Part Number Hot Search : 
IN456 ISPLSI S1K50000 RD151 NTE1054 ILA01 WM8522 102ME
Product Description
Full Text Search
 

To Download VND7020AJTR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  vnd7020aj double channel high - side driver with multisense analog feedback for automotive applications datasheet - production data features max transient supply voltage v cc 40 v operating voltage range v cc 4 to 28 v typ. on - state resistance (per ch) r on 22 m current limitation (typ) i limh 63 a standby current (max) i stby 0.5 a ? automotive qualified ? general ? double channel smart high side driver with multisense analog feedback ? very low standby current ? compatible with 3 v and 5 v cmos outputs ? multisen se diagnostic functions ? multiplexed analog feedback of: load current with high precision proportional current mirror, v cc supply voltage and t chip device temperature ? overload and short to ground (power limitation) indication ? thermal shutdown indication ? of f - state open - load detection ? output short to v cc detection ? sense enable/disable ? protections ? undervoltage shutdown ? overvoltage clamp ? load current limitation ? self limiting of fast thermal transients ? configurable latch - off on overtemperature or power limitati on with dedicated fault reset pin ? loss of ground and loss of v cc ? reverse battery with external components ? electrostatic discharge protection applications ? all types of auto motive resistive, inductive and capacitive loads ? specially intended for automotive turn indicators (up to 2x p27w or sae1156 and r5w paralleled or led rear combinations) description the device is a double channel high - side driver manufactured using st proprietary vipower ? m0- 7 technology and housed in powersso - 16 package. the device is designed to drive 12 v automotive grounded loads through a 3 v and 5 v cmos - compatibl e interface, providing protection and diagnostics. the device integrates advanced protective functions such as load current limitation, overload active management by power limitation and overtemperature shutdown with configurable latch - off. a f aultrst pin unlatches the output in case of fault or disables the latch - off functionality. a dedicated multifunction multiplexed analog output pin delivers sophisticated diagnostic functions including high precision proportional load current sense, supp ly voltage feedback and chip temperature sense, in addition to the detection of overload and short circuit to ground, short to v cc and off - state open - load. a sense enable pin allows off - state diagnosis to be disabled during the module low - power mode as wel l as external sense resistor sharing among similar devices. february 2015 docid027393 rev 1 1 / 44 this is information on a product in full production. www.st.com
contents vnd7020aj contents 1 block diagram and pin description ................................................ 5 2 electrical specification .................................................................... 7 2.1 absolute maximum ratings ................................................................ 7 2.2 thermal data ..................................................................................... 8 2.3 main electrical characteristics ........................................................... 8 2.4 waveforms ...................................................................................... 21 2.5 electrical characteristics curves ...................................................... 23 3 protections ..................................................................................... 27 3.1 power limitation ............................................................................... 27 3.2 thermal shutdown ........................................................................... 27 3.3 current limitation ............................................................................. 27 3.4 negative voltage clamp ................................................................... 27 4 application information ................................................................ 28 4.1 gnd protection network against reverse battery ............................. 28 4.1.1 diode (dgnd) in the ground line ..................................................... 29 4.2 immunity against transient electrical disturbances .......................... 29 4.3 mcu i/os protection ........................................................................ 29 4.4 multisense - ana log current sense .................................................. 30 4.4.1 principle of multisense signal generation ......................................... 31 4.4.2 tcase and vcc monitor ................................................................. 33 4.4.3 short to vcc and off - state open - load detection ........................... 34 5 maximum demagnetization energy (vcc = 16 v) ........................ 36 6 package and pcb thermal data .................................................... 37 6.1 powersso - 16 thermal data ............................................................ 37 7 package information ..................................................................... 40 7.1 powersso - 16 package information ................................................ 40 8 order codes ................................................................................... 42 9 revision history ............................................................................ 43 2 / 44 docid027393 rev 1
