliance lvds lvds differential output voltage (v od ) full 247 454 247 454 mv output offset voltage (v os ) full 1.125 1.375 1.125 1.375 v output coding (default) offset binary offset binary digital outputs (d + x, d ? x), (low power, reduced signal option) logic compliance lvds lvds differential output voltage (v od ) full 150 250 150 250 mv output offset voltage (v os ) full 1.10 1.30 1.10 1.30 v output coding (default) offset binary offset binary 1 see the an-835 application note , understanding high speed adc testing and evaluation , for a complete set of definitions and how these tests were completed. 2 this is specified for lvds and lvpecl only. 3 this is specified for 13 sdio pi ns sharing the same connection.
data sheet AD9212 rev. e | page 7 of 56 switching specifications avdd = 1.8 v, drvdd = 1.8 v, 2 v p-p differential input, 1.0 v internal reference, ain = ?0.5 dbfs, unless otherwise noted. table 4. AD9212-40 AD9212-65 parameter 1 temp min typ max min typ max unit clock 2 maximum clock rate full 40 65 msps minimum clock rate full 10 10 msps clock pulse width high (t eh ) full 12.5 7.7 ns clock pulse width low (t el ) full 12.5 7.7 ns output parameters 2 , 3 propagation delay (t pd ) full 1.5 2.3 3.1 1.5 2.3 3.1 ns rise time (t r ) (20% to 80%) full 300 300 ps fall time (t f ) (20% to 80%) full 300 300 ps fco propagation delay (t fco ) full 1.5 2.3 3.1 1.5 2.3 3.1 ns dco propagation delay (t cpd ) 4 full t fco + (t sample /20) t fco + (t sample /20) ns dco to data delay (t data ) 4 full (t sample /20) ? 300 (t sample /20) (t sample /20) + 300 (t sample /20) ? 300 (t sample /20) (t sample /20) + 300 ps dco to fco delay (t frame ) 4 full (t sample /20) ? 300 (t sample /20) (t sample /20) + 300 (t sample /20) ? 300 (t sample /20) (t sample /20) + 300 ps data-to-data skew (t data-max ? t data-min ) full 50 200 50 200 ps wake-up time (standby) 25c 600 600 ns wake-up time (power-down) 25c 375 375 s pipeline latency full 8 8 clk cycles aperture aperture delay (t a ) 25c 750 750 ps aperture uncertainty (jitter) 25c <1 <1 ps rms out-of-range recovery time 25c 1 1 clk cycles 1 see the an-835 application note , understanding high speed adc testing and evaluation , for a complete set of definitions and how these tests were completed. 2 can be adjusted via the spi interface. 3 measurements were made using a part soldered to fr-4 material. 4 t sample /20 is based on the number of bits divided by 2 because the delays are based on half duty cycles.
AD9212 data sheet rev. e | page 8 of 56 timing diagrams dco+ dco? clk+ fco+ fco? d ? x d + x clk? vin x msb n ? 9 n ? 1 n d8 n ? 9 d7 n ? 9 d5 n ? 9 t data t frame t fco t pd d4 n ? 9 d6 n ? 9 d8 n ? 8 d7 n ? 8 d5 n ? 8 d6 n ? 8 d3 n ? 9 d1 n ? 9 msb n ? 8 d0 n ? 9 d2 n ? 9 t cpd t eh t a t el 05968-002 figure 2. 10-bit data serial stream (default), msb first dco? dco+ d ? x d + x fco? fco+ vin x clk? clk+ msb n ? 9 d10 n ? 9 d9 n ? 9 d8 n ? 9 d7 n ? 9 d6 n ? 9 d5 n ? 9 d4 n ? 9 d3 n ? 9 d2 n ? 9 d1 n ? 9 d0 n ? 9 d10 n ? 8 msb n ? 8 05968-003 n ? 1 n t data t frame t fco t pd t cpd t eh t a t el figure 3.12-bit data serial stream, msb first
data sheet AD9212 rev. e | page 9 of 56 dco? dco+ d ? x d + x fco? fco+ v in x clk? clk+ lsb n ? 9 d0 n ? 9 d1 n ? 9 d2 n ? 9 d3 n ? 9 d4 n ? 9 d5 n ? 9 d6 n ? 9 d7 n ? 9 d8 n ? 9 lsb n ? 8 d0 n ? 8 d2 n ? 8 d1 n ? 8 n ? 1 t a n t data t frame t fco t pd t cpd t eh t el 05968-004 figure 4. 10-bit data serial stream, lsb first
AD9212 data sheet rev. e | page 10 of 56 absolute maximum ratings table 5. parameter with respect to rating electrical avdd agnd ?0.3 v to +2.0 v drvdd drgnd ?0.3 v to +2.0 v agnd drgnd ?0.3 v to +0.3 v avdd drvdd ?2.0 v to +2.0 v digital outputs (d + x, d ? x, dco+, dco?, fco+, fco?) drgnd ?0.3 v to +2.0 v clk+, clk? agnd ?0.3 v to +3.9 v vin + x, vin ? x agnd ?0.3 v to +2.0 v sdio/odm agnd ?0.3 v to +2.0 v pdwn, sclk/dtp, csb agnd ?0.3 v to +3.9 v reft, refb, rbias agnd ?0.3 v to +2.0 v vref, sense agnd ?0.3 v to +2.0 v environmental operating temperature range (ambient) ?40c to +85c storage temperature range (ambient) ?65c to +150c maximum junction temperature 150c lead temperature (soldering, 10 sec) 300c stresses above those listed under absolute maximum ratings may cause permanent damage to the device. this is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. thermal impedance table 6. air flow velocity (m/s) ja 1 jb jc unit 0.0 17.7 c/w 1.0 15.5 8.7 0.6 c/w 2.5 13.9 c/w 1 ja for a 4-layer pcb with solid ground plane (simulated). exposed pad soldered to pcb. esd caution
data sheet AD9212 rev. e | page 11 of 56 pin configuration and fu nction descriptions notes 1. the exposed pad must be connected to analog ground pin 1 indicator 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 d ? g d + g d ? f d + f d ? e d + e dco? dco+ fco? fco+ d ? d d + d d ? c d + c d ? b d + b 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 vin + f vin ? f avdd vin ? e vin + e avdd reft refb vref sense rbias vin + d vin ? d avdd vin ? c vin + c 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 avdd vin + g vin ? g avdd vin ? h vin + h avdd avdd clk? clk+ avdd avdd drgnd drvdd d ? h d + h avdd vin + b vin ? b avdd vin ? a vin + a avdd pdwn csb sdio/odm sclk/dtp avdd drgnd drvdd d + a d ? a 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 AD9212 top view (not to scale) exposed paddle, pin 0 (bottom of package) 05968-005 figure 5. 64-lead lfcsp pi n configuration, top view table 7. pin function descriptions pin no. mnemonic description 0 agnd analog ground (exposed paddle) 1, 4, 7, 8, 11, 12, 37, 42, 45, 48, 51, 59, 62 avdd 1.8 v analog supply 13, 36 drgnd digital output driver ground 14, 35 drvdd 1.8 v digital output driver supply 2 vin + g adc g analog input true 3 vin ? g adc g analog input complement 5 vin ? h adc h analog input complement 6 vin + h adc h analog input true 9 clk? input clock complement 10 clk+ input clock true 15 d ? h adc h digital output complement 16 d + h adc h digital output true 17 d ? g adc g digital output complement 18 d + g adc g digital output true 19 d ? f adc f digital output complement 20 d + f adc f digital output true 21 d ? e adc e digital output complement 22 d + e adc e digital output true 23 dco? data clock digital output complement 24 dco+ data clock digital output true 25 fco? frame clock digital output complement 26 fco+ frame clock digital output true 27 d ? d adc d digital output complement 28 d + d adc d digital output true 29 d ? c adc c digital output complement 30 d + c adc c digital output true 31 d ? b adc b digital output complement
AD9212 data sheet rev. e | page 12 of 56 pin no. mnemonic description 32 d + b adc b digital output true 33 d ? a adc a digital output complement 34 d + a adc a digital output true 38 sclk/dtp serial clock/digital test pattern 39 sdio/odm serial data inpu t-output/output driver mode 40 csb chip select bar 41 pdwn power-down 43 vin + a adc a analog input true 44 vin ? a adc a analog input complement 46 vin ? b adc b analog input complement 47 vin + b adc b analog input true 49 vin + c adc c analog input true 50 vin ? c adc c analog input complement 52 vin ? d adc d analog input complement 53 vin + d adc d analog input true 54 rbias external resistor to set th e internal adc core bias current 55 sense reference mode selection 56 vref voltage reference input/output 57 refb negative differential reference 58 reft positive differential reference 60 vin + e adc e analog input true 61 vin ? e adc e analog input complement 63 vin ? f adc f analog input complement 64 vin + f adc f analog input true
data sheet AD9212 rev. e | page 13 of 56 equivalent circuits v in x 05968-006 figure 6. equivalent analog input circuit 10? 10k ? 10k ? 10? 1.25v clk+ clk? 05968-007 figure 7. equivalent clock input circuit s dio/odm 350? 30k? 05968-008 figure 8. equivalent sdio/odm input circuit dr v dd drgnd d ? x d + x v v v v 0 5968-009 figure 9. equivalent digital output circuit sclk/dtp or pdwn 30k ? 1k? 05968-010 figure 10. equivalent sclk/d tp or pdwn input circuit 100? rbias 05968-011 figure 11. equivale nt rbias circuit
AD9212 data sheet rev. e | page 14 of 56 csb 70k ? 1k? a v dd 05968-012 figure 12. equivalent csb input circuit sense 1k? 05968-013 figure 13. equivalent sense circuit vref 6k ? 0 5968-014 figure 14. equivalent vref circuit
data sheet AD9212 rev. e | page 15 of 56 typical performance characteristics 05968-037 ?120 ?100 ?80 ?60 ?40 ?20 0 amplitude (dbfs) ain = ?0.5dbfs snr = 60.08db enob = 9.61 sfdr = 71.68dbc 0 5 10 15 20 25 30 frequency (mhz) figure 15. single-tone 32k fft with f in = 2.3 mhz, AD9212-40 05968-038 ?120 ?100 ?80 ?60 ?40 ?20 0 0 2 6 10 14 18 4 8 12 16 20 frequency (mhz) amplitude (dbfs) ain = ?0.5dbfs snr = 61.17db enob = 9.85 sfdr = 81.27dbc figure 16. single-tone 32k fft with f in = 19.7 mhz, AD9212-40 05968-039 ?120 ?100 ?80 ?60 ?40 ?20 0 0 5 10 15 20 25 30 frequency (mhz) amplitude (dbfs) ain = ?0.5dbfs snr = 60.48db enob = 9.72 sfdr = 76.84dbc figure 17. single-tone 32k fft with f in = 2.3 mhz, AD9212-65 05968-040 ?120 ?100 ?80 ?60 ?40 ?20 0 0 5 10 15 20 25 30 frequency (mhz) amplitude (dbfs) ain = ?0.5dbfs snr = 60.41db enob = 9.7 sfdr = 76.11dbc figure 18. single-tone 32k fft with f in = 35 mhz, AD9212-65 05968-041 ?120 ?100 ?80 ?60 ?40 ?20 0 0 5 10 15 20 25 30 frequency (mhz) amplitude (dbfs) ain = ?0.5dbfs snr = 60.25db enob = 9.66 sfdr = 72.45dbc figure 19. single-tone 32k fft with f in = 70 mhz, AD9212-65 05968-042 ?120 ?100 ?80 ?60 ?40 ?20 0 0 5 10 15 20 25 30 frequency (mhz) amplitude (dbfs) ain = ?0.5dbfs snr = 60.08db enob = 9.61 sfdr = 71.68dbc figure 20. single-tone 32k fft with f in = 120 mhz, AD9212-65
AD9212 data sheet rev. e | page 16 of 56 90 80 85 75 70 65 60 55 50 10 40 35 30 25 20 15 snr/sfdr (db) encode rate (msps) sfdr snr 05968-043 figure 21. snr/sfdr vs. f sample , f in = 10.3 mhz, AD9212-40 90 80 85 75 70 65 60 55 50 10 40 35 30 25 20 15 snr/sfdr (db) encode rate (msps) sfdr snr 05968-044 figure 22. snr/sfdr vs. f sample , f in = 19.7 mhz, AD9212-40 90 80 85 75 70 65 60 55 50 10 60 50 40 30 20 snr/sfdr (db) encode rate (msps) sfdr snr 05968-045 figure 23. snr/sfdr vs. f sample , f in = 10.3 mhz, AD9212-65 90 80 85 75 70 65 60 55 50 10 60 50 40 30 20 snr/sfdr (db) encode rate (msps) sfdr snr 0 5968-046 figure 24. snr/sfdr vs. f sample , f in = 35 mhz, AD9212-65 10 20 30 40 50 60 70 90 80 0 100 ?60 ?50 ?40 ?30 ?20 ?10 0 analog input level (dbfs) snr/sfdr (db) snr sfdr 05968-047 70db reference figure 25. snr/sfdr vs. analog input level, f in = 10.3 mhz, AD9212-40 10 20 30 40 50 60 70 90 80 0 100 ?60 ?50 ?40 ?30 ?20 ?10 0 analog input level (dbfs) snr/sfdr (db) snr sfdr 70db reference 05968-048 figure 26. snr/sfdr vs. analog input level, f in = 35 mhz, AD9212-40
data sheet AD9212 rev. e | page 17 of 56 0 100 ?60 ?50 ?40 ?30 ?20 ?10 0 analog input level (dbfs) snr/sfdr (db) snr 05968-049 10 20 30 40 50 60 70 90 80 70db reference sfdr figure 27. snr/sfdr vs. analog input level, f in = 10.3 mhz, AD9212-65 0 10 20 30 40 50 60 70 90 80 100 ?60 ?50 ?40 ?30 ?20 ?10 0 analog input level (dbfs) snr/sfdr (db) snr sfdr 70db reference 05968-050 figure 28. snr/sfdr vs. analog input level, f in = 35 mhz, AD9212-65 0 5968-051 ?120 ?100 ?80 ?60 ?40 ?20 0 0 246810 12 14 16 18 20 frequency (mhz) amplitude (dbfs) ain1 and ain2 = ?7dbfs sfdr = 84.8db imd2 = 83.66dbc imd3 = 84.6dbc figure 29. two-tone 32k fft with f in1 = 15 mhz and f in2 = 16 mhz, AD9212-40 05968-052 ?120 ?100 ?80 ?60 ?40 ?20 0 0 246810 12 14 16 18 20 frequency (mhz) amplitude (dbfs) ain1 and ain2 = ?7dbfs sfdr = 76.7db imd2 = 83.38dbc imd3 = 77.21dbc figure 30. two-tone 32k fft with f in1 = 70 mhz and f in2 = 71 mhz, AD9212-40 0 5968-053 ?120 ?100 ?80 ?60 ?40 ?20 0 0 5 10 15 20 25 30 frequency (mhz) amplitude (dbfs) ain1 and ain2 = ?7dbfs sfdr = 77.4db imd2 = 77.92dbc imd3 = 76.9dbc figure 31. two-tone 32k fft with f in1 = 15 mhz and f in2 = 16 mhz, AD9212-65 0 5968-054 ?120 ?100 ?80 ?60 ?40 ?20 0 0 5 10 15 20 25 30 frequency (mhz) amplitude (dbfs) ain1 and ain2 = ?7dbfs sfdr = 72.5db imd2 = 77.14dbc imd3 = 72.55dbc figure 32. two-tone 32k fft with f in1 = 70 mhz and f in2 = 71 mhz, AD9212- 65