vnd7020aj list of tables list of tables table 1: pin functions ................................................................................................................................. 5 table 2: suggested connections for unused and not connec ted pins ........................................................ 6 table 3: absolute maximum ratings ........................................................................................................... 7 table 4: thermal data ................................................................................................................................. 8 table 5: power section ............................................................................................................................... 8 table 6: switching ....................................................................................................................................... 9 table 7: logic inputs ................................................................................................................................. 10 table 8: protections .................................................................................................................................. 11 table 9: multisense .................................................................................................................................. 12 table 10: truth table ................................................................................................................................. 20 table 11: multisense multiplexer addressing ........................................................................................... 20 table 12: iso 7637 - 2 - electrical transient conduction along supply line ................................................. 29 table 13: multisense pin levels in off - state .............................................................................................. 33 table 14: pcb properties ......................................................................................................................... 37 table 15: thermal parameters ................................................................................................................. 39 table 16: powersso - 16 mechanical data ................................................................................................ 41 table 17: device summary ....................................................................................................................... 42 table 18: document revision history ........................................................................................................ 43 docid027393 rev 1 3 / 44
list of figures vnd7020aj list of figures figure 1: block diagram .............................................................................................................................. 5 figure 2: conf iguration diagram (top view) ................................................................................................. 6 figure 3: current and voltage conventions ................................................................................................. 7 figure 4: iout/isense versus iout ....................................................................................................... 17 figure 5: current sense accuracy versus iout ....................................................................................... 17 figure 6: switching time and pulse skew ................................................................................................. 18 figure 7: multisense timings (current sense mode) ................................................................................. 18 figure 8: multisense timings (chip temperature and vcc sense mode) .................................................. 19 figure 9: tdstkon .................................................................................................................................. 19 figure 10: latch functionality - behavior in hard short circuit condition (tamb << ttsd) ...................... 21 figure 11 : latch functionality - behavior in hard short circuit condition .................................................... 21 figure 12: latch functionality - behavior in hard short circuit condition (autorestart mode + latch off) .... 22 figure 13: standby mode activation ......................................................................................................... 22 figure 14: standby state diagram ............................................................................................................. 23 figure 15: off - state output current ......................................................................................................... 23 figure 16: standby current ....................................................................................................................... 23 figure 17: ignd(on) vs. iout ................................................................................................................... 24 figure 18: logic input high level voltage .................................................................................................. 24 figure 19: logic input low level voltage .................................................................................................... 24 figure 2 0: high level logic input current ................................................................................................... 24 figure 21: low level logic input current .................................................................................................... 24 figure 22: logic input hysteresis voltage ................................................................................................. 24 figure 23: faultrst input clamp voltage ................................................................................................. 25 figure 24: undervoltage shutdown ........................................................................................................... 25 figure 25: on - state resistance vs. tcase ................................................................................................. 25 figure 26: on - state resistance vs. vcc ................................................................................................... 25 figure 27: turn - on voltage sl ope .............................................................................................................. 25 figure 28: turn - off voltage slope .............................................................................................................. 25 figure 29: won vs. tcase ......................................................................................................................... 26 figure 30: woff vs. tcase ......................................................................................................................... 26 figure 31: ilimh vs. tcase ....................................................................................................................... 26 figure 32: off - state open - load voltage detection threshold ................................................................... 