AD9212 data sheet rev. e | page 18 of 56 50 55 60 65 70 75 80 1 10 100 1000 analog input frequency (mhz) snr/sfdr (db) snr sfdr 05968-055 figure 33. snr/sfdr vs. f in , AD9212-65 50 55 65 60 70 75 80 85 90 ?40 ?20 0 20 40 60 80 temperature (c) sinad/sfdr (db) sfdr sinad 05968-056 figure 34. sinad/sfdr vs. temperature, f in = 10.3 mhz, AD9212-40 50 55 65 60 70 75 80 85 90 ?40 ?20 0 20 40 60 80 temperature (c) sinad/sfdr (db) sfdr sinad 05968-057 figure 35. sinad/sfdr vs. temperature, f in = 10.3 mhz, AD9212-65 0.5 ?0.5 0 code inl (lsb) 05968-058 0.3 0.4 0.2 0.1 0 ?0.1 ?0.2 ?0.3 ?0.4 1000 200 400 600 800 figure 36. inl, f in = 2.3 mhz, AD9212-65 0.5 ?0.5 0 code dnl (lsb) 05968-060 0.3 0.4 0.2 0.1 0 ?0.1 ?0.2 ?0.3 ?0.4 1000 200 400 600 800 figure 37. dnl, f in = 2.3 mhz, AD9212-65 05968-061 frequency (mhz) cmrr (db) ?70 ? 30 0 5 10 15 20 25 30 35 40 ?65 ?60 ?55 ?50 ?45 ?40 ?35 figure 38. cmrr vs. frequency, AD9212-65
data sheet AD9212 rev. e | page 19 of 56 05968-062 0 0.5 1.0 1.5 2.0 2.5 n ? 3 n ? 2 n ? 1 n n + 1 n + 2 n + 3 code number of hits (millions) 0.096 lsb rms figure 39. input-referred noise histogram, AD9212-65 amplitude (dbfs) ?120 0 ?20 ?40 ?60 ?80 ?100 0 51 01 5 20 25 frequency (mhz) npr = 51.13db notch = 18.0mhz notch width = 3.0mhz 05968-063 figure 40. noise power ratio (npr), AD9212- 65 0 ?11 ?10 ?9 ?8 ?7 ?6 ?5 ?4 ?3 ?2 ?1 0500 450400350300250200 15010050 amplitude (dbfs) frequency (mhz) ?3db bandwidth = 325mhz 05968-064 figure 41. full power bandwidth vs. frequency, AD9212-65
AD9212 data sheet rev. e | page 20 of 56 theory of operation the AD9212 architecture consists of a pipelined adc divided into three sections: a 4-bit first stage followed by eight 1.5-bit stages and a 3-bit flash. each stage provides sufficient overlap to correct for flash errors in the preceding stage. the quantized outputs from each stage are combined into a final 10-bit result in the digital correction logic. the pipelined architecture permits the first stage to operate with a new input sample while the remaining stages operate with preceding samples. sampling occurs on the rising edge of the clock. each stage of the pipeline, excluding the last, consists of a low resolution flash adc connected to a switched-capacitor dac and an interstage residue amplifier (for example, a multiplying digital-to-analog converter (mdac)). the residue amplifier magnifies the difference between the reconstructed dac output and the flash input for the next stage in the pipeline. one bit of redundancy is used in each stage to facilitate digital correction of flash errors. the last stage simply consists of a flash adc. the output staging block aligns the data, corrects errors, and passes the data to the output buffers. the data is then serialized and aligned to the frame and data clocks. analog input considerations the analog input to the AD9212 is a differential switched- capacitor circuit designed for processing differential input signals. this circuit can support a wide common-mode range while maintaining excellent performance. an input common-mode voltage of midsupply minimizes signal-dependent errors and provides optimum performance. ss h c par c sample c sample c par vin ? x h ss h vin + x h 0 5968-017 figure 42. switched-cap acitor input circuit the clock signal alternately switches the input circuit between sample mode and hold mode (see figure 42). when the input circuit is switched into sample mode, the signal source must be capable of charging the sample capacitors and settling within one-half of a clock cycle. a small resistor in series with each input can help reduce the peak transient current injected from the output stage of the driving source. in addition, low-q inductors or ferrite beads can be placed on each leg of the input to reduce high differential capacitance at the analog inputs and therefore achieve the maximum bandwidth of the adc. such use of low- q inductors or ferrite beads is required when driving the converter front end at high if frequencies. either a shunt capacitor or two single-ended capacitors can be placed on the inputs to provide a matching passive network. this ultimately creates a low-pass filter at the input to limit unwanted broadband noise. see the an-742 application note , frequency domain response of switched-capacitor adcs ; the an-827 application note , a resonant approach to interfacing amplifiers to switched-capacitor adcs ; and the analog dialogue article transformer-coupled front-end for wideband a/d converters (volume 39, april 2005) for more information. in general, the precise values depend on the application. the analog inputs of the AD9212 are not internally dc-biased. therefore, in ac-coupled applications, the user must provide this bias externally. setting the device so that v cm = avdd/2 is recommended for optimum performance, but the device can function over a wider range with reasonable performance, as shown in figure 45 and figure 46.
data sheet AD9212 rev. e | page 21 of 56 05968-065 analog input common-mode voltage (v) snr/sfdr (db) 50 55 70 75 60 65 80 85 90 0.3 0.6 0.9 1.2 1.5 snr (db) sfdr (dbc) figure 43. snr/sfdr vs. common-mode voltage, f in = 2.3 mhz, AD9212-40 snr (db) sfdr (dbc) 0 5968-066 analog input common-mode voltage (v) snr/sfdr (db) 50 55 70 75 60 65 80 85 90 0.3 0.6 0.9 1.2 1.5 figure 44. snr/sfdr vs. common-mode voltage, f in = 19.7 mhz, AD9212-40 snr sfdr 05968-067 analog input common-mode voltage (v) snr/sfdr (db) 50 55 70 75 60 65 80 85 90 0.3 0.6 0.9 1.2 1.5 figure 45. snr/sfdr vs. common-mode voltage, f in = 2.3 mhz, AD9212-65 snr sfdr 05968-068 analog input common-mode voltage (v) snr/sfdr (db) 50 55 70 75 60 65 80 85 90 0.3 0.6 0.9 1.2 1.5 figure 46. snr/sfdr vs. common-mode voltage, f in = 35 mhz, AD9212-65
AD9212 data sheet rev. e | page 22 of 56 for best dynamic performance, the source impedances driving vin + x and vin ? x should be matched such that common-mode settling errors are symmetrical. these errors are reduced by the common-mode rejection of the adc. an internal reference buffer creates the positive and negative reference voltages, reft and refb, respectively, that define the span of the adc core. the output common mode of the reference buffer is set to midsupply, and the reft and refb voltages and span are defined as reft = 1/2 ( avdd + vref) refb = 1/2 ( avdd ? vref) span = 2 ( reft ? refb ) = 2 vref it can be seen from these equations that the reft and refb voltages are symmetrical about the midsupply voltage and, by definition, the input span is twice the value of the vref voltage. maximum snr performance is achieved by setting the adc to the largest span in a differential configuration. in the case of the AD9212, the largest input span available is 2 v p-p. differential input configurations there are several ways to drive the AD9212 either actively or passively; however, optimum performance is achieved by driving the analog input differentially. for example, using the ad8334 differential driver to drive the AD9212 provides excellent perfor- mance and a flexible interface to the adc (see figure 50) for baseband applications. this configuration is commonly used for medical ultrasound systems. for applications where snr is a key parameter, differential transformer coupling is the recommended input configuration (see figure 47 and figure 48), because the noise performance of most amplifiers is not adequate to achieve the true performance of the AD9212. regardless of the configuration, the value of the shunt capacitor, c, is dependent on the input frequency and may need to be reduced or removed. 2v p-p r r c diff 1 c 1 c diff is optional. 49.9 ? 0.1 f 1k? 1k? agnd avdd a dt1-1wt 1:1 z ratio vin ? x adc AD9212 vin + x c 05968-018 figure 47. differential transformer-coupled configuration for baseband applications adc AD9212 2v p-p 2.2pf 1k ? 0.1 f 1k ? 1k ? avdd a dt1-1wt 1:1 z ratio 16nh 16nh 0.1 f 16nh 33 ? 33 ? 499 ? 65 ? vin+ x vin? x 05968-019 figure 48. differential transformer-coupled configuration for if applications single-ended input configuration a single-ended input may provide adequate performance in cost-sensitive applications. in this configuration, sfdr and distortion performance degrade due to the large input common- mode swing. if the application requires a single-ended input configuration, ensure that the source impedances on each input are well matched in order to achieve the best possible performance. a full-scale input of 2 v p-p can still be applied to the adcs vin + x pin while the vin ? x pin is terminated. figure 49 details a typical single-ended input configuration. 2v p-p r r 49.9 ? 0.1f 0.1f avdd 1k ? 25? 1k ? 1k? 1k? a vdd vin ? x adc AD9212 vin + x c diff 1 c 1 c diff is optional. c 05968-020 figure 49. single-ended input configuration 05968-021 ad8334 1.0k ? 1.0k ? 374? 187? r r c 0.1 f 187 ? 0.1 f 0.1 f 0.1 f 0.1 f10 f 0.1 f 1v p-p 0.1 f lna 120nh vga voh vip inh 22pf lmd vin lop lon vol 18nf 274 ? vin ? x adc AD9212 vin + x 1k? 1k? avdd figure 50. differential input configuration using the ad8334
data sheet AD9212 rev. e | page 23 of 56 clock input considerations for optimum performance, the AD9212 sample clock inputs (clk+ and clk?) should be clocked with a differential signal. this signal is typically ac-coupled into the clk+ and clk? pins via a transformer or capacitors. these pins are biased internally and require no additional biasing. figure 51 shows the preferred method for clocking the AD9212. the low jitter clock source is converted from single-ended to differential using an rf transformer. the back-to-back schottky diodes across the secondary transformer limit clock excursions into the AD9212 to approximately 0.8 v p-p differential. this helps prevent the large voltage swings of the clock from feeding through to other portions of the AD9212, and it preserves the fast rise and fall times of the signal, which are critical to low jitter performance. 0.1f 0.1f 0.1f 0.1f schottky diodes: hsm2812 clk+ 50 ? 100 ? clk? clk+ adc AD9212 mini-circuits ? adt1?1wt, 1:1z xfmr 05968-022 figure 51. transformer-coupled differential clock another option is to ac-couple a differential pecl signal to the sample clock input pins as shown in figure 52. the ad9510 / ad9511/ ad9512 / ad9513 / ad9514/ ad9515 family of clock drivers offers excellent jitter performance. 100 ? 0.1f 0.1f 0.1f 0.1f 240 ? 240 ? ad9510/ad9511/ ad9512/ad9513/ ad9514/ad9515 50 ? 1 50 ? 1 clk clk 1 50 ? resistors are optional. clk? clk+ adc AD9212 pecl driver 05968-023 clk+ clk? figure 52. differential pecl sample clock 100 ? 0.1f 0.1f 0.1f 0.1f 50 ? 1 lvds driver 50 ? 1 clk clk 1 50 ? resistors are optional. clk? clk+ adc AD9212 ad9510/ad9511/ ad9512/ad9513/ ad9514/ad9515 05968-024 clk+ clk? figure 53. differential lvds sample clock in some applications, it is acceptable to drive the sample clock inputs with a single-ended cmos signal. in such applications, clk+ should be driven directly from a cmos gate, and the clk? pin should be bypassed to ground with a 0.1 f capacitor in parallel with a 39 k resistor (see figure 54). although the clk+ input circuit supply is avdd (1.8 v), this input is designed to withstand input voltages of up to 3.3 v, making the selection of the drive logic voltage very flexible. 0.1f 0.1f 0.1f 39 k ? cmos driver 50 ? 1 optional 100 ? 0.1f clk clk 1 50? resistor is optional. clk? clk+ adc AD9212 ad9510/ad9511/ ad9512/ad9513/ ad9514/ad9515 05968-025 clk+ figure 54. single-ended 1.8 v cmos sample clock 0.1f 0.1f 0.1f cmos driver 50 ? 1 optional 100 ? clk clk 1 50 ? resistor is optional. 0.1f clk? clk+ adc AD9212 ad9510/ad9511/ ad9512/ad9513/ ad9514/ad9515 05968-026 c lk+ figure 55. single-ended 3.3 v cmos sample clock clock duty cycle considerations typical high speed adcs use both clock edges to generate a variety of internal timing signals. as a result, these adcs may be sensitive to the clock duty cycle. commonly, a 5% tolerance is required on the clock duty cycle to maintain dynamic performance characteristics. the AD9212 contains a duty cycle stabilizer (dcs) that retimes the nonsampling edge, providing an internal clock signal with a nominal 50% duty cycle. this allows a wide range of clock input duty cycles without affecting the performance of the AD9212. when the dcs is on, noise and distortion perfor- mance are nearly flat for a wide range of duty cycles. however, some applications may require the dcs function to be off. if so, keep in mind that the dynamic range performance can be affected when operated in this mode. see the memory map section for more details on using this feature. the duty cycle stabilizer uses a delay-locked loop (dll) to create the nonsampling edge. as a result, any changes to the sampling frequency require approximately eight clock cycles to allow the dll to acquire and lock to the new rate.
AD9212 data sheet rev. e | page 24 of 56 clock jitter considerations high speed, high resolution adcs are sensitive to the quality of the clock input. the degradation in snr at a given input frequency (f a ) due only to aperture jitter (t j ) can be calculated by snr degradation = 20 log 10(1/2 f a t j ) in this equation, the rms aperture jitter represents the root mean square of all jitter sources, including the clock input, analog input signal, and adc aperture jitter specifications. if undersampling applications are particularly sensitive to jitter (see figure 56). the clock input should be treated as an analog signal in cases where aperture jitter may affect the dynamic range of the AD9212. power supplies for clock drivers should be separated from the adc output driver supplies to avoid modulating the clock signal with digital noise. low jitter crystal-controlled oscillators make the best clock sources. if the clock is generated from another type of source (by gating, dividing, or other methods), it should be retimed by the original clock at the last step. refer to the an-501 application note and the an-756 application note for more in-depth information about jitter performance as it relates to adcs. 1 10 100 1000 16 bits 14 bits 12 bits 30 40 50 60 70 80 90 100 110 120 130 0.125ps 0.25ps 0.5ps 1.0ps 2.0ps analog input frequency (mhz) 10 bits 8 bits rms clock jitter requirement snr (db) 05968-015 figure 56. ideal snr vs. input frequency and jitter power dissipation and power-down mode as shown in figure 57 and figure 58, the power dissipated by the AD9212 is proportional to its sample rate. the digital power dissipation does not vary much because it is determined primarily by the drvdd supply and bias current of the lvds output drivers. 05968-089 0 0.05 0.10 0.15 0.20 0.25 0.30 10 15 20 25 30 35 40 encode (mhz) current (a) 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 power (w) total power avdd current drvdd current figure 57. supply current vs. f sample for f in = 10.3 mhz, AD9212-40 05968-090 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 10 20 30 40 50 60 encode (mhz) current (a) 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 power (w) total power avdd current drvdd current figure 58. supply current vs. f sample for f in = 10.3 mhz, AD9212-65
data sheet AD9212 rev. e | page 25 of 56 by asserting the pdwn pin high, the AD9212 is placed into power-down mode. in this state, the adc typically dissipates 11 mw. during power-down, the lvds output drivers are placed into a high impedance state. the AD9212 returns to normal operating mode when the pdwn pin is pulled low. this pin is both 1.8 v and 3.3 v tolerant. in power-down mode, low power dissipation is achieved by shutting down the reference, reference buffer, pll, and biasing networks. the decoupling capacitors on reft and refb are discharged when entering power-down mode and must be recharged when returning to normal operation. as a result, the wake-up time is related to the time spent in the power-down mode: shorter cycles result in proportionally shorter wake-up times. with the recommended 0.1 f and 4.7 f decoupling capacitors on reft and refb, approximately 1 sec is required to fully discharge the reference buffer decoupling capacitors, and approximately 375 s is required to restore full operation. there are several other power-down options available when using the spi. the user can individually power down each channel or put the entire device into standby mode. the latter option allows the user to keep the internal pll powered when fast wake-up times (~600 ns) are required. see the memory map section for more details on using these features. digital outputs and timing the AD9212 differential outputs conform to the ansi-644 lvds standard by default upon power-up. this can be changed to a low power, reduced signal option (similar to the ieee 1596.3 standard) via the sdio/odm pin or the spi. this lvds standard can further reduce the overall power dissipation of the device by approximately 36 mw. see the sdio/odm pin section or table 16 in the memory map section for more information. the lvds driver current is derived on chip and sets the output current at each output equal to a nominal 3.5 ma. a 100 differential termination resistor placed at the lvds receiver inputs results in a nominal 350 mv swing at the receiver. the AD9212 lvds outputs facilitate interfacing with lvds receivers in custom asics and fpgas for superior switching performance in noisy environments. single point-to-point net topologies are recommended with a 100 termination resistor placed as close to the receiver as possible. if there is no far-end receiver termination or there is poor differential trace routing, timing errors may result. to avoid such timing errors, it is recommended that the trace length be no longer than 24 inches and that the differential output traces be kept close together and at equal lengths. an example of the fco and data stream when the AD9212 is used with traces of proper length and position is shown in figure 59. ch1 500mv/div = fco ch2 500mv/div = dco ch3 500mv/div = data 05968-027 5ns/div figure 59. lvds output timing example in ansi-644 mode (default), AD9212-65 an example of the lvds output using the ansi-644 standard (default) data eye and a time interval error (tie) jitter histogram with trace lengths less than 24 inches on standard fr-4 material is shown in figure 60. figure 61 shows an example of the trace length exceeding 24 inches on st andard fr-4 material. notice that the tie jitter histogram reflects the decrease of the data eye opening as the edge deviates from the ideal position. it is the users responsibility to determine if the waveforms meet the timing budget of the design when the trace lengths exceed 24 inches. additional spi options allow the user to further increase the internal termination (increasing the current) of all eight outputs in order to drive longer trace lengths (see figure 62). even though this produces sharper rise and fall times on the data edges and is less prone to bit errors, the power dissipation of the drvdd supply increases when this option is used. in cases that require increased driver strength to the dco and fco outputs because of load mismatch, register 0x15 allows the user to increase the drive strength by 2. to do this, first set the appropriate bit in register 0x05. note that this feature cannot be used with bit 4 and bit 5 in register 0x15. bit 4 and bit 5 take precedence over this feature. see the memory map section for more details.
AD9212 data sheet rev. e | page 26 of 56 500 400 300 200 100 ?500 ?400 ?300 ?200 ?100 0 ?1.0ns ?1.5ns ?0.5ns 0ns 0.5ns 1.0ns 1.5ns eye diagram voltage (mv) eye: all bits uls: 12071/12071 90 50 10 20 30 40 60 70 80 0 ?150ps ?100ps ?50ps 0ps 50ps 100ps 150ps tie jitter histogram (hits) 05968-030 figure 60. data eye for lvds outputs in ansi-644 mode with trace lengths less than 24 inches on standard fr-4 60 80 90 70 50 40 20 10 100 30 0 ?200ps ?100ps 100ps 0ps 200ps tie jitter histogram (hits) 500 400 300 200 100 ?500 ?400 ?300 ?200 ?100 0 ?1.0ns ?0.5ns 0ns 0.5ns 1.5ns ?1.5ns 1.0ns eye diagram voltage (mv) eye: all bits uls: 12067/12067 0 5968-028 figure 61. data eye for lvds outputs in ansi-644 mode with trace lengths greater than 24 inches on standard fr-4 400 300 200 100 ?400 ?300 ?200 ?100 0 ?0.5ns 0ns 0.5ns eye diagram voltage (mv) eye: all bits uls: 12072/12072 80 50 10 20 30 40 60 70 0 ?150ps ?100ps ?50ps 0ps 50ps 100ps 150ps tie jitter histogram (hits) ?1.0ns 1.5ns ?1.5ns 1.0ns 05968-029 figure 62. data eye for lvds outputs in ansi-644 mode with 100 termination on and trace lengths greater than 24 inches on standard fr-4 the format of the output data is offset binary by default. an example of the output coding format can be found in table 8. to change the output data format to twos complement, see the memory map section. table 8. digital output coding code (vin + x) ? (vin ? x), input span = 2 v p-p (v) digital output offset binary (d9 ... d0) 1023 +1.00 11 1111 1111 512 0.00 10 0000 0000 511 ?0.001953 01 1111 1111 0 ?1.00 00 0000 0000 data from each adc is serialized and provided on a separate channel. the data rate for each serial stream is equal to 10 bits times the sample clock rate, with a maximum of 650 mbps (10 bits 65 msps = 650 mbps). the lowest typical conversion rate is 10 msps. however, if lower sample rates are required for a specific application, the pll can be set up via the spi to allow encode rates as low as 5 msps. see the memory map section for information about enabling this feature.
data sheet AD9212 rev. e | page 27 of 56 two output clocks are provided to assist in capturing data from the AD9212. the dco is used to clock the output data and is equal to five times the sample clock (clk) rate. data is clocked out of the AD9212 and must be captured on the rising and falling edges of the dco that supports double data rate (ddr) capturing. the fco is used to signal the start of a new output byte and is equal to the sample clock rate. see the timing diagram shown in figure 2 for more information. table 9. flexible output test modes output test mode bit sequence pattern name digital output word 1 digital output word 2 subject to data format select 0000 off (default) n/a n/a n/a 0001 midscale short 1000 0000 (8-bit) 10 0000 0000 (10-bit) 1000 0000 0000 (12-bit) 10 0000 0000 0000 (14-bit) same yes 0010 +full-scale short 1111 1111 (8-bit) 11 1111 1111 (10-bit) 1111 1111 1111 (12-bit) 11 1111 1111 1111 (14-bit) same yes 0011 ?full-scale short 0000 0000 (8-bit) 00 0000 0000 (10-bit) 0000 0000 0000 (12-bit) 00 0000 0000 0000 (14-bit) same yes 0100 checkerboard 1010 1010 (8-bit) 10 1010 1010 (10-bit) 1010 1010 1010 (12-bit) 10 1010 1010 1010 (14-bit) 0101 0101 (8-bit) 01 0101 0101 (10-bit) 0101 0101 0101 (12-bit) 01 0101 0101 0101 (14-bit) no 0101 pn sequence long 1 n/a n/a yes 0110 pn sequence short 1 n/a n/a yes 0111 one-/zero-word toggle 1111 1111 (8-bit) 11 1111 1111 (10-bit) 1111 1111 1111 (12-bit) 11 1111 1111 1111 (14-bit) 0000 0000 (8-bit) 00 0000 0000 (10-bit) 0000 0000 0000 (12-bit) 00 0000 0000 0000 (14-bit) no 1000 user input register 0x19 and register 0x 1a register 0x1b and register 0x1c no 1001 1-/0-bit toggle 1010 1010 (8-bit) 10 1010 1010 (10-bit) 1010 1010 1010 (12-bit) 10 1010 1010 1010 (14-bit) n/a no 1010 1 sync 0000 1111 (8-bit) 00 0001 1111 (10-bit) 0000 0011 1111 (12-bit) 00 0000 0111 1111 (14-bit) n/a no 1011 one bit high 1000 0000 (8-bit) 10 0000 0000 (10-bit) 1000 0000 0000 (12-bit) 10 0000 0000 0000 (14-bit) n/a no 1100 mixed frequency 1010 0011 (8-bit) 10 0110 0011 (10-bit) 1010 0011 0011 (12-bit) 10 1000 0110 0111 (14-bit) n/a no 1 all test mode options except pn sequence short and pn sequence long can support 8- to 14-bit word lengths in order to verify d ata capture to the receiver.