26 figure 33: vsense clamp vs. tcase .......................................................................................................... 26 figure 34: vsenseh vs. tcase .................................................................................................................. 26 figure 35: application diagram ................................................................................................................. 28 figure 36: simplified internal structure ..................................................................................................... 28 figure 37: multisense and diagnostic ? block diagram ............................................................................ 30 figure 38: multisense block diagram ....................................................................................................... 31 figure 39: analogue hsd ? open - load detection in off - state ................................................................... 32 figure 40: open - load / short to vcc condition ......................................................................................... 33 figure 41: gnd voltage shift .................................................................................................................... 34 figure 42: maximum turn off current versus inductance .......................................................................... 36 figure 43: powersso - 16 on two - layers pcb (2s0p to jedec jesd 51 - 5) ............................................ 37 figure 44: powersso - 16 on four - layers pcb (2s2p to jedec jesd 51 - 7) ........................................... 37 figure 45: rthj - amb vs pcb copper area in open box free air condition (one channel on) ..................... 38 figure 46: powersso - 16 thermal impedance junction ambient single pulse (one channel on) .............. 38 figure 47: thermal fitting model of a double - channel hsd in powerss o - 16.......................................... 39 figure 48: powersso - 16 package dimensions ........................................................................................ 40 4 / 44 docid027393 rev 1
vnd7020aj block diagram and pin description 1 block diagram and pin description figure 1 : block diagram table 1: pin functions name function v cc battery connection. output 0,1 power output. gnd ground connection. must be reverse battery protected by an external diode / re sistor network. input 0,1 voltage controlled input pin with hysteresis, compatible with 3 v and 5 v cmos outputs. it controls output switch state. multisense multiplexed analog sense output pin; it delivers a current proportional to the selected diagnosti c: load current, supply voltage or chip temperature. sen active high compatible with 3 v and 5 v cmos outputs pin; it enables the multisense diagnostic pin. sel 0,1 active high compatible with 3 v and 5 v cmos outputs pin; they address the multisense mult iplexer. faultrst active low compatible with 3 v and 5 v cmos outputs pin; it unlatches the output in case of fault; if kept low, sets the outputs in auto - restart. mode docid027393 rev 1 5 / 44
block diagram and pin description vnd7020aj figure 2 : configuration diagram (top view) table 2: sugge sted connections for unused and not connected pins connection / pin multisense n.c. output input sen, selx, faultrst floating not allowed x (1) x x x to ground through 1 k resistor x not allowed through 1 5 k resistor through 15 k resistor notes: (1) x: do not care. 6 / 44 docid027393 rev 1
vnd7020aj electrical specification 2 electrical specification figure 3 : current and voltage conventions v fn = v outn - v cc during reverse battery condition. 2.1 absolute maximum ratings stressing the device above the rating listed in table 3: "absolute maximum ratings" may cause permanent damage to the device. these are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not impl ied. exposure to the conditions in table below for extended periods may affect device reliability. table 3: absolute maximum ratings symbol parameter value unit v cc dc supply voltage 38 v -v cc reverse dc supply voltage 0.3 v ccpk maximum transient suppl y voltage (iso 16750 - 2:2010 test b clamped to 40v; r l = 4 ) 40 v v ccjs maximum jump start voltage for single pulse short circuit protection 28 v -i gnd dc reverse ground pin current 200 ma i out output 0,1 dc output current internally limited a -i out reverse dc output current 17 i in input 0,1 dc input cur rent - 1 to 10 ma i sen sen dc input current i sel sel 0,1 dc input current i fr faultrst dc input current docid027393 rev 1 7 / 44
electrical specification vnd7020aj symbol parameter value unit v fr faultrst dc input voltage 7.5 v i sense multisense pin dc output current (v gnd = v cc and v sense < 0 v) 10 ma multisense pin dc output curr ent in reverse (v cc < 0 v) -20 e max maximum switching energy (single pulse) (t demag = 0.4 ms; t jstart = 150 c) 64 mj v esd electrostatic discharge (jedec 22a - 114f) ? input 0,1 ? multisense ? sen, sel 0,1 , faultrst ? output 0,1 ? v cc 4000 2000 4000 4000 4000 v v v v v v esd charge device model (cdm -aec - q100-011) 750 v t j junction operating temperature - 40 to 150 c t stg storage temperature - 55 to 150 2.2 thermal data table 4: therma l data symbol parameter typ. value unit r thj - board thermal resistance junction - board (jedec jesd 51 - 5 / 51 - 8) (1) (2) 4.9 c/w r thj - amb thermal resistance junction - ambient (jedec jesd 51 - 5) (1) (3) 55.5 r thj - amb thermal resistance junction - ambient (jedec jesd 51 - 7) (1) (2) 21.5 notes: (1) one channel on. ( 2) device mounted on four - layers 2s2p pcb (3) device mounted on two - layers 2s0p pcb with 2 cm 2 heatsink copper trace 2.3 main electrical characteristics 7 v < v cc < 28 v; - 40c < t j < 150c, unless otherwise specified. all typical values refer to v cc = 13 v; t j = 25c, unless otherwise specified. table 5: power section symbol parameter test conditions min. typ. max. unit v cc operating supply voltage 4 13 28 v v usd undervoltage shutdown 4 v v usdreset undervoltage shutdown reset 5 v v usdhyst undervoltage shutdown hysteresis 0.3 v 8 / 44 docid027393 rev 1