AD9212 data sheet rev. e | page 28 of 56 when the spi is used, the dco phase can be adjusted in 60 increments relative to the data edge. this enables the user to refine system timing margins if required. the default dco+ and dco? timing, as shown in figure 2, is 90 relative to the output data edge. an 8-, 12-, and 14-bit serial stream can also be initiated from the spi. this allows the user to implement different serial stream to test the devices compatibility with lower and higher resolution systems. when changing the resolution to a 12-bit serial stream, the data stream is lengthened. see figure 3 for the 12-bit example. however, when using the 12-bit option, the data stream stuffs two 0s at the end of the 10-bit serial data. when the spi is used, all data outputs can be inverted from their nominal state. this is not to be confused with inverting the serial stream to an lsb-first mode. in default mode, as shown in figure 2, the msb is first in the data output serial stream. however, this can be inverted so that the lsb is first in the data output serial stream (see figure 4). there are 12 digital output test pattern options available that can be initiated through the spi. this feature is useful when validating receiver capture and timing. refer to table 9 for the output bit sequencing options available. some test patterns have two serial sequential words and can be alternated in various ways, depending on the test pattern chosen. note that some patterns do not adhere to the data format select option. in addition, customer user-defined test patterns can be assigned in the 0x19, 0x1a, 0x1b, and 0x1c register addresses. all test mode options except pn sequence short and pn sequence long can support 8- to 14-bit word lengths in order to verify data capture to the receiver. the pn sequence short pattern produces a pseudorandom bit sequence that repeats itself every 2 9 ? 1 or 511 bits. a description of the pn sequence and how it is generated can be found in section 5.1 of the itu-t 0.150 (05/96) standard. the only difference is that the starting value must be a specific value instead of all 1s (see table 10 for the initial values). the pn sequence long pattern produces a pseudorandom bit sequence that repeats itself every 2 23 ? 1 or 8,388,607 bits. a description of the pn sequence and how it is generated can be found in section 5.6 of the itu-t 0.150 (05/96) standard. the only differences are that the starting value must be a specific value instead of all 1s (see table 10 for the initial values) and the AD9212 inverts the bit stream with relation to the itu standard. table 10. pn sequence sequence initial value first three output samples (msb first) pn sequence short 0x0df 0xdf9, 0x353, 0x301 pn sequence long 0x29b80a 0x591, 0xfd7, 0xa3 sdio/odm pin the sdio/odm pin is for use in applications that do not require spi mode operation. this pin can enable a low power, reduced signal option (similar to the ieee 1596.3 reduced range link output standard) if it and the csb pin are tied to avdd during device power-up. this option should only be used when the digital output trace lengths are less than 2 inches from the lvds receiver. when this option is used, the fco, dco, and outputs function normally, but the lvds signal swing of all channels is reduced from 350 mv p-p to 200 mv p-p, allowing the user to further reduce the power on the drvdd supply. for applications where this pin is not used, it should be tied low. in this case, the device pin can be left open, and the 30 k internal pull-down resistor pulls this pin low. this pin is only 1.8 v tolerant. if applications require this pin to be driven from a 3.3 v logic level, insert a 1 k resistor in series with this pin to limit the current. table 11. output driver mode pin settings selected odm odm voltage resulting output standard resulting fco and dco normal operation agnd (10 k pull- down resistor) ansi-644 (default) ansi-644 (default) odm avdd low power, reduced signal option low power, reduced signal option sclk/dtp pin the sclk/dtp pin is for use in applications that do not require spi mode operation. this pin can enable a single digital test pattern if it and the csb pin are held high during device power-up. when the sclk/dtp is tied to avdd, the adc channel outputs shift out the following pattern: 10 0000 0000. the fco and dco function normally while all channels shift out the repeatable test pattern. this pattern allows the user to perform timing alignment adjustments among the fco, dco, and output data. for normal operation, this pin should be tied to agnd through a 10 k resistor. this pin is both 1.8 v and 3.3 v tolerant. table 12. digital test pattern pin settings selected dtp dtp voltage resulting d + x and d ? x resulting fco and dco normal operation agnd (10 k pull- down resistor) normal operation normal operation dtp avdd 10 0000 0000 normal operation additional and custom test patterns can also be observed when commanded from the spi port. consult the memory map section for information about the options available.
data sheet AD9212 rev. e | page 29 of 56 csb pin the csb pin should be tied to avdd for applications that do not require spi mode operation. by tying csb high, all sclk and sdio information is ignored. this pin is both 1.8 v and 3.3 v tolerant. rbias pin to set the internal core bias current of the adc, place a resistor that is nominally equal to 10.0 k between the rbias pin and ground. the resistor current is derived on chip and sets the avdd current of the adc to a nominal 390 ma at 65 msps. therefore, it is imperative that at least a 1% tolerance on this resistor be used to achieve consistent performance. voltage reference a stable, accurate 0.5 v voltage reference is built into the AD9212. this is gained up internally by a factor of 2, setting vref to 1.0 v, which results in a full-scale differential input span of 2 v p-p. vref is set internally by default; however, the vref pin can be driven externally with a 1.0 v reference to improve accuracy. when applying the decoupling capacitors to the vref, reft, and refb pins, use ceramic low-esr capacitors. these capacitors should be close to the adc pins and on the same layer of the pcb as the AD9212. the recommended capacitor values and configurations for the AD9212 reference pin are shown in figure 63. table 13. reference settings selected mode sense voltage resulting vref (v) resulting differential span (v p-p) external reference avdd n/a 2 external reference internal, 2 v p-p fsr agnd to 0.2 v 1.0 2.0 internal reference operation a comparator within the AD9212 detects the potential at the sense pin and configures the reference. if sense is grounded, the reference amplifier switch is connected to the internal resistor divider (see figure 63), setting vref to 1 v. the reft and refb pins establish their input span of the adc core from the reference configuration. the analog input full- scale range of the adc equals twice the voltage at the reference pin for either an internal or an external reference configuration. if the reference of the AD9212 is used to drive multiple converters to improve gain matching, the loading of the refer- ence by the other converters must be considered. figure 65 depicts how the internal reference voltage is affected by loading. 1f 0.1f vref sense 0.5v reft 0.1f 0.1f 4.7f 0.1f refb select logic adc core + vin ? x vin + x 05968-031 figure 63. internal reference configuration 1f 1 0.1f 1 vref sense avdd 0.5v reft 0.1f 0.1f 4.7f 0.1f refb select logic adc core + vin ? x vin + x external reference 1 optional. 0 5968-032 figure 64. external reference operation 01 . 0 0.5 2.0 1.5 3.0 2.5 3.5 vref error (%) current load (ma) 05968-087 ?30 ?5 ?10 ?15 ?20 ?25 5 0 figure 65. vref accuracy vs. load
AD9212 data sheet rev. e | page 30 of 56 external reference operation the use of an external reference may be necessary to enhance the gain accuracy of the adc or to improve thermal drift charac- teristics. figure 66 shows the typical drift characteristics of the internal reference in 1 v mode. when the sense pin is tied to avdd, the internal reference is disabled, allowing the use of an external reference. the external reference is loaded with an equivalent 6 k load. an internal reference buffer generates the positive and negative full-scale references, reft and refb, for the adc core. therefore, the external reference must be limited to a nominal voltage of 1.0 v. 0.02 ?0.18 ?0.14 ?0.10 ?0.06 ?0.02 ?0.16 ?0.12 ?0.08 ?0.04 0 ?40 vref error (%) temperature (c) 05968-088 ?200 20406080 figure 66. typical vref drift
data sheet AD9212 rev. e | page 31 of 56 serial port interface (spi) the AD9212 serial port interface allows the user to configure the converter for specific functions or operations through a structured register space provided inside the adc. this may provide the user with additional flexibility and customization, depending on the application. addresses are accessed via the serial port and can be written to or read from via the port. memory is organized into bytes that can be further divided into fields, as documented in the memory map section. detailed operational information can be found in the an-877 application note , interfacing to high speed adcs via spi . three pins define the spi: the sclk, sdio, and csb pins (see table 14). the sclk pin is used to synchronize the read and write data presented to the adc. the sdio pin is a dual-purpose pin that allows data to be sent to and read from the internal adc memory map registers. the csb pin is an active low control that enables or disables the read and write cycles. table 14. serial port pins pin function sclk serial clock. the serial shift clock input, which is used to synchronize serial interface reads and writes. sdio serial data input/output. a dual-purpose pin that typically serves as an input or output, depending on the instruction sent and the relative position in the timing frame. csb chip select bar (active low). this control gates the read and write cycles. the falling edge of the csb in conjunction with the rising edge of the sclk determines the start of the framing sequence. during an instruction phase, a 16-bit instruction is transmitted, followed by one or more data bytes, which is determined by bit field w0 and bit field w1. an example of the serial timing and its definitions can be found in figure 68 and table 15. during normal operation, csb is used to signal to the device that spi commands are to be received and processed. when csb is brought low, the device processes sclk and sdio to execute instructions. normally, csb remains low until the communication cycle is complete. however, if connected to a slow device, csb can be brought high between bytes, allowing older microcontrollers enough time to transfer data into shift registers. csb can be stalled when transferring one, two, or three bytes of data. when w0 and w1 are set to 11, the device enters streaming mode and continues to process data, either reading or writing, until csb is taken high to end the communication cycle. this allows complete memory transfers without requiring additional instructions. regardless of the mode, if csb is taken high in the middle of a byte transfer, the spi state machine is reset and the device waits for a new instruction. in addition to the operation modes, the spi port configuration influences how the AD9212 operates. for applications that do not require a control port, the csb line can be tied and held high. this places the remainder of the spi pins into their secondary modes, as defined in the sdio/odm pin and sclk/dtp pin sections. csb can also be tied low to enable 2-wire mode. when csb is tied low, sclk and sdio are the only pins required for communication. although the device is synchronized during power-up, the user should ensure that the serial port remains synchronized with the csb line when using this mode. when operating in 2-wire mode, it is recommended that a 1-, 2-, or 3- byte transfer be used exclusively. without an active csb line, streaming mode can be entered but not exited. in addition to word length, the instruction phase determines if the serial frame is a read or write operation, allowing the serial port to be used to both program the chip and read the contents of the on-chip memory. if the instruction is a readback operation, performing a readback causes the sdio pin to change from an input to an output at the appropriate point in the serial frame. data can be sent in msb- or lsb-first mode. msb-first mode is the default at power-up and can be changed by adjusting the configuration register. for more information about this and other features, see the an-877 application note, interfacing to high speed adcs via spi . hardware interface the pins described in table 14 constitute the physical interface between the users programming device and the serial port of the AD9212. the sclk and csb pins function as inputs when using the spi. the sdio pin is bidirectional, functioning as an input during write phases and as an output during readback. if multiple sdio pins share a common connection, care should be taken to ensure that proper v oh levels are met. assuming the same load for each AD9212, figure 67 shows the number of sdio pins that can be connected together and the resulting v oh level. this interface is flexible enough to be controlled by either serial proms or pic microcontrollers, providing the user with an alternative method, other than a full spi controller, to program the adc (see the an-812 application note ). if the user chooses not to use the spi, these dual-function pins serve their secondary functions when the csb is strapped to avdd during device power-up. see the theory of operation section for details on which pin-strappable functions are supported on the spi pins.
AD9212 data sheet rev. e | page 32 of 56 05968-059 number of sdio pins connected together v oh (v) 1.715 1.720 1.725 1.730 1.735 1.740 1.745 1.750 1.755 1.760 1.765 1.770 1.775 1.780 1.785 1.790 1.795 1.800 030 2010 40 50 60 70 80 90 100 figure 67. sdio pin loading don?t care don?t care don?t care don?t care sdio sclk csb t s t dh t hi t clk t lo t ds t h r/w w1 w0 a12 a11 a10 a9 a8 a7 d5 d4 d3 d2 d1 d0 05968-033 figure 68. serial timing details table 15. serial timing definitions parameter timing (minimum, ns) description t ds 5 setup time between the data and the rising edge of sclk t dh 2 hold time between the data and the rising edge of sclk t clk 40 period of the clock t s 5 setup time between csb and sclk t h 2 hold time between csb and sclk t hi 16 minimum period that sclk should be in a logic high state t lo 16 minimum period that sclk should be in a logic low state t en_sdio 10 minimum time for the sdio pin to switch from an input to an output relative to the sclk falling edge (not shown in figure 68) t dis_sdio 10 minimum time for the sdio pin to switch from an output to an input relative to the sclk rising edge (not shown in figure 68)
data sheet AD9212 rev. e | page 33 of 56 memory map reading the memory map table each row in the memory map register table (table 16) has eight address locations. the memory map is divided into three sections: the chip configuration register map (address 0x00 to address 0x02), the device index and transfer register map (address 0x04, address 0x05, and address 0xff), and the adc functions register map (address 0x08 to address 0x22). the leftmost column of the memory map indicates the register address number; the default value is shown in the second right- most column. the bit 7 column is the start of the default hexadecimal value given. for example, address 0x09, the clock register, has a default value of 0x01, meaning bit 7 = 0, bit 6 = 0, bit 5 = 0, bit 4 = 0, bit 3 = 0, bit 2 = 0, bit 1 = 0, and bit 0 = 1, or 0000 0001 in binary. this setting is the default for the duty cycle stabilizer in the on condition. by writing 0 to bit 0 of this address followed by writing 0x01 in register 0xff (transfer bit), the duty cycle stabilizer turns off. it is important to follow each writing sequence with a transfer bit to update the spi registers. all registers, except register 0x00, register 0x04, register 0x05, and register 0xff, are buffered with a master-slave latch and require writing to the transfer bit. for more information on this and other functions, consult the an-877 application note , interfacing to high speed adcs via spi . reserved locations undefined memory locations should not be written to except when writing the default values suggested in this data sheet. addresses that have values marked as 0 should be considered reserved and have 0 written to their registers during power-up. default values when the AD9212 comes out of a reset, critical registers are preloaded with default values. these values are indicated in table 16, where an x refers to an undefined feature. logic levels an explanation of various registers follows: bit is set is synonymous with bit is set to logic 1 or writing logic 1 for the bit. similarly, clear a bit is synonymous with bit is set to logic 0 or writing logic 0 for the bit.
AD9212 data sheet rev. e | page 34 of 56 table 16. memory map register 1 addr. (hex) parameter name (msb) bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 (lsb) bit 0 default value (hex) notes/ comments chip configuration registers 00 chip_port_config 0 lsb first 1 = on 0 = off (default) soft reset 1 = on 0 = off (default) 1 1 soft reset 1 = on 0 = off (default) lsb first 1 = on 0 = off (default) 0 0x18 the nibbles should be mirrored so that lsb- or msb-first mode is set correctly regardless of shift mode. 01 chip_id 10-bit chip id bits [7:0] (AD9212 = 0x08), (default) read only default is unique chip id, different for each device. this is a read- only register. 02 chip_grade x child id [6:4] (identify device variants of chip id) 000 = 65 msps 001 = 40 msps x x x x read only child id used to differentiate graded devices. device index and transfer registers 04 device_index_2 x x x x data channel h 1 = on (default) 0 = off data channel g 1 = on (default) 0 = off data channel f 1 = on (default) 0 = off data channel e 1 = on (default) 0 = off 0x0f bits are set to determine which on-chip device receives the next write command. 05 device_index_1 x x clock channel dco 1 = on 0 = off (default) clock channel fco 1 = on 0 = off (default) data channel d 1 = on (default) 0 = off data channel c 1 = on (default) 0 = off data channel b 1 = on (default) 0 = off data channel a 1 = on (default) 0 = off 0x0f bits are set to determine which on-chip device receives the next write command. ff device_update x x x x x x x sw transfer 1 = on 0 = off (default) 0x00 synchronously transfers data from the master shift register to the slave. adc functions registers 08 modes x x x x x internal power-down mode 000 = chip run (default) 001 = full power-down 010 = standby 011 = reset 0x00 determines various generic modes of chip operation. 09 clock x x x x x x x duty cycle stabilizer 1 = on (default) 0 = off 0x01 turns the internal duty cycle stabilizer on and off. 0d test_io user test mode 00 = off (default) 01 = on, single alternate 10 = on, single once 11 = on, alternate once reset pn long gen 1 = on 0 = off (default) reset pn short gen 1 = on 0 = off (default) output test modesee table 9 in the digital outputs and timing section 0000 = off (default) 0001 = midscale short 0010 = +fs short 0011 = ?fs short 0100 = checkerboard output 0101 = pn 23 sequence 0110 = pn 9 sequence 0111 = one-/zero-word toggle 1000 = user input 1001 = 1-/0-bit toggle 1010 = 1 sync 1011 = one bit high 1100 = mixed bit frequency (format determined by output_mode) 0x00 when this register is set, the test data is placed on the output pins in place of normal data.
data sheet AD9212 rev. e | page 35 of 56 addr. (hex) parameter name (msb) bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 (lsb) bit 0 default value (hex) notes/ comments 14 output_mode x 0 = lvds ansi-644 (default) 1 = lvds low power, (ieee 1596.3 similar) x x x output invert 1 = on 0 = off (default) 00 = offset binary (default) 01 = twos complement 0x00 configures the outputs and the format of the data. 15 output_adjust x x output driver termination 00 = none (default) 01 = 200 10 = 100 11 = 100 x x x dco and fco 2 drive strength 1 = on 0 = off (default) 0x00 determines lvds or other output properties. primarily func- tions to set the lvds span and common-mode levels in place of an external resistor. 16 output_phase x x x x 0011 = output clock phase adjust (0000 through 1010) 0000 = 0 relative to data edge 0001 = 60 relative to data edge 0010 = 120 relative to data edge 0011 = 180 relative to data edge (default) 0101 = 300 relative to data edge 0110 = 360 relative to data edge 1000 = 480 relative to data edge 1001 = 540 relative to data edge 1010 = 600 relative to data edge 1011 to 1111 = 660 relative to data edge 0x03 on devices that utilize global clock divide, this register determines which phase of the divider output is used to supply the output clock. internal latching is unaffected. 19 user_patt1_lsb b7 b6 b5 b4 b3 b2 b1 b0 0x00 user-defined pattern, 1 lsb. 1a user_patt1_msb b15 b14 b13 b12 b11 b10 b9 b8 0x00 user-defined pattern, 1 msb. 1b user_patt2_lsb b7 b6 b5 b4 b3 b2 b1 b0 0x00 user-defined pattern, 2 lsb. 1c user_patt2_msb b15 b14 b13 b12 b11 b10 b9 b8 0x00 user-defined pattern, 2 msb. 21 serial_contr ol lsb first 1 = on 0 = off (default) x x x <10 msps, low encode rate mode 1 = on 0 = off (default) 000 = 10 bits (default, normal bit stream) 001 = 8 bits 010 = 10 bits 011 = 12 bits 100 = 14 bits 0x00 serial stream control. default causes msb first and the native bit stream (global). 22 serial_ch_stat x x x x x x channel output reset 1 = on 0 = off (default) channel power- down 1 = on 0 = off (default) 0x00 used to power down individual sections of a converter (local). 1 x = an undefined feature
AD9212 data sheet rev. e | page 36 of 56 applications information design guidelines before starting design and layout of the AD9212 as a system, it is recommended that the designer become familiar with these guidelines, which discuss the special circuit connections and layout requirements needed for certain pins. power and ground recommendations when connecting power to the AD9212, it is recommended that two separate 1.8 v supplies be used: one for analog (avdd) and one for digital (drvdd). if only one supply is available, it should be routed to the avdd first and then tapped off and isolated with a ferrite bead or a filter choke preceded by decoupling capacitors for the drvdd. the user can employ several different decoupling capacitors to cover both high and low frequencies. these capacitors should be located close to the point of entry at the pc board level and close to the parts, with minimal trace lengths. a single pc board ground plane should be sufficient when using the AD9212. with proper decoupling and smart parti- tioning of the pc boards analog, digital, and clock sections, optimum performance can be easily achieved. exposed paddle thermal heat slug recommendations it is required that the exposed paddle on the underside of the adc be connected to analog ground (agnd) to achieve the best electrical and thermal performance of the AD9212. an exposed continuous copper plane on the pcb should mate to the AD9212 exposed paddle, pin 0. the copper plane should have several vias to achieve the lowest possible resistive thermal path for heat dissipation to flow through the bottom of the pcb. these vias should be solder-filled or plugged. to maximize the coverage and adhesion between the adc and pcb, partition the continuous copper plane by overlaying a silkscreen on the pcb into several uniform sections. this provides multiple tie points between the adc and pcb during the reflow process, whereas using one continuous plane with no partitions guarantees only one tie point. see figure 69 for a pcb layout example. for detailed information on packaging and the pcb layout of chip scale packages, see the an-772 application note , a design and manufacturing guide for the lead frame chip scale package (lfcsp) . silkscreen p a rtition pin 1 indicator 05968-034 figure 69. typical pcb layout
data sheet AD9212 rev. e | page 37 of 56 evaluation board the AD9212 evaluation board provides all the support cir- cuitry required to operate the adc in its various modes and configurations. the converter can be driven differentially by using a transformer (default) or an ad8334 driver. the adc can also be driven in a single-ended fashion. separate power pins are provided to isolate the dut from the drive circuitry of the ad8334. each input configuration can be selected by changing the connections of various jumpers (see figure 74 to figure 78). figure 70 shows the typical bench characterization setup used to evaluate the ac performance of the AD9212. it is critical that the signal sources used for the analog input and clock have very low phase noise (<1 ps rms jitter) to realize the optimum performance of the converter. proper filtering of the analog input signal to remove harmonics and lower the integrated or broadband noise at the input is also necessary to achieve the specified noise performance. see figure 74 to figure 84 for the complete schematics and layout diagrams demonstrating the routing and grounding techniques that should be applied at the system level. power supplies this evaluation board has a wall-mountable switching power supply that provides a 6 v, 2 a maximum output. connect the supply to the rated 100 v ac to 240 v ac wall outlet at 47 hz to 63 hz. the other end of the supply is a 2.1 mm inner diameter jack that connects to the pcb at p701. once on the pc board, the 6 v supply is fused and conditioned before connecting to three low dropout linear regulators that supply the proper bias to each of the various sections on the board. when operating the evaluation board in a nondefault condition, l701 to l704 can be removed to disconnect the switching power supply. this enables the user to bias each section of the board individually. use p702 to connect a different supply for each section. at least one 1.8 v supply is needed for avdd_dut and drvdd_dut; however, it is recommended that separate supplies be used for both analog and digital signals and that each supply have a current capability of 1 a. to operate the evaluation board using the vga option, a separate 5.0 v analog supply (avdd_5 v) is needed. to operate the evaluation board using the spi and alternate clock options, a separate 3.3 v analog supply (avdd_3.3 v) is needed in addition to the other supplies. input signals when connecting the clock and analog sources to the evaluation board, use clean signal generators with low phase noise, such as rohde & schwarz sma or hp8644 signal generators or the equivalent, as well as a 1 m, shielded, rg-58, 50 coaxial cable. enter the desired frequency and amplitude from the adc specifications tables. typically, most analog devices, inc., evalu- ation boards can accept approximately 2.8 v p-p or 13 dbm sine wave input for the clock. when connecting the analog input source, it is recommended to use a multipole, narrow-band, band-pass filter with 50 terminations. good choices of such band-pass filters are available from tte, allen avionics, and k&l microwave, inc. the filter should be connected directly to the evaluation board if possible. output signals the default setup uses the analog devices hsc-adc-fifo5- intz to interface with the analog devices standard dual-channel fifo data capture board (hcs-adc-evalcz). two of the eight channels can be evaluated at the same time. for more information on the channel settings and optional settings of these boards, visit www.analog.com/fifo . interposer board rohde & schwarz, sma, 2v p-p signal synthesizer rohde & schwarz, sma, 2v p-p signal synthesizer band-pass filter xfmr input clk ch a to ch h 10-bit serial lvds usb connection AD9212 evaluation board hsc-adc-evalcz fifo data capture board pc running adc analyzer and spi user software 1.8v ?+ ?+ avdd_dut avdd_3.3v drvdd_dut gnd gnd ?+ 5.0v gnd avdd_5v 1.8v 6v dc 2a max wall outle t 100v ac to 240v ac 47hz to 63hz switching power supply ?+ gnd 3.3v ?+ vcc gnd 3.3v spi spi spi 0 5968-035 spi figure 70. evaluation board connection
AD9212 data sheet rev. e | page 38 of 56 default operation and jumper selection settings the following is a list of the default and optional settings or modes allowed on the AD9212 rev. a evaluation board. ? power: connect the switching power supply that is provided with the evaluation kit between a rated 100 v ac to 240 v ac wall outlet at 47 hz to 63 hz and p701. ? ain: the evaluation board is set up for a transformer- coupled analog input with an optimum 50 impedance match of 150 mhz of bandwidth (see figure 71). for more bandwidth response, the differential capacitor across the analog inputs can be changed or removed. the common mode of the analog inputs is developed from the center tap of the transformer or avdd_dut/2. ?14 ?13 ?12 ?11 ?10 ?9 ?8 ?7 ?6 ?5 ?4 ?3 ?2 ?1 0 0 50 100 150 200 250 300 350 400 450 500 frequency (mhz) amplitude (dbfs) ?3db cutoff = 186mhz 0 5968-086 figure 71. evaluation board full-power bandwidth ? vref: vref is set to 1.0 v by tying the sense pin to ground, r317. this causes the adc to operate in 2.0 v p-p full-scale range. a separate external reference option using the adr510 is also included on the evaluation board. p opulate r312 and r313, and remove c307. proper use of the vref options is noted in the voltage reference sectio n. ? rbias: rbias has a default setting of 10 k (r301) to ground and is used to set the adc core bias current. ? clock: the default clock input circuitry is derived from a simple transformer-coupled circuit using a high bandwidth 1:1 impedance ratio transformer (t401) that adds a very low amount of jitter to the clock path. the clock input is 50 terminated and ac-coupled to handle single-ended sine wave types of inputs. the transformer converts the single-ended input to a differential signal that is clipped before entering the adc clock inputs. a differential lvpecl clock can also be used to clock the adc input using the ad9515 (u401). populate r406 and r407 with 0 resistors, and remove r215 and r 216 to disconnect the default clock path inputs. in addition, populate c205 and c206 with a 0.1 f capacitor, and remove c409 and c410 to disconnect the default clock path outputs. the ad9515 has many pin-strappable options that are set to a default mode of operation. consult the ad9515 data sheet for more information about these and other options. in addition, an on-board oscillator is available on the osc401 and can act as the primary clock source. the setup is quick and involves installing r403 with a 0 resistor and setting the enable jumper (j401) to the on position. if the user wishes to employ a different oscillator, two oscillator footprint options are available (osc401) to check the adc performance. ? pdwn: to enable the power-down feature, short j301 to the on position (avdd) for the pdwn pin. ? sclk/dtp: to enable the digital test pattern on the digital outputs of the adc, use j304. if j304 is tied to avdd during device power-up, test pattern 10 0000 0000 is enabled. see the sclk/dtp pin section for details. ? sdio/odm: to enable the low power, reduced signal option (similar to the ieee 1595.3 reduced range link lvds output standard), use j303. if j303 is tied to avdd during device power-up, it enables the lvds outputs in a low power, reduced signal option from the default ansi-644 standard. this option changes the signal swing from 350 mv p-p to 200 mv p-p, reducing the power of the drvdd supply. see the sdio/odm pin section for more details. ? csb: to enable processing of the spi information on the sdio and sclk pins, tie j302 low in the always enable mode. to ignore the sdio and sclk information, tie j302 to avdd. ? non-spi mode: for users who wish to operate the dut without using the spi, simply remove jumpers j302, j303, and j304. this disconnects the csb, sclk/dtp, and sdio/odm pins from the control bus, allowing the dut to operate in its simplest mode. each of these pins has internal termination and will float to its respective level. ? d + x, d ? x: if an alternative data capture method to the setup shown in figure 74 is used, optional receiver terminations, r318 and r320 to r328, can be installed next to the high speed backplane connector.