vnd7020aj electrical specification symbol parameter test conditions min. typ. max. unit r on on - state resistance (1) i out = 3 a; t j = 25c 22 m i out = 3 a; t j = 150c 44 i out = 3 a; v cc = 4 v; t j = 25c 30 v clamp clamp voltage i s = 20 ma; 25c < t j < 150c 41 46 52 v i s = 20 ma; t j = - 40c 38 v i stby supply current in standby at v cc = 13 v (2) v cc = 13 v; v in = v out = v fr = v sen = 0 v; v sel0,1 = 0 v; t j = 25c 0.5 a v cc = 13 v; v in = v out = v fr = v sen = 0 v; v sel0,1 = 0 v; t j = 85c (3) 0.5 v cc = 13 v; v in = v out = v fr = v sen = 0 v; v sel0,1 = 0 v; t j = 125c 3 t d_stby standby mode blanking time v cc = 13 v v in = v out = v fr = v sel0,1 = 0 v; v sen = 5 v to 0 v 60 300 550 s i s(on) supply current v cc = 13 v; v sen = v fr = v sel0,1 = 0 v; v in0 = 5 v; v in1 = 5 v; i out0 = 0 a; i out1 = 0 a 5 8 ma i gnd (on) control stage current consumption in on state. all channels active. v cc = 13 v; v sen = 5 v; v fr = v sel0,1 = 0 v; v in0 = 5 v; v in1 = 5 v; i out0 = 3 a; i out1 = 3 a 12 ma i l(off) off - state output current at v cc = 13 v (1) v in = v out = 0 v; v cc = 13 v; t j = 25c 0 0.01 0.5 a v in = v out = 0 v; v cc = 13 v; t j = 125c 0 3 v f output - v cc diode voltage (1) i out = -3 a; t j = 150c 0.7 v notes: (1) for each channel (2) powermos leakage included. (3) parameter specified by design; not subject to produc tion test. table 6: switching v cc = 13 v; - 40c < t j < 150c, unless otherwise specified symbol parameter test conditions min. typ. max. unit t d(on) (1) turn - on delay time at t j = 25 c r l = 4.3 10 60 120 s t d(off) (1) turn - off delay time at t j = 25 c 10 40 100 (dv out /dt) on (1) turn - on voltage slope at t j = 25 c r l = 4.3 0.1 0.36 0.7 v/s (dv out /dt) off (1) turn - off voltage slope at t j = 25 c 0.1 0.36 0.7 docid027393 rev 1 9 / 44
electrical specification vnd7020aj v cc = 13 v; - 40c < t j < 150c, unless otherwise specified symbol parameter test conditions min. typ. max. unit w on switching energy losses at turn -on (t won ) r l = 4.3 ? 0.38 0.49 (2) mj w off switching energy losses at turn - off (t woff ) r l = 4.3 ? 0.39 0.54 (2) mj t skew (1) differential pulse skew (t phl - t plh ) r l = 4.3 -75 -25 25 s notes: (1) see figure 6: "switching time and pulse skew" . (2) parameter guaranteed by design and char acterization; not subject to production test. table 7: logic inputs 7 v < v cc < 28 v; - 40c < t j < 150c symbol parameter test conditions min. typ. max. unit input 0,1 characteristics v il input low level voltage 0.9 v i il low level input current v in = 0.9 v 1 a v ih input high level voltage 2.1 v i ih high level input current v in = 2.1 v 10 a v i(hyst) input hysteresis voltage 0.2 v v icl input clamp voltage i in = 1 ma 5.3 7.2 v i in = -1 ma - 0.7 faultrst character istics v frl input low level voltage 0.9 v i frl low level input current v in = 0.9 v 1 a v frh input high level voltage 2.1 v i frh high level input current v in = 2.1 v 10 a v fr(hyst) input hysteresis voltage 0.2 v v frcl input clamp voltag e i in = 1 ma 5.3 7.5 v i in = -1 ma - 0.7 sel 0,1 characteristics (7 v < v cc < 18 v) v sell input low level voltage 0.9 v i sell low level input current v in = 0.9 v 1 a v selh input high level voltage 2.1 v i selh high level input current v in = 2.1 v 10 a v sel(hyst) input hysteresis voltage 0.2 v v selcl input clamp voltage i in = 1 ma 5.3 7.2 v i in = -1 ma - 0.7 10/ 44 docid027393 rev 1
vnd7020aj electrical specification 7 v < v cc < 28 v; - 40c < t j < 150c symbol parameter test conditions min. typ. max. unit sen characteristics (7 v < v cc < 18 v) v senl input low level voltage 0.9 v i senl low level input current v in = 0.9 v 1 a v senh input high level voltage 2.1 v i senh high level input current v in = 2.1 v 10 a v sen(hyst) input hysteresis voltage 0.2 v v sencl input clamp voltage i in = 1 ma 5.3 7.2 v i in = -1 ma - 0.7 table 8: protections 7 v < v cc < 18 v; - 40c < t j < 150c symbol parameter test conditions min. typ. max. unit i limh dc short circuit current v cc = 13 v 45 63 90 a 4 v < v cc < 18 v (1) i liml short circuit current during thermal cycling v cc = 1 3 v; t r < t j < t tsd 23 t tsd shutdown temperature 150 175 200 c t r reset temperature (1) t rs + 1 t rs + 7 t rs thermal reset of fault diagnostic indication v fr = 0 v; v sen = 5 v 135 t hyst thermal hysteresis (t t sd - t r ) (1) 7 t j_sd dynamic temperature t j = - 40c; v cc = 13 v 60 k t latch_rst fault reset time for output unlatch (1) v fr = 5 v to 0 v; v sen = 5 v; ? e.g. ch 0 : v in0 = 5 v; v sel0 = 0 v; v sel1 = 0 v 3 10 20 s v demag turn - off output voltage clamp i out = 2 a; l = 6 mh; t j = - 40c v cc - 38 v i out = 2 a; l = 6 mh; t j = 25c to 150c v cc - 41 v cc - 46 v cc - 52 v v on output voltage drop limitation i out = 0.5 a 20 mv notes: (1) p arameter guaranteed by design and characterization; not subject to production test. docid027393 rev 1 11/ 44
electrical specification vnd7020aj table 9: multisense 7 v < v cc < 18 v; - 40c < t j < 150c symbol parameter test conditions min. typ. max. unit v sense_cl multisense clamp voltage v sen = 0 v; i sense = 1 ma -17 -12 v v sen = 0 v; i sense = -1 ma 7 current sense characteristics k ol i out /i sense i out = 0.01 a; v sense = 0.5 v; v sen = 5 v 1020 dk cal /k cal (1) (2) current sense ratio drift at calibration point i out = 0.01 a to 0.05 a; i cal = 30 ma; v sense = 0.5 v; v sen = 5 v -30 30 % k led i out /i sense i out = 0.1 a; v sense = 0.5 v; v sen = 5 v 1800 3450 5100 dk led /k led (1) (2) current sense ratio drift i out = 0.1 a; v sense = 0.5 v; v sen = 5 v -25 25 % k 0 i out /i sense i out = 0.5 a; v sense = 0.5 v; v sen = 5 v 2120 3020 3915 dk 0 /k 0 (1) (2) current sen se ratio drift i out = 0.5 a; v sense = 0.5 v; v sen = 5 v -20 20 % k 1 i out /i sense i out = 1 a; v sense = 4 v; v sen = 5 v 2060 2875 3690 dk 1 /k 1 (1) (2) current sense ratio drift i out = 1 a; v sense = 4 v; v sen = 5 v -15 15 % k 2 i out /i sense i out = 3 a; v sense = 4 v; v sen = 5 v 2340 2755 3170 dk 2 /k 2 (1) (2) current sense ratio drift i out = 3 a; v sense = 4 v; v sen = 5 v -6 6 % k 3 i out /i sense i out = 9 a; v sense = 4 v; v sen = 5 v 2550 2740 2950 dk 3 /k 3 (1) (2) current sense ratio drift i out = 9 a; v sense = 4 v; v sen = 5 v -5 5 % dk/k (tot) (1) (3) current sense ratio drift for single point calibration calibration point: i cal = 2.4 a; t j = 25c; v cc = 13 v i out = 0.5 a i out = 1.5 a i out = 2.0 a i out = 2.4 a i out = 3.0 a i out = 4.0 a -30 -13 -7 -6 -7 -8 30 13 7 6 7 8 % % % % % % v out_msd (1) output voltage for multisense shutdown v sen = 5 v; r sense = 2.7 k; ? e.g. ch 0 : v in0 = 5 v; v sel0 = 0 v; v sel1 = 0 v; i out0 = 3 a 5 v 12/ 44 docid027393 rev 1