data sheet AD9212 rev. e | page 39 of 56 alternative analog input drive configuration the following is a brief description of the alternative analog input drive configuration using the ad8334 dual vga. if this drive option is in use, some components may need to be populated, in which case all the necessary components are listed in table 17. for more details on the ad8334 dual vga, including how it works and its optional pin settings, consult the ad8334 data sheet. to configure the analog input to drive the vga instead of the default transformer option, the following components need to be removed and/or changed. ? remove r102, r115, r128, r141, r161, r162, r163, r164, r202, r208, r218, r225, r234, r241, r252, r259, t101, t102, t103, t104, t201, t202, t203, and t204 in the default analog input path. ? populate r101, r114, r127, r140, r201, r217, r233, and r251 with 0 resistors in the analog input path. ? populate r152, r153, r154, r155, r156, r157, r158, r159, r215, r216, r229, r230, r247, r248, r263, r264, c103, c105, c110, c112, c117, c119, c124, c126, c203, c205, c210, c212, c217, c219, c224, and c226 with 10 k resistors to provide an input common-mode level to the adc analog inputs. ? populate r105, r113, r118, r124, r131, r137, r151, r 160, r205, r213, r221, r222, r237, r238, r255, and r256 with 0 resistors in the adc analog input path to connect the vga outputs. ? remove r515, r520, r527, r532, r615, r620, r627, and r632 on the ad8334 analog outputs. ? remove r512, r524, r612, and r624 to set the ad8334 mode and ad8334 hilo pin low. some applications may require this to be different. consult the ad8334 data sheet for more information on these functions. in this configuration, l505 to l520 and l605 to l620 are populated with 0 resistors to allow signal connection and use of a filter if additional requirements are necessary. in this example, a 16 mhz, two-pole low-pass filter was applied to the ad8334 outputs. the following components need to be removed and/or changed: ? remove l507, l508, l511, l512, l515, l516, l519, l520, l607, l608, l611, l612, l615, l616, l619, and l620 on the ad8334 analog outputs. ? populate l507, l508, l511, l512, l515, l516, l519, l520, l607, l608, l611, l612, l615, l616, l619, and l620 with 680 nh inductors. ? populate c543, c547, c551, c555, c643, c647, c651, and c655 with a 68 pf capacitor. 68pf 680nh 680nh 05968-091 figure 72. example filter configured for 16 mhz, two-pole low-pass filter 0 ?120 ?100 ?80 ?60 ?40 ?20 05.07.5 2.5 10.0 15.0 17.5 12.5 20.0 22.5 25.0 27.5 30.0 32.5 amplitude (dbfs) frequency (mhz) 05968-092 f sample =65msps ain = 3.5mhz ad8334 = max gain setting figure 73. AD9212 fft example results using 16 mhz, two-pole low-pass filter applied to the ad8334 outputs (analog input signal = ?1.03 dbfs, snr = 56.75 dbc, sfdr = 64.4 dbc)
AD9212 data sheet rev. e | page 40 of 56 dnp dnp dnp vga input ain ain ain vga input vga input connection connection connection connection vga input channel c ain dnp ain channel a ain ain channel b ain channel d r134 33 ? p105 p102 r148 1k ? r160 0 ?? dnp r151 0 ?? dnp r137 0 ?? dnp r131 0 ?? dnp r124 0 ?? dnp r118 0 ?? dnp r113 0 ?? dnp r105 0 ?? dnp r101 0 ?? dnp r140 0 ?? dnp r127 0 ?? dnp r114 0 ?? dnp r107 dnp 1 25 6 t104 1 2 34 34 5 6 t103 cm3 1 2 5 6 t101 1 2 34 3 4 5 6 t102 1 e102 1 e101 dnp c127 10 ? fb112 10 ? fb111 10 ? fb 1 10 10 ? fb109 10 ? fb108 10 ? fb107 10 ? fb106 10 ? fb105 10 ? fb104 dnp c113 10 ? fb103 10 ? fb102 10 ? fb101 dnp c106 2.2pf c118 dnp c124 vin_d 0.1f c114 0.1f c107 vin_d vin_c vin_b vin_b avdd_dut avdd_dut cm2 cm1 ch_d ch_d cm3 cm1 inh4 inh3 inh1 ch_a ch_a ch_c cm4 avdd_dut avdd_dut avdd_dut cm4 avdd_dut inh2 ch_b ch_b cm2 ch_c r104 0 ? r116 0 ? r130 0 ? r143 0 ? avdd_dut avdd_dut avdd_dut avdd_dut avdd_dut avdd_dut dnp c120 0.1f c128 0.1f c121 0.1f c101 2.2pf c125 dnp c117 dnp c126 dnp c119 dnp c112 0.1f c108 0.1f c109 0.1f c116 0.1f c115 0.1f c122 0.1f c123 dnp c110 2.2pf c111 dnp c103 2.2pf c104 dnp c105 0.1f c102 vin_a vin_a cm1 cm2 1 e103 1 e104 cm3 cm4 r135 1k ? r123 1k ? r109 1k ? 499 ? r164 r163 499 ? r162 499 ? 499 ? r161 dnp r159 dnp r158 dnp r157 r156 dnp r108 33 ? dnp r152 dnp r155 dnp r154 dnp r153 r102 64.9 ? r147 33 ? r146 33 ? r145 dnp r149 1k ? r136 33 ? r133 dnp r132 dnp r125 1k ? r122 33 ? r121 33 ? r111 1k ? r106 dnp r112 1k ? r150 1k ? r139 1k ? r138 1k ? r126 1k ? r110 33 ? r1 4 1 64.9 ? r142 0 ? r128 64.9 ? r129 0 ? r115 64.9 ? r117 0 ? r103 0 ? r144 dnp r120 dnp r119 dnp p101 p106 p108 p107 p104 p103 vin_c 05968-072 dnp: do not populate. figure 74. evaluation board schematic, dut analog inputs
data sheet AD9212 rev. e | page 41 of 56 dnp dnp dnp vga input ain ain ain ain vga input vga input vga input ain connection connection connection connection channel e dnp ain channel g ain channel h channel f ain 1 25 6 t204 r266 1k ? 10? fb212 r265 1k ? 10? fb209 1 0 ? fb207 r245 33 ? r240 dnp 1 25 34 34 6 t203 2.2pf c211 r231 1k ? 10? fb206 10 ? fb203 1 25 6 t202 r220 0 ? r257 dnp r258 dnp r224 dnp r223 dnp 2.2pf c204 r207 dnp r206 dnp 1 25 34 34 6 t201 10 ? fb201 r262 1k ? r256 0 ?? dnp r255 0 ?? dnp r238 0 ?? dnp r237 0 ?? dnp r222 0 ?? dnp r221 0 ?? dnp r213 0 ?? dnp r205 0 ?? dnp r201 0 ?? dnp r251 0 ?? dnp r233 0 ?? dnp r217 0 ?? dnp cm 7 1 e2 02 1 e201 dnp c227 10? fb211 10 ? fb210 10 ? fb208 10? fb205 10? fb204 dnp c213 10? fb202 dnp c206 2.2pf c218 dnp c224 vin_h 0.1f c214 0.1f c207 vin_h vin_g vin_g vin_f vin_f avdd_dut avdd_dut cm6 cm5 ch_h ch_h cm7 cm5 inh8 inh7 inh5 ch_e ch_e ch_g cm8 avdd_dut avdd_dut avdd_dut cm8 avdd_dut inh6 ch_f ch_f cm6 ch_g r204 0 ? r236 0 ? r254 0 ? avdd_dut avdd_dut avdd_dut avdd_dut avdd_dut avdd_dut dnp c220 0.1f c228 0.1f c221 0.1f c201 2.2pf c225 dnp c217 dnp c226 dnp c219 dnp c212 0.1f c208 0.1f c209 0.1f c216 0.1f c215 0.1f c222 0.1f c223 dnp c210 dnp c203 dnp c205 0.1f c202 vin_e vin_e cm5 cm6 1 e203 1 e204 cm7 cm8 r246 1k ? r228 1k ? r214 1k ? 499 ? r259 r241 499 ? r225 499 ? 499 ? r208 dnp r263 dnp r247 dnp r229 r215 dnp r209 33? dnp r216 dnp r264 dnp r248 dnp r230 r202 64.9 ? r261 33 ? r260 33? r239 dnp r227 33 ? r226 33? r211 1k ? r212 1k ? r250 1k ? r249 1k ? r232 1k ? r210 33? r242 33? r252 64.9 ? r253 0 ? r234 64.9k ? r235 0 ? r218 64.9 ? r2 1 9 0 ? r203 0 ? p201 p202 p205 p206 p208 p207 p203 p204 05968-073 dnp: do not populate. figure 75. evaluation board schematic, dut analog inputs (continued)
AD9212 data sheet rev. e | page 42 of 56 4.7f cw gnd vout trim/nc AD9212bcpz-65 avdd clk+ clk ? d+b d+c d+d d+e d+f d+g d+h d ? b d ? c d ? d d ? e d ? f d ? g d ? h dco+ dco ? drgnd drvdd fco+ fco ? pdwn avdd rbias refb reft sclk/dtp sdio/odm vin+a vin+c vin+d vin+e vin+g vin ? a vin ? b vin ? c vin ? d vin ? f vin ? g vref vin+f slug avdd avdd avdd drgnd vin ? h d+a d ? a vin+b csb sense vin ? e vin+h drvdd avdd avdd avdd avdd avdd avdd avdd avdd a1 a10 a2 a3 a4 a5 a6 a7 a8 a9 b1 b10 b2 b3 b4 b5 b6 b7 b8 b9 c1 c10 c2 c3 c4 c5 c6 c7 c8 c9 d1 d10 d2 d3 d4 d5 d6 d7 d8 d9 gndab1 gndab10 gndab2 gndab3 gndab4 gndab5 gndab6 gndab7 gndab8 gndab9 gndcd1 gndcd10 gndcd2 gndcd3 gndcd4 gndcd5 gndcd6 gndcd7 gndcd8 gndcd9 optional output terminations digital outputs using external vref v ref = 1v v ref = external v ref = 0.5v remove c214 when always enable spi odm enable dtp enable v ref = 0.5v(1 + r219/r220) vref select 1.0v reference decoupling optional ext ref pdwn enable nc reference circuitry r318,r320 ? r328 dnp r322 chb 1 10 2 3 4 5 6 7 8 9 11 20 12 13 14 15 16 17 18 19 31 40 32 33 34 35 36 37 38 39 41 50 42 43 44 45 46 47 48 49 21 30 22 23 24 25 26 27 28 29 51 60 52 53 54 55 56 57 58 59 p301 chb dnp r318 dnp r320 dnp r321 dnp r323 dnp r324 dnp r325 dnp r328 dnp r326 3 2 1 j304 1 2 3 j303 1 2 3 j302 3 2 1 j301 r319 1k ? avdd_dut avdd_dut avdd_dut vin_e vin_e vin_f vin_f 1 59 4 42 45 48 51 62 7 10 9 11 8 32 30 28 22 20 18 16 31 29 27 21 19 17 15 24 23 13 36 14 35 37 26 25 33 34 40 47 55 61 5 6 41 12 54 57 58 38 39 43 49 53 60 2 44 46 50 52 63 3 56 64 0 u301 r306 100k ? r305 100k ? r303 100k ? dnp r304 dnp r302 sclk_dtp sdio_odm csb_dut 0.1f c305 4.99k ? r309 1f c307 c301 0.1f c304 0.1f c302 0.1f adr510artz u302 10k ? r310 dnp r311 r307 10k ? vsense_dut 470k ? r308 dnp r313 dnp r312 0 ? r317 dnp r31 dnp r315 dnp r314 r301 10k ? 0.1f c306 avdd_dut vref_dut avdd_dut avdd_dut drvdd_dut avdd_dut avdd_dut avdd_dut clk clk chb chc chd chh chb chc chd chh dco dco gnd drvdd_dut fco fco vsense_dut vin_h vin_h vin_c vin_d vin_g vin_c vin_d vin_g vref_dut chg chg chf chf che che avdd_dut avdd_dut gnd avdd_dut vin_a vin_a cha cha avdd_dut vin_b vin_b avdd_dut avdd_dut avdd_dut dnp r327 sclk_cha sdi_cha csb1_cha csb2_cha sdo_cha sclk_chb sdi_chb csb3_chb csb4_chb sdo_chb dco fco cha chc chd che chf chg chh chh chg chf che chd chc cha fco dco c303 05968-074 dnp: do not populate. figure 76. evaluation board schematic, dut, vref, and digital output interface
data sheet AD9212 rev. e | page 43 of 56 crystal_3 gnd oe out vcc oe gnd out vcc clk clkb gnd gnd_pad out0 out0b out1 out1b rset s0 s1 s10 s2 s3 s4 s5 s6 s7 s8 s9 syncb vref vs signal=dnc;27,28 dnp dnp dnp dnp dnp dnp dnp dnp input encode enc enc clock circuit dnp dnp dnp dnp disable osc401 enable osc401 optional clock oscillator ad9515 pin ? strap settings optional clock drive circuit lvpecl output dnp: do not populate. dnp dnp dnp lvds output clip sine out (default) dnp 12 6 7 25 8 16 9 15 10 14 11 13 3 2 5 18 19 23 22 32 1 31 33 u401 signal=avdd_3.3v;4,17,20,21,24,26,29,30 ad9515bcpz 0 ? r430 r446 0 ? r424 r428 0 ? r425 0 ? r427 0 ? 1 2 3 j401 10 12 3 5 7 1 8 14 osc401 0 ? r426 s0 0 ? r436 r437 0 ? 10k ? r413 c401 0.1f r401 10k ? r403 0 ? dnp 0.1f 514c 214c 0.1f c416 c411 0.1f 0 ? r406 0 ? r415 10k ? r402 49.9 ? r411 r407 0 ? 0 ? r434 c405 0.1f dnp 0.1f c406 dnp 0.1f c407 dnp c408 0.1f dnp r444 0 ? 0 ? r442 r440 0 ? 0 ? r4 3 8 r432 0 ? 0 ? r445 r443 0 ? 0 ? r441 r439 0 ? r435 0 ? 0 ? r433 r431 0 ? 0 ? r429 s4 1 e401 avdd_3.3v 0 ? r416 3 2 1 cr401 hsms-2812-tr1g r414 4.12k ? s5 s3 s2 s1 avdd_3.3v r421 240 ? c409 0.1f r409 dnp 240 ? r420 6 5 4 3 2 1 t401 0.1f c402 c410 0.1f 49.9 ? r404 r410 10k ? r412 dnp dnp r408 r405 0 ? c403 0.1f 100 ? r423 r422 100 ? r418 0 ? r417 0 ? s0s1s2s3s4 s5s6s7s8s9 s10 opt_clk opt_clk clk avdd_3.3v opt_clk opt_clk clk clk clk avdd_3.3v avdd_3.3v avdd_3.3v avdd_3.3v avdd_3.3v avdd_3.3v avdd_3.3v avdd_3.3v avdd_3.3v avdd_3.3v avdd_3.3v s6 s7 s8 s9 s10 c413 0.1f 0.1f 814c 414c 0.1f 0.1f c417 avdd_3.3v avdd_3.3v p401 p402 05968-075 0.1f figure 77. evaluation board schematic, clock circuitry
AD9212 data sheet rev. e | page 44 of 56 cw cw ad8334acpz-reel inh2 lmd2 com2x lon2 lop2 vip2 vin2 vps2 vps3 vin3 vip3 lop3 lon3 com3x lmd3 inh3 com4 inh4 lmd4 com4x lon4 lop4 vip4 vin4 vps4 hilo mode vps1 vin1 vip1 lop1 lon1 com1x lmd1 inh1 com1 nc nc vol2 voh2 com2 vcm2 com3 vcm3 vol3 voh3 vcm4 voh4 vol4 vol1 voh1 vcm1 gain12 clmp12 en12 com12 vps12 com12 en34 com34 vps34 com34 clmp34 gain34 ext vg external variable gain drive variable gain circuit (0 ? 1.0v dc) hilo pin=h=+/ ? 75mv hilo pin=lo=+/ ? 50mv rclamp pin ext vg hilo pin=h=+/ ? 75mv hilo pin=lo=+/ ? 50mv rclamp pin external variable gain drive variable gain circuit (0 ? 1.0v dc) resistors or design your own filter. power down enable (0 ? 1v=disable power) dnp: do not populate. mode pin positive gain slope = 0 ? 1.0v negitive gain slope = 2.25 ? 5.0v populate l505 ? l520 with 0 ? 0.1f c537 0 ? l519 0 ? l515 374 ? r532 374 ? r527 dnp r522 dnp r517 0.1f c530 0.1f c529 0.1f c528 120nh l503 0.1f c524 0.1f c523 0.1f c518 374 ? r515 10k ? r504 0.1f c504 62 61 60 59 58 57 56 55 54 53 52 51 50 49 33 34 35 36 37 38 39 41 42 43 44 45 46 47 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 63 64 48 40 u501 0.1f c506 avdd_5v 10k ? r511 10k ? r512 10k ? r505 avdd_5v avdd_5v avdd_5v avdd_5v vg34 0.1f c538 avdd_5v avdd_5v 0.1f c505 22pf c503 vg12 c512 10f avdd_5v avdd_5v 0.1f c501 187 ? r513 10k ? dnp r506 10k ? r501 274 ? r503 0.018f c502 12 jp501 120nh l501 0.1f c508 0.1f c509 1000pf c507 39k ? r502 c510 10f avdd_5v vg12 vg12 gnd r521 dnp 0 ? l510 r516 dnp c542 dnp 187 ? r518 187 ? r514 0.1f c545 0.1f c541 0.1f c540 0 ? l505 0 ? l511 0 ? l508 0 ? l507 0 ? l509 0 ? l506 0 ? l512 374 ? r520 187 ? r519 0.1f c544 c546 dnp c543 dnp c547 dnp ch_c ch_d ch_d ch_c dnp r534 r533 dnp 0 ? l518 r528 dnp c550 dnp 187 ? r530 187 ? r526 0.1f c553 0.1f c549 0.1f c548 0 ? l513 0 ? l516 0 ? l517 0 ? l514 0 ? l520 187 ? r531 187 ? r525 0.1f c552 c554 dnp c551 dnp c555 dnp dnp r529 ch_a ch_b ch_b ch_a inh4 0.1f c511 22pf c514 0.1f c513 120nh l502 inh3 274 ? r507 0.018f c515 0.1f c522 22pf c520 0.1f c519 274 ? r508 0.018f c521 inh2 c526 22pf c525 0.1f l504 120nh r509 274 ? c527 0.018f inh1 0.1f 0.1f c536 c535 c534 c533 10f 10f 10k ? dnp r510 0.1f c532 1000pf c531 10k ? r535 1 jp502 39k ? r536 avdd_5v vg34 vg34 gnd 10k ? r523 10k ? r524 avdd_5v 0 5968-076 2 figure 78. evaluation board schematic, optional dut analog input drive
data sheet AD9212 rev. e | page 45 of 56 cw cw ad8334acpz-reel inh2 lmd2 com2x lon2 lop2 vip2 vin2 vps2 vps3 vin3 vip3 lop3 lon3 com3x lmd3 inh3 com4 inh4 lmd4 com4x lon4 lop4 vip4 vin4 vps4 hilo mode vps1 vin1 vip1 lop1 lon1 com1x lmd1 inh1 com1 nc nc vol2 voh2 com2 vcm2 com3 vcm3 vol3 voh3 vcm4 voh4 vol4 vol1 voh1 vcm1 gain12 clmp12 en12 com12 vps12 com12 en34 com34 vps34 com34 clmp34 gain34 mode pin positive gain slope = 0 ? 1.0v negative gain slope = 2.25 ? 5.0v ext vg external variable gain drive variable gain circuit (0 ? 1.0v dc) hilo pin=h=+/ ? 75mv hilo pin=lo=+/ ? 50mv rclamp pin ext vg hilo pin=h=+/ ? 75mv hilo pin=lo=+/ ? 50mv rclamp pin external variable gain drive variable gain circuit (0 ? 1.0v dc) populate l605 ? l620 with 0 ? resistors or design your own filter. power down enable (0 ? 1v=disable power) dnp: do not populate. 62 61 60 59 58 57 56 55 54 53 52 51 50 49 33 34 35 36 37 38 39 41 42 43 44 45 46 47 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 63 64 48 40 u601 374 ? r620 dnp r636 374 ? r632 374 ? r627 dnp r622 0 ? l619 0 ? l611 0.1f c630 0.1f c629 0.1f c628 0.1f c624 0.1f c623 0.1f c618 0.1f c616 10k ? r604 0.1f c604 10k ? r612 10k ? r624 avdd_5v avdd_5v avdd_5v avdd_5v vg78 0.1f c617 avdd_5v avdd_5v 0.1f c605 22pf c603 0.1f c606 vg56 c612 10f avdd_5v avdd_5v 0.1f c601 187 ? r613 10k ? dnp r606 10k ? r601 274 ? r603 0.018f c602 12 jp601 l601 120nh 0.1f c608 0.1f c609 10k ? r605 1000pf c607 39k ? r602 c610 10f avdd_5v vg56 vg56 gnd r621 dnp 0 ? l610 r616 dnp c642 dnp 374 ? r615 187 ? r618 187 ? r614 0.1f c645 0.1f c641 0.1f c640 0 ? l605 0 ? l608 0 ? l607 0 ? l609 0 ? l606 0 ? l612 187 ? r619 0.1f c644 c646 dnp c643 dnp c647 dnp dnp r617 ch_g ch_h ch_h ch_g r633 dnp 0 ? l618 r628 dnp c650 dnp 187 ? r630 187 ? r626 0.1f c653 0.1f c649 0.1f c648 0 ? l613 0 ? l616 0 ? l615 0 ? l617 0 ? l614 0 ? l620 187 ? r631 187 ? r625 0.1f c652 c654 dnp c651 dnp c655 dnp dnp r629 ch_e ch_f ch_f ch_e inh8 0.1f c611 22pf c614 0.1f c613 l602 120nh inh7 274 ? r607 0.018f c615 0.1f c622 22pf c620 0.1f c619 l603 120nh 274 ? r608 c621 inh6 c626 22pf c625 0.1f l604 120nh r609 274 ? c627 0.018f inh5 0.1f 0.1f c636 10f c634 c633 10f 10k ? dnp r610 0.1f c632 1000pf c631 10k ? r634 12 jp602 39k ? r635 avdd_5v vg78 vg78 gnd 10k ? r611 avdd_5v 10k ? r623 avdd_5v c635 05968-077 0.018f figure 79. evaluation board schematic, optional dut analog input drive (continued)
AD9212 data sheet rev. e | page 46 of 56 nanosmdc110f-2 s2a-tp gp0 gp1 gp2 gp4 gp5 vdd vss mclr/gp3 pic12f629-i/sng 4 y1 vcc y2 a2 gnd a1 con005 7.5v power 2.5mm jack p1 p2 p3 p4 p5 p6 p7 p8 gnd gnd gnd gnd out y1 vcc y2 a2 gnd a1 optional +3.3v = normal operation = avdd_3.3v +5v = programming = avdd_5v reset/ reprogram isp pic programming header remove when using or programming pic (u402) spi circuitry from fifo power supply input input 6v, 2a max +5.0v dnp: do not populate. +1.8v +1.8v +3.3v decoupling capacitors optional power d702 6 5 4 3 2 1 u703 nc7wz16p6x_nl 3.3v_avdd 5v_avdd dut_avdd dut_drvdd l701 10h avdd_5v 1 2 3 4 u707 adp3339akcz ? 1.8-rl avdd_5v avdd_dut cr702 green mclr/gp3 cr701 green 4 2 3 1 adp3339akcz ? 5-rl7 u706 1 2 3 4 u704 adp3339akcz ? 1.8-rl 4 2 3 1 adp3339akcz ? 3.3-rl u705 2 43 1 fer701 1 2 3 4 5 6 7 8 p702 dnp 1 3 2 p701 1 2 34 5 6 nc7wz07p6x_nl u702 1k ? r713 0 ? r709 r708 0 ? 0 ? 0 ? r706 2 4 6 8 10 9 7 5 3 1 j702 1 2 3 s701 4 3 7 6 5 2 8 1 u701 0.1f c726 0.1f c742 avdd_dut 0.1f c730 d701 f701 avdd_3.3v 0.1f c740 0.1f c741 l702 10h c710 0.1f c709 10f 10h l705 r716 261 ? 10h l706 l704 10h c715 1f 0.1f c708 0.1f c712 c706 0.1f c717 1f c716 1f c714 1f pwr_in pwr_in 10f c707 c705 10f 10f c711 dut_avdd dut_drvdd 0.1f c735 0.1f c734 0.1f c733 0.1f c727 0.1f c732 0.1f c731 0.1f c743 0.1f c723 0.1f c725 0.1f c724 10h l703 5v_avdd 3.3v_avdd pwr_in pwr_in 1f c719 1f c721 1f c722 1f c720 l708 10h l707 10 h drvdd_dut 1k ? r712 1k ? r710 r707 c701 0.1f r715 10k ? 10k ? r711 0.1f c703 r704 0 ?? dnp 0 ?? dnp r703 0 ?? dnp r705 261 ? r702 3 2 1 j701 r701 4.7k ? 1 e701 c702 0.1f 10k ? r714 picvcc gp1 gp0 mclr/gp3 picvcc avdd_dut avdd_3.3v avdd_5v avdd_dut sclk_dtp csb_dut avdd_3.3v gp0 csb1_cha sclk_cha sdi_cha gp1 sdo_cha avdd_dut sdio_odm pwr_in avdd_3.3v avdd_5v avdd_dut drvdd_dut 0.1f c744 0.1f c748 0.1f c747 0.1f c746 0.1f c745 0.1f c752 0.1f c753 0.1f c749 0.1f c751 0.1f c750 c704 10f 0 5968-078 in in out out out sk33-tp out in in out out out figure 80. evaluation board schematic, powe r supply inputs and spi interface circuitry
data sheet AD9212 rev. e | page 47 of 56 05968-079 figure 81. evaluation board layout, primary side
AD9212 data sheet rev. e | page 48 of 56 05968-045 figure 82. evaluation board layout, ground plane
data sheet AD9212 rev. e | page 49 of 56 05968-046 figure 83. evaluation board layout, power plane
AD9212 data sheet rev. e | page 50 of 56 05968-082 figure 84. evaluation board layout, secondary side (mirrored image)
data sheet AD9212 rev. e | page 51 of 56 table 17. evaluation board bill of materials (bom) 1 item qty per board reference designator device package value manufacturer manufacturer part number 1 1 AD9212lfcsp_reva pcb pcb pcb 2 118 c101, c102, c107, c108, c109, c114, c115, c116, c121, c122, c123, c128, c201, c202, c207, c208, c209, c214, c215, c216, c221, c222, c223, c228, c301, c302, c304, c305, c306, c401, c402, c403, c409, c410, c411, c412, c413, c414, c415, c416, c417, c418, c501, c504, c505, c506, c508, c509, c511, c513, c518, c519, c522, c523, c524, c525, c528, c529, c530, c532, c534, c536, c537, c538, c601, c604, c605, c606, c608, c609, c611, c613, c616, c617, c618, c619, c622, c623, c624, c625, c628, c629, c630, c632, c634, c636, c701, c702, c703, c706, c708, c710, c712, c723, c724, c725, c726, c727, c730, c731, c732, c733, c734, c735, c740, c741, c742, c743, c744, c745, c746, c747, c748, c749, c750, c751, c752, c753 capacitor 402 0.1 f, ceramic, x5r, 10 v, 10% tol murata grm155r71c104ka88d 3 8 c104, c111, c118, c125, c204, c211, c218, c225 capacitor 402 2.2 pf, ceramic, cog, 0.25 pf tol, 50 v murata grm1555c1h2r20cz01d 4 8 c510, c512, c533, c535, c610, c612, c633, c635 capacitor 805 10 f, 6.3 v 10%, ceramic, x5r murata grm219r60j106ke19d 5 1 c303 capacitor 603 4.7 f, ceramic, x5r, 6.3 v, 10% tol murata grm188r60j475ke19d 6 4 c507, c531, c607, c631 capacitor 402 1000 pf, ceramic, x7r, 25 v, 10% tol murata grm155r71h102ka01d 7 8 c502, c515, c521, c527, c602, c615, c621, c627 capacitor 402 0.018 f, ceramic, x7r, 16 v, 10% tol avx 0402yc183kat2a