vnd7020aj electrical specification 7 v < v cc < 18 v; - 40c < t j < 150c symbol parameter test conditions min. typ. max. unit i sense0 multisense leakage current multisense disabled: v sen = 0 v 0 0.5 a multisense disabled: -1 v < v sense < 5 v (1) - 0.5 0.5 mul tisense enabled: v sen = 5 v; all channels on; i outx = 0 a; ch x diagnostic selected; ? e.g. ch 0 : v in0 = 5 v; v in1 = 5 v; v sel0 = 0 v; v sel1 = 0 v; i out0 = 0 a; i out1 = 3 a 0 2 multisense enabled: v sen = 5 v; ch x off; ch x diagnostic selected: ? e.g. ch 0 : v in0 = 0 v; v in1 = 5 v; v sel0 = 0 v; v sel1 = 0 v; i out1 = 3 a 0 2 v sense_sat multisense saturation voltage v cc = 7 v; r sense = 2.7 k; v sen = 5 v; v in0 = 5 v; v sel0 = 0 v; v sel1 = 0 v; i out0 = 9 a; t j = 150c 5 v i sense_sat (1) cs saturation current v cc = 7 v; v sense = 4 v; v in0 = 5 v; v sen = 5 v; v sel0 = 0 v; v sel1 = 0 v; t j = 150c 4 ma i out_sat (1) output saturation current v cc = 7 v; v sense = 4 v; v in0 = 5 v; v sen = 5 v; v sel0 = 0 v; v sel1 = 0 v; t j = 150c 11.5 a off - state diagnostic v ol off - state open- load voltage detection threshold v sen = 5 v; ch x off; ch x diagnostic selected ? e.g: ch 0 v in0 = 0 v; v sel0 = 0 v; v sel1 = 0 v 2 3 4 v i l(off2) off - state output sink current v in = 0 v; v out = v ol ; t j = - 40c to 125c -100 -15 a docid027393 rev 1 13/ 44
electrical specification vnd7020aj 7 v < v cc < 18 v; - 40c < t j < 150c symbol parameter test conditions min. typ. max. unit t dstkon off - state diagnostic delay time from falling edge of input (se e figure 9: "tdstkon" ) v sen = 5 v; ch x on to off transition; ch x diagnostic selected ? e.g: ch 0 v in0 = 5 v to 0 v; v sel0 = 0 v; v sel1 = 0 v; i out0 = 0 a; v out = 4 v 100 350 700 s t d_ol_v settling time for valid off - state op en load diagnostic indication from rising edge of sen v in0 = 0 v; v in1 = 0 v; v fr = 0 v; v sel0 = 0 v; v sel1 = 0 v; v out0 = 4 v; v sen = 0 v to 5 v 60 s t d_vol off - state diagnostic delay time from rising edge of v out v sen = 5 v; ch x off; ch x diagnostic s elected ? e.g: ch 0 v in0 = 0 v; v sel0 = 0 v; v sel1 = 0 v; v out = 0 v to 4 v 5 30 s chip temperature analog feedback v sense_tc multisense output voltage proportional to chip temperature v sen = 5 v; v sel0 = 0 v; v sel1 = 5 v; v in0,1 = 0 v; r sense = 1 k; t j = - 40c 2.325 2.41 2.495 v v sen = 5 v; v sel0 = 0 v; v sel1 = 5 v; v in0,1 = 0 v; r sense = 1 k; t j = 25c 1.985 2.07 2.155 v v sen = 5 v; v sel0 = 0 v; v sel1 = 5 v; v in0,1 = 0 v; r sense = 1 k; t j = 125c 1.435 1.52 1.605 v dv sense_tc /dt temperature co efficient t j = - 40c to 150c - 5.5 mv/k transfer function v sense_tc (t) = v sense_tc (t 0 ) + dv sense_tc / dt * (t - t 0 ) v cc supply voltage analog feedback v sense_vcc multisense output voltage proportional to v cc supply voltage v cc = 13 v; v sen = 5 v; v s el0 = 5 v; v sel1 = 5 v; v in0,1 = 0 v; r sense = 1 k 3.16 3.23 3.3 v transfer function (4) v sense_vcc = v cc / 4 fault diagnostic feedback (see table 10: "truth table" ) v senseh multisense output voltage in fault condition v cc = 13 v; r sense = 1 k; ? e.g: ch 0 in open load v in0 = 0 v; v sen = 5 v; v sel0 = 0 v; v sel1 = 0 v; i out0 = 0 a; v out = 4 v 5 6.6 v 14/ 44 docid027393 rev 1
vnd7020aj electrical specification 7 v < v cc < 18 v; - 40c < t j < 150c symbol parameter test conditions min. typ. max. unit i senseh multisense output current in fault condition v cc = 13 v; v sense = 5 v 7 20 30 ma multisense timings (current sense mode - see figure 7: "multisense timings (current sense mode)" ) t dsense1h current sense settling time from rising edge of sen v in = 5 v; v sen = 0 v to 5 v; r sense = 1 k; r l = 4.3 60 s t dsense1l current sense disable delay time from falling edge of sen v in = 5 v; v sen = 5 v to 0 v; r sense = 1 k; r l = 4.3 5 20 s t dsense2h current sense settling time from rising edge of input v in = 0 v to 5 v; v sen = 5 v; r sense = 1 k; r l = 4.3 100 250 s t dsense2h current sense se ttling time from rising edge of i out (dynamic response to a step change of i out ) v in = 5 v; v sen = 5 v; r sense = 1 k; i sense = 90 % of i sensemax ; r l = 4.3 100 s t dsense2l current sense turn - off delay time from falling edge of input v in = 5 v to 0 v; v sen = 5 v; r sense = 1 k; r l = 4.3 50 250 s multisense timings (chip temperature sense mode - see figure 8: "multisense timings (chip temperature and vcc sense mode)" ) t dsense3h v sense_tc settling time from rising e dge of sen v sen = 0 v to 5 v; v sel0 = 0 v; v sel1 = 5 v; r sense = 1 k 60 s t dsense3l v sense_tc disable delay time from falling edge of sen v sen = 5 v to 0 v; v sel0 = 0 v; v sel1 = 5 v; r sense = 1 k 20 s multisense timings (v cc voltage sense mode - see figure 8: "multisense timings (chip temperature and vcc sense mode)" ) t dsense4h v sense_vcc settling time from rising edge of sen v sen = 0 v to 5 v; v sel0 = 5 v; v sel1 = 5 v; r sense = 1 k 60 s t dsense4l v sense_vcc disable delay time from falling edge of sen v sen = 5 v to 0 v; v sel0 = 5 v; v sel1 = 5 v; r sense = 1 k 20 s multisense timings (multiplexer transition times) (5) t d_xtoy multisense transition delay from ch x to ch y v i n0 = 5 v; v in1 = 5 v; v sen = 5 v; v sel1 = 0 v; v sel0 = 0 v to 5 v; i out0 = 0 a; i out1 = 3 a; r sense = 1 k 20 s docid027393 rev 1 15/ 44
electrical specification vnd7020aj 7 v < v cc < 18 v; - 40c < t j < 150c symbol parameter test conditions min. typ. max. unit t d_cstotc multisense transition delay from current sense to t c sense v in0 = 5 v; v sen = 5 v; v sel0 = 0 v; v sel1 = 0 v to 5 v; i out0 = 1.5 a; r sense = 1 k 60 s t d_tctocs multisense transition delay from t c sense to current sense v in0 = 5 v; v sen = 5 v; v sel0 = 0 v; v sel1 = 5 v to 0 v; i out0 = 1.5 a; r sense = 1 k 20 s t d_cstovcc multisense transition delay from current sense to v cc sen se v in1 = 5 v; v sen = 5 v; v sel0 = 5 v; v sel1 = 0 v to 5 v; i out1 = 1.5 a; r sense = 1 k 60 s t d_vcctocs multisense transition delay from v cc sense to current sense v in1 = 5 v; v sen = 5 v; v sel0 = 5 v; v sel1 = 5 v to 0 v; i out1 = 1.5 a; r sense = 1 k 20 s t d_tctovcc multisense transition delay from t c sense to v cc sense v cc = 13 v; t j = 125c; v sen = 5 v; v sel0 = 0 v to 5 v; v sel1 = 5 v; r sense = 1 k 20 s t d_vcctotc multisense transition delay from v cc sense to t c sense v cc = 13 v; t j = 125c; v sen = 5 v; v sel0 = 5 v to 0 v; v sel1 = 5 v; r sense = 1 k 20 s t d_cstovsenseh multisense transition delay from stable current sense on ch x to v senseh on ch y v in0 = 5 v; v in1 = 0 v; v sen = 5 v; v sel1 = 0 v; v sel0 = 0 v to 5 v; i out0 = 3 a; v out1 = 4 v; r sense = 1 k 20 s notes: (1) parameter guaranteed by design and characterization; not subject to production test. (2) all values refer to v cc = 13 v; t j = 25c, unless otherwise specified. (3) total current drift over - 40 c to 150 c, v cc : 7 v to 18 v and output current variation, respect to a calibration point measured at t j = 25 c and v cc = 13 v. (4) v cc sensing and t c sensing are referred to gnd potential. (5) transition delay are measured up to +/ - 10% of final conditions. 16/ 44 docid027393 rev 1
vnd7020aj electrical specification figure 4 : iout/isense versus iout figure 5 : current sense accuracy versus iout 0 50 0 10 00 15 00 20 00 25 00 30 00 35 00 40 00 45 00 50 00 55 00 60 00 0 1 2345678 9 10 k\ f a c t o r i o u t [ a] ma x min t y p 02107 02108 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 0 1 2 3 45 6 78 9 1 0 t n n naia piin n n aia piin 027393 1 17 44
electrical specification vnd7020aj figure 6 : switching time and pulse skew figure 7 : multisense timings (current sense mode) v ou t t v cc twon 80 % vcc 20 % vcc two f f inpu t td ( on ) tplh tph l td ( o f f ) t dv ou t /dt on off dv ou t /dt gapg2609141134cft curr t i1 n i u t 1 2 1 l 2 l 1 l0 l1 lo i lo i lo i gapgcft00318 18 44 oi02393 r 1
vnd7020aj electrical specification f igure 8 : multisense timings (chip temperature and vcc sense mode) figure 9 : tdstkon se n se se n v c c t d se n se 4 h t d se n se 4 l t d se n se 3 l t d se n se 3 h se l0 se l1 lo w h i g h lo w h i g h lo w h i g h v sens e = v sense _ vc c v sens e = v sense _ t c v cc vo l t a ge se n se m o d e ch i p t e m pe r a tur e se n se m o d e gapgcft00319 t t v ipu t v u t in v u t v l gapg260914 1 140cf t oi02393 r 1 19 44
electrical specification vnd7020aj table 10: truth table mode conditions in x fr sen sel x out x multisense comments standby all logic inputs low l l l l l hi -z low quiescent current consumption normal nominal load connected; t j < 150 c l x see (1) l see (1) h l h see (1) outputs configured for auto - restart h h h see (1) outputs configured for latch - off overload overload or short to gnd causing: t j > t tsd or t j > t j_sd l x see (1) l see (1) h l h see (1) output cycles with temperature hysteresis h h l see (1) output latches - off undervoltage v cc < v usd (falling) x x x x l l hi -z hi -z re - start when v cc > v usd + v usdhyst (rising) off - state diagnostics short to v cc l x see (1) h see (1) open - load l x h see (1) external pull - up negative output voltage indu ctive loads turn - off l x see (1) < 0 v see (1) notes: (1) refer to table 11: "multisense multiplexer addressing" table 11: multisense multiplexer add ressing sen sel 1 sel 0 muxchannel multisense output normal mode overload off - state diag. (1) negative output l x x hi -z h l l channel 0 diagnostic i sense = 1/k * i out0 v sense = v senseh v sense = v senseh hi -z h l h channel 1 diagnostic i sense = 1/k * i out1 v sense = v senseh v sense = v senseh hi -z h h l t chip sense v sense = v sense_tc h h h v cc sense v sense = v sense_vcc notes: (1) in case the output channel corresponding to the selected mux channel is latched of f while the relevant input is low, multisense pin delivers feedback according to off - state diagnostic. example 1: fr = 1; in 0 = 0; out 0 = l (latched); mux channel = channel 0 diagnostic; mutisense = 0. example 2: fr = 1; in 0 = 0; out 0 = latched, v out0 > v o l ; mux channel = channel 0 diagnostic; mutisense = v senseh 20/ 44 docid027393 rev 1
vnd7020aj electrical specification 2.4 waveforms figure 10 : latch functionality - behavior in hard short circuit condition ( tamb << ttsd) figure 11 : latch functionality - behavior in hard short circuit condition docid027393 rev 1 21/ 44
electrical specification vnd7020aj figure 12 : latch functionality - behavior in hard short circuit condition (autorestart mode + latch off) figure 13 : standby mode activation 22/ 44 docid027393 rev 1
vnd7020aj electrical specification figure 14 : standby state diagram 2.5 electrical characteristics curves figure 15 : off - state output current figure 16 : standby current docid027393 rev 1 23/ 44
electrical specification vnd7020aj figure 17 : ignd(on) vs. iout figure 18 : logic input high level voltage figure 19 : logic input low level voltage figure 20 : high level logic input current figure 21 : low level logic input current figure 22 : logic input hysteresis voltage 24/ 44 docid027393 rev 1
vnd7020aj electrical specification figure 23 : faultrst input clamp voltage figure 24 : undervoltage shutdown figure 25 : on - state resistance vs. tcase figure 26 : on - state re sistance vs. vcc figure 27 : turn - on voltage slope figure 28 : turn - off voltage slope docid027393 rev 1 25/ 44
electrical specification vnd7020aj figure 29 : won vs. tcase figure 30 : woff vs. tcase figur e 31 : ilimh vs. tcase figure 32 : off - state open - load voltage detection threshold figure 33 : vsense clamp vs. tcase figure 34 : vsenseh vs. tcase 26/ 44 docid027393 rev 1
vnd7020aj protections 3 protections 3.1 power limitation the basic working principle of this protection c onsists of an indirect measurement of the junction temperature swing t j through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output mosfet as soon as t j exceeds the safety level o f t j_sd . according to the voltage level on the faultrst pin, the output mosfet switches on and cycles with a thermal hysteresis according to the maximum instantaneous power which can be handled (faultrst = low) or remains off (faultrst = high). the protec tion prevents fast thermal transient effects and, consequently, reduces thermo - mechanical fatigue. 3.2 thermal shutdown in case the junction temperature of the device e xceeds the maximum allowed threshold (typically 175c), it automatically switches off and the diagnostic indication is triggered. according to the voltage level on the faultrst pin, the device switches on again as soon as its junction temperature drops to t r (faultrst = low) or remains off (faultrst = high). 3.3 current limitation the device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. consequently, in case of short circuit, overload or during load power - up, the output current is clamped to a safety level, i limh , by operating the output power mosfet in the active region. 3.4 negative voltage clamp in case the device drives inductive load, the output voltage reaches a negative value during turn off. a negative voltage clamp structure limits the maximum negative voltage to a certain value, v demag , allowing the inductor energy to be dissipated without damaging the device. docid027393 rev 1 27/ 44