AD9212 data sheet rev. e | page 52 of 56 item qty per board reference designator device package value manufacturer manufacturer part number 8 8 c503, c514, c520, c526, c603, c614, c620, c626 capacitor 402 22 pf, ceramic, npo, 5% tol, 50 v murata grm1555c1h220jz01d 9 1 c704 capacitor 1206 10 f, tantalum, 16 v, 20% tol rohm co., ltd. tca1c106m8r 10 9 c307, c714, c715, c716, c717, c719, c720, c721, c722 capacitor 603 1 f, ceramic, x5r, 6.3 v, 10% tol murata grm188r61c105ka93d 11 16 c540, c541, c544, c545, c548, c549, c552, c553, c640, c641, c644, c645, c648, c649, c652, c653 capacitor 805 0.1 f, ceramic, x7r, 50 v, 10% tol murata grm21br71h104ka01l 12 4 c705, c707, c709, c711 capacitor 603 10 f, ceramic, x5r, 6.3 v, 20% tol murata grm188r60j106me47d 13 1 cr401 diode sot-23 30 v, 20 ma, dual schottky avago technologies hsms-2812-tr1g 14 2 cr701, cr702 led 603 green, 4 v, 5 m candela panasonic lnj314g8tra 15 1 d702 diode do- 214ab 3 a, 30 v, smc micro commercial co. sk33-tp 16 1 d701 diode do- 214aa 5 a, 50 v, smc micro commercial co. s2a-tp 17 1 f701 fuse 1210 6.0 v, 2.2 a trip-current resettable fuse tyco/raychem nanosmdc110f-2 18 1 fer701 choke coil 2020 10 h, 5 a, 50 v, 190 @ 100 mhz murata dlw5bsn191sq2l 19 24 fb101, fb102, fb103, fb104, fb105, fb106, fb107, fb108, fb109, fb110, fb111, fb112, fb201, fb202, fb203, fb204, fb205, fb206, fb207, fb208, fb209, fb210, fb211, fb212 ferrite bead 603 10 , test frequency 100 mhz, 25% tol, 500 ma murata blm18ba100sn1d 20 4 jp501, jp502, jp601, jp602 connector 2-pin 100 mil header jumper, 2-pin samtec tsw-102-07-g-s 21 6 j301, j302, j303, j304, j401, j701 connector 3-pin 100 mil header jumper, 3-pin samtec tsw-103-07-g-s 23 1 j702 connector 10-pin 100 mil header, male, 2 5 double row straight samtec tsw-105-08-g-d 24 8 l701, l702, l703, l704, l705, l706, l707, l708 ferrite bead 1210 10 h, bead core 3.2 2.5 1.6 smd, 2 a murata blm31pg500sn1l 25 8 l501, l502, l503, l504, l601, l602, l603, l604 inductor 402 120 nh, test freq 100 mhz, 5% tol, 150 ma murata lqg15hnr12j02d
data sheet AD9212 rev. e | page 53 of 56 item qty per board reference designator device package value manufacturer manufacturer part number 26 32 l505, l506, l507, l508, l509, l510, l511, l512, l513, l514, l515, l516, l517, l518, l519, l520, l605, l606, l607, l608, l609, l610, l611, l612, l613, l614, l615, l616, l617, l618, l619, l620 resistor 805 0 , 1/8 w, 5% tol nic components corp. nrc04z0trf 27 1 osc401 oscillator smt clock oscillator, 65.00 mhz, 3.3 v, 5% duty cycle valpey fisher vfac3-bhl-65mhz 28 9 p101, p103, p105, p107, p201, p203, p205, p207, p401 connector sma side-mount sma for 0.063" board thickness johnson components 142-0701-851 29 1 p301 connector header 1469169-1, right angle 2-pair, 25 mm, header assembly tyco 6469169-1 30 1 p701 connector 0.1", pcmt rapc722, power supply connector switchcraft rapc722x 31 21 r301, r307, r401, r402, r410, r413, r504, r505, r511, r512, r523, r524, r604, r605, r611, r612, r623, r624, r711, r714, r715 resistor 402 10 k, 1/16 w, 5% tol nic components corp. nrc04j103trf 32 18 r103, r117, r129, r142, r203, r219, r235, r253, r317, r405, r415, r416, r417, r418, r706, r707, r708, r709 resistor 402 0 , 1/16 w, 5% tol nic components corp. nrc04z0trf 33 8 r102, r115, r128, r141, r202, r218, r234, r252 resistor 402 64.9 , 1/16 w, 1% tol nic components corp. nrc04f64r9trf 34 8 r104, r116, r130, r143, r204, r220, r236, r254 resistor 603 0 , 1/10 w, 5% tol nic components corp. nrc06z0trf 35 28 r109, r111, r112, r123, r125, r126, r135, r138, r139, r148, r149, r150, r211, r212, r214, r228, r231, r232, r246, r249, r250, r262, r265, r266, r319, r710, r712, r713 resistor 402 1 k, 1/16 w, 1% tol nic components corp. nrc04f1001trf 36 16 r108, r110, r121, r122, r134, r136, r146, r147, r209, r210, r226, r227, r242, r245, r260, r261 resistor 402 33 , 1/16 w, 5% tol nic components corp. nrc04j330trf
AD9212 data sheet rev. e | page 54 of 56 item qty per board reference designator device package value manufacturer manufacturer part number 37 8 r161, r162, r163, r164, r208, r225, r241, r259 resistor 402 499 , 1/16 w, 1% tol nic components corp. nrc04f4990trf 38 3 r303, r305, r306 resistor 402 100 k, 1/16 w, 1% tol nic components corp. nrc04f1003trf 39 1 r414 resistor 402 4.12 k, 1/16w, 1% tol nic components corp. nrc04f4121trf 40 1 r404 resistor 402 49.9 , 1/16 w, 0.5% tol susumu rr0510r-49r9-d 41 1 r309 resistor 402 4.99 k, 1/16 w, 5% tol nic components corp. nrc04f4991trf 42 5 r310, r501, r535, r601, r634 potentiometer 3-lead 10 k, cermet trimmer potentiometer, 18-turn top adjust, 10%, 1/2 w copal electronics corp. ct94ew103 43 1 r308 resistor 402 470 k, 1/16 w, 5% tol nic components corp. nrc04j474trf 44 4 r502, r536, r602, r635 resistor 402 39 k, 1/16 w, 5% tol nic components corp. nrc04j393trf 45 16 r513, r514, r518, r519, r525, r526, r530, r531, r613, r614, r618, r619, r625, r626, r630, r631 resistor 402 187 , 1/16 w, 1% tol nic components corp. nrc04f1870trf 46 8 r515, r520, r527, r532, r615, r620, r627, r632 resistor 402 374 , 1/16 w, 1% tol nic components corp. nrc04f3740trf 47 8 r503, r507, r508, r509, r603, r607, r608, r609 resistor 402 274 , 1/16 w, 1% tol nic components corp. nrc04f2740trf 48 11 r425, r427, r429, r431, r433, r435, r436, r439, r441, r443, r445 resistor 201 0 , 1/20 w, 5% tol nic components corp. nrc02z0trf 49 1 r701 resistor 402 4.7 k, 1/16 w, 1% tol nic components corp. nrc04j472trf 50 1 r702 resistor 402 261 , 1/16 w, 1% tol nic components corp. nrc04f2610trf 51 1 r716 resistor 603 261 , 1/16 w, 1% tol nic components corp. nrc06f261otrf 52 2 r420, r421 resistor 402 240 , 1/16 w, 5% tol nic components corp. nrc04j241trf 53 2 r422, r423 resistor 402 100 , 1/16 w, 1% tol nic components corp. nrc04f1000trf 54 1 s701 switch smd light touch, 100 ge, 5 mm panasonic evqplda15
data sheet AD9212 rev. e | page 55 of 56 item qty per board reference designator device package value manufacturer manufacturer part number 55 9 t101, t102, t103, t104, t201, t202, t203, t204, t401 transformer cd542 adt1-1wt+, 1:1 impedance ratio transformer mini-circuits adt1-1wt+ 56 2 u704, u707 ic sot-223 adp3339akc-1.8-rl, 1.5 a, 1.8 v ldo regulator analog devices adp3339akcz-1.8-rl 57 2 u501, u601 ic cp-64-3 ad8334acpz-reel, ultralow noise precision dual vga analog devices ad8334acpz-reel 58 1 u706 ic sot-223 adp3339akc-5-rl7 analog devices adp3339akcz-5-rl7 59 1 u705 ic sot-223 adp3339akc-3.3-rl analog devices adp3339akcz-3.3-rl 60 1 u301 ic cp-64-3 AD9212bcpz-65, octal, 10-bit, 65 msps serial lvds 1.8 v adc analog devices AD9212bcpz-65 61 1 u302 ic sot-23 adr510artz, 1.0 v, precision low noise shunt voltage reference analog devices adr510artz 62 1 u401 ic lfcsp cp-32-2 ad9515bcpz, 1.6 ghz clock distribution ic analog devices ad9515bcpz 63 1 u702 ic sc70, maa06a nc7wz07p6x_nl, uhs dual buffer fairchild nc7wz07p6x_nl 64 1 u703 ic sc70, maa06a nc7wz16p6x_nl, uhs dual buffer fairchild nc7wz16p6x_nl 65 1 u701 ic 8-soic flash prog mem 1k 14, ram size 64 8, 20 mhz speed, pic12f controller series microchip pic12f629-i/sng 1 this bom is rohs compliant.
AD9212 data sheet rev. e | page 56 of 56 outline dimensions compliant to jedec standards mo-220-vmmd-4 0.22 min top view 8.75 bsc sq 9.00 bsc sq 1 64 16 17 49 48 32 33 0.50 0.40 0.30 0.50 bsc 0.20 ref 12 max 0.80 max 0.65 typ 1.00 0.85 0.80 7.50 ref 0.05 max 0.02 nom 0.60 max 0.60 max seating plane pin 1 indicator 7.55 7.50 sq 7.45 pin 1 indicator 0.30 0.23 0.18 for proper connection of the exposed pad, refer to the pin configuration and function descriptions section of this data sheet. 02-23-2010-b exposed pad (bottom view) figure 85. 64-lead lead frame chip scale package [lfcsp_vq] 9 mm 9 mm body, very thin quad (cp-64-6) dimensions shown in millimeters ordering guide model 1 notes temperature range package description package option AD9212abcpz-40 ?40c to +85c 64-lead lead frame chip scale package [lfcsp_vq] cp-64-6 AD9212abcpzrl7-40 ?40c to +85c 64-lead lead frame chip scale package [lfcsp_vq] 7 tape and reel cp-64-6 AD9212abcpz-65 ?40c to +85c 64-lead lead frame chip scale package [lfcsp_vq] cp-64-6 AD9212abcpzrl7-65 ?40c to +85c 64-lead lead frame chip scale package [lfcsp_vq] 7 tape and reel cp-64-6 AD9212-65ebz 2 evaluation board 1 z = rohs compliant part. 2 interposer board (hsc-adc-fifo5-intz) is required to connect to hsc-adc-evalcz data capture board. ?2006C2011 analog devices, inc. all rights reserved. trademarks and registered trademarks are the prop erty of their respective owners. d05968-0-1 2 /11(e)


▲Up To Search▲   

 
Price & Availability of AD9212

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X