applica tion information vnd7020aj 4 application information figure 35 : application diagram 4.1 gnd protection network against reverse battery figure 36 : simplified internal structure 28/ 44 docid027393 rev 1
vnd7020aj application information 4.1.1 diode (dgnd) in the ground line a resistor (typ. r gnd = 4.7 k) should be inserted in parallel to d gnd if the device drives an inductive load. this small signal diode can be safely shared amongst several different hsds. also in this case, the presence of the ground n etwork produces a shift (600 mv) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. this shift does not vary if more than one hsd shares the same diode/resistor network. 4.2 immunity against transient electrical disturbances the immunity of the device against transient electrical emissions, conducted along the supply lin es and injected into the v cc pin, is tested in accordance with iso7637 - 2:2011 (e) and iso 16750 - 2:2010. the related function performance status classification is shown in table 12: "iso 7637 - 2 - electrical transient conducti on along supply line" . test pulses are applied directly to dut (device under test) both in on and off - state and in accordance to iso 7637 - 2:2011(e), chapter 4. the dut is intended as the present device only, without components and accessed through v cc and gnd terminals. status ii is defined in iso 7637 - 1 function performance status classification (fpsc) as follows: ?the function does not perform as designed during the test but returns automatically to normal operation after the test?. table 12: iso 7637 -2 - electrical transient conduction along supply line test pulse 2011(e) test pulse severity level with status ii functional performance status minimum number of pulses or test time burst cycle / pulse repetition time pulse duration and pulse generator inter nal impedance level u s (1) min max 1 iii -112v 500 pulses 0,5 s 2ms, 10 2a iii +55v 500 pulses 0,2 s 5 s 50s, 2 3a iv -220v 1h 90 ms 100 ms 0.1s, 50 3b iv +150v 1h 90 ms 100 ms 0.1s, 50 4 (2) iv -7v 1 pulse 100ms, 0.01 load dump according to iso 16750 - 2:2010 test b (3) 40v 5 pulse 1 min 400ms, 2 notes: (1) u s is the peak amplitude as defined for each test pulse in iso 7637 - 2:2011(e), chapter 5.6. (2) test pulse from iso 7637 - 2:2004(e). (3) with 40 v external suppressor referred to gr ound ( - 40c < t j < 150c). 4.3 mcu i/os protection if a ground protection network is used and negative transients are present on the v cc line, the control pins will be pulled negative. st suggests to insert a resistor (r prot ) in line both to prevent the microcontroller i/o pins to latch - up and to protect the hsd inputs. docid027393 rev 1 29/ 44
application information vnd7020aj the value of these resistors is a compromise between the leakage current of microcontroller and the current required by the hsd i/os (input levels compatibility) with the latch - up limit of microcontroller i/os. equation v ccpeak /i latchup r prot (v ohc - v ih - v gnd ) / i ihmax calculation example: for v ccpeak = - 150 v; i latchup 20 ma; v ohc 4.5 v 7.5 k r prot 140 k. recommended values: r prot = 15 k 4.4 multisense - analog current sense diagnostic information on device and load status are provided by an analog output pin (multisense) delivering the following signals: ? current monitor: current mirror of channel output current ? v cc monitor: voltage propotional to v cc ? t case : voltage propotional to chip temperature those signals are routed through an a nalog multiplexer which is configured and controlled by means of selx and sen pins, according to the address map in multisense multiplexer addressing table . figure 37 : multisense and diagnostic ? block diagram 30/ 44 docid027393 rev 1
vnd7020aj application information 4.4.1 principle of multis ense signal generation figure 38 : multisense block diagram current monitor when current mode is selected in the multisense, this output is capable to provide: ? current mirror proportional to the load current in normal operation, delivering current proportional to the load according to known ratio named k ? diagnostics flag in fault conditions delivering fixed voltage v senseh the current delivered by the current sense circuit, i sense , can be easily converted to a voltage v sense by using an external sense resistor, r sense , allowing continuous load monitoring and abnormal condition detection. normal operation (channel on, no fault, sen active) while device is operating in normal conditions (no fault intervention), v sense calculation can be done using simple equations current provided by multisense output: i sense = i out /k voltage on r sense : v sense = r sense i sense = r sense i out /k where: ? v sense is voltage measurable on r sense resistor ? i sense is current provided from multisense pin in current output mode docid027393 rev 1 31/ 44
application inf ormation vnd7020aj ? i out is current flowing through output ? k factor represents the ratio between powermos cells and sensemos cells; its sp read includes geometric factor spread, current sense amplifier offset and process parameters spread of overall circuitry specifying ratio between i out and i sense . failure flag indication in case of power limitation/overtemperature, the fault is indicated by the multisense pin which is switched to a ?current limited? voltage source, v senseh . in any case, the current sourced by the multisense in this condition is limited to i senseh . the typical behavior in case of overload or hard short circuit is shown in w aveforms section . figure 39 : analogue hsd ? open - load detection in off - state 32/ 44 docid027393 rev 1
vnd7020aj application information figure 40 : open - load / short to vcc condition table 13: multisense pin levels in off - state condition output multisense sen o pen- load v out > v ol hi -z l v senseh h v out < v ol hi -z l 0 h short to v cc v out > v ol hi -z l v senseh h nominal v out < v ol hi -z l 0 h 4.4.2 tcase and vcc monitor in this case, multisense output operates in voltage mode and output level is referred to device gnd. care must be taken in case a gnd network protection is used, because of a voltage shift is generated between device gnd and the microcontroller input gnd reference. figure 41: "gnd voltage shift" shows link between v measured and real v sense signal. docid027393 rev 1 33/ 44
application information vnd7020aj figure 41 : gnd voltage shift v cc monitor battery monitoring channel provides v sense = v cc / 4. case temperature monitor case temperature monitor is capable to provide information about the actual device temperature. since a diode is used for temperature sensing, the following equatio n describes the link between temperature and output v sense level: v sense_tc (t) = v sense_tc (t 0 ) + dv sense_tc / dt * (t - t 0 ) where dv sense_tc / dt ~ typically - 5.5 mv/k (for temperature range ( - 40 c to 150 c). 4.4.3 short to vcc and off - state open - load detect ion short to v cc a short circuit between v cc and output is indicated by the relevant current sense pin set to v senseh during the device off - state. small or no current is delivered by the current sense during the on - state depending on the nature of the short circuit. off - state open - load with external circuitry detection of an open - load in off mode requires a n external pull - up resistor r pu connecting the output to a positive supply voltage v pu . it is preferable v pu to be switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, i.e. when load is connected. r pu must be selected in order to ensure v out > v olmax in accordance with the following equation: 34/ 44 docid027393 rev 1
vnd7020aj application information equation r pu < v pu - 4 i l(off2)min @ 4v oi02393 r 1 3 44
max imum demagnetization energy (vcc = 16 v) vnd7020aj 5 maximum demagnetization energy (vcc = 16 v) figure 42 : maximum turn off current versus inductance values are generated with r l = 0 . gapg101014 1 150cft 0 . 1 1 1 0 1 0 0 0 . 1 1 1 0 1 0 0 1 0 0 0 i ( a) l ( m h) m ax i mum t urn o f f c urr e n t ve r s u s i ndu c t a n c e single pulse r e p e t i t i v e pu l se t j s t a r t = 10 0 c r e p e t i t i v e pu l se t j s t a r t = 12 5 c 1 1 0 1 0 0 1 0 0 0 0 . 0 1 0 . 1 1 1 0 1 0 0 e [ m j ] td e m a g [ m s ] m ax i mum t urn o f f e n e rg y ve r s u s td e m a g singlepulse r e p e t i t i v e p u l s e t j s t a r t = 10 0 c r e p e t i t i v e p u l s e t j s t a r t = 12 5 c 36/ 44 docid027393 rev 1
vnd7020aj package and pcb thermal data 6 package and pcb thermal data 6.1 powersso - 16 thermal data figure 43 : powersso - 16 on two - layers pcb (2s0p to jedec j esd 51 -5) figure 44 : powersso - 16 on four - layers pcb (2s2p to jedec jesd 51-7) table 14: pcb properties dimension value board finish thickness 1.6 mm +/ - 10% board dimension 77 mm x 86 mm board material fr4 copper thickness (top and bottom layers) 0.070 mm copper thickness (inner layers) 0.035 mm thermal vias separation 1.2 mm thermal via diameter 0.3 mm +/ - 0.08 mm copper thickness on vias 0.025 mm footprint dimension (top layer) 2.2 mm x 3.9 mm heatsink copper area di mension (bottom layer) footprint, 2 cm 2 or 8 cm 2 docid027393 rev 1 37/ 44
package and pcb thermal data vnd7020aj figure 45 : rthj - amb vs pcb copper area in open box free air condition (one channel on) figure 46 : powersso - 16 thermal impedance junction ambient single p ulse (one channel on) equation: : pulse calculation formula z th = r th + z thtp (1 - ) where = t p /t 38/ 44 docid027393 rev 1
vnd7020aj package and pcb thermal data figure 47 : thermal fitting model of a double - channel hsd in powersso -16 the fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered. table 15: thermal parameters area/island (cm 2 ) footprint 2 8 4l r1 = r7 (c/w) 0.25 r2 = r8 (c/w) 2 r3 (c/w) 7 7 7 5 r4 (c/w) 16 6 6 4 r5 (c/w) 30 20 10 3 r6 (c/w) 26 20 18 7 c1 = c7 (w.s/c) 0.001 c2 = c8 (w.s/c) 0.025 c3 (w.s/c) 0.1 c4 (w.s/c) 0.2 0.3 0.3 0.4 c5 (w.s/c) 0.4 1 1 4 c6 (w.s/c) 3 5 7 18 docid027393 rev 1 39/ 44
package information vnd7020aj 7 package informati on in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental compliance. ecopack ? sp ecifications, grade definitions and product status are available at: www.st.com . ecopack ? is an st trademark. 7.1 powersso - 16 package information figure 48 : powersso - 16 package dimensions 40/ 44 docid027393 rev 1
vnd7020aj package information table 16: powersso - 16 mechanical data symbol millimeters min. typ. max. 0 8 1 0 2 5 15 3 5 15 a 1.70 a1 0.00 0.10 a2 1.10 1.60 b 0.20 0.30 b1 0.20 0.25 0.28 c 0.19 0.25 c1 0.19 0.20 0.23 d 4.9 bsc d1 3.60 4.20 e 0.50 bsc e 6.00 bsc e1 3.90 bsc e2 1.90 2.50 h 0.25 0.50 l 0.40 0.60 0.85 l1 1.00 ref n 16 r 0.07 r1 0.07 s 0.20 tolerance of form and position aaa 0.10 bbb 0.10 ccc 0.08 ddd 0.08 eee 0 .10 fff 0.10 ggg 0.15 docid027393 rev 1 41/ 44
order codes vnd7020aj 8 order codes table 17: device summary package order codes tube tape and reel powersso -16 ? VND7020AJTR 42/ 44 docid027393 rev 1
vnd7020aj revision history 9 revision history table 18: document revision history date revision changes 04- feb - 2015 1 initial release. docid027393 rev 1 43/ 44
vnd7020aj important notice ? pleas e read carefully stmicroelectronics nv and its subsidiaries (?st?) reserve the right to make changes, corrections, enhancements, modifications , and improvements to st products and/or to this document at any time without notice. purchasers should obtain t he latest relevant information on st products before placing orders. st products are sold pursuant to st?s terms and conditions of sale in place at the time of or der acknowledgement. purchasers are solely responsible for the choice, selection, and use o f st products and st assumes no liability for application assistance or the design of purchasers? products. no license, express or implied, to any intellectual property right is granted by st herein. resale of st products with provisions different from the information set forth herein shall void any warranty granted by st for such product. st and the st logo are trademarks of st. all other product or service names are the property of their respective owners. information in this document supersedes a nd replaces information previously supplied in any prior versions of this document. ? 2015 stmicroelectronics ? all rights reserved 44/ 44 docid027393 rev 1


▲Up To Search▲   

 
Price & Availability of VND7020AJTR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X