|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
this is information on a product in full production. october 2012 doc id 12833 rev 9 1/25 25 tsv991, tsv992, tsv994, tsv991a, tsv992a, tsv994a rail-to-rail input/output 20 mhz gbp operational amplifiers datasheet ? production data features low input offset voltage: 1.5 mv max (a grade) rail-to-rail input and output wide bandwidth 20 mhz stable for gain 4 or -3 low power consumption: 820 a typ high output current: 35 ma operating from 2.5 v to 5.5 v low input bias current, 1 pa typ esd internal protection 5 kv related products see tsv91 series for unity-gain stable amplifiers applications battery-powered applications portable devices signal conditioning and active filtering medical instrumentation automotive applications description the tsv991, tsv992 and tsv994 family of single, dual, and quad operational amplifiers offers low voltage operation and rail-to-rail input and output. these devices feature an excellent speed/power consumption ratio, offering a 20 mhz gain- bandwidth, stable for gains above 4 (100 pf capacitive load), while consuming only 1.1 ma maximum at 5 v. they also feature an ultra-low input bias current. these characteristics ma ke the tsv99x family ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering. 6 # # ) .
/ 5 4 6 # #
) . 6 # # ) .
/ 5 4 6 # #
) . 6 # #
. # . #
6 # # ) .
/ 5 4 6 # #
) . / 5 4 ) .
) .
6 # # ) .
/ 5 4 6 # #
) . / 5 4 ) .
) .
/ 5 4 ) .
) . ) . ) .
/ 5 4
sot23-5 miniso-8, so-8 pin connections (top view) so-14, tssop14 dfn8 2x2 www.st.com
contents tsv99x, tsv99xa 2/25 doc id 12833 rev 9 contents 1 absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3 2 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 driving resistive and capacitive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 pcb layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1 sot23-5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 dfn8 2x2 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3 miniso-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.4 so-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.5 tssop14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.6 so-14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5 ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 tsv99x, tsv99xa absolute maximum ratings and operating conditions doc id 12833 rev 9 3/25 1 absolute maximum ratings and operating conditions table 1. absolute maximum ratings symbol parameter value unit v cc supply voltage (1) 1. value with respect to v dd pin. 6v v id differential input voltage (2) 2. differential voltages are the non-inverting input termi nal with respect to the inverting input terminal. v cc v v in input voltage (3) 3. v cc -v in must not exceed 6 v. v cc- -0.2 to v cc+ +0.2 v i in input current (4) 4. input current must be limited by a resistor in series with the inputs. 10 ma t stg storage temperature -65 to +150 c r thja thermal resistance junction to ambient (5)(6) dfn8 2x2 sot23-5 so-8 miniso-8 so-14 tssop14 5. short-circuits can c ause excessive heating and destructive dissipation. 6. r th are typical values. 57 250 125 190 103 100 c/w r thjc thermal resistance junction to case sot23-5 so-8 miniso-8 so-14 tssop14 81 40 39 31 32 c/w t j maximum junction temperature 150 c esd hbm: human body model (7) 7. human body model: 100 pf discharged through a 1.5 k resistor between two pins of the device, done for all couples of pin combinations with other pins floating. 5kv mm: machine model (8) 8. machine model: 200 pf charged to the specified vo ltage, then discharged directly between two pins of the device with no external series re sistor (internal resistor < 5 ), done for all couples of pin combinations with other pins floating. 400 v cdm: charged device model (9) sot23-5, so-8, miniso-8 dfn8 2x2 tssop14 so-14 9. charged device model: all pins plus package ar e charged together to the specified voltage and then discharged directly to the ground. 1500 1500 750 500 v latch-up immunity 200 ma absolute maximum ratings and operating conditions tsv99x, tsv99xa 4/25 doc id 12833 rev 9 table 2. operating conditions symbol parameter value unit v cc supply voltage 2.5 to 5.5 v v icm common mode input voltage range v cc- -0.1 to v cc+ +0.1 v t op operating free air temperature range -40 to +125 c tsv99x, tsv99xa electrical characteristics doc id 12833 rev 9 5/25 2 electrical characteristics table 3. electrical characteristics at v cc+ = +2.5 v, v cc- = 0 v, v icm = v cc /2, with r l connected to v cc /2, full temperature range (unless otherwise specified) (1) symbol parameter conditions min. typ. max. unit dc performance v io offset voltage tsv99x t op = 25 c 0.1 4.5 mv t min < t op < t max 7.5 offset voltage tsv99xa t op = 25 c 1.5 t min < t op < t max 3 v io / t input offset voltage drift 2 v/c i io input offset current (2) (v out = v cc /2) t op = 25 c 1 10 pa t min < t op < t max 100 i ib input bias current (2) (v out = v cc /2) t op = 25 c 1 10 t min < t op < t max 100 cmr common mode rejection ratio 20 log ( v ic / v io ) 0 v to 2.5 v, v out = 1.25 v, t op = 25 c 58 75 db t min < t op < t max 53 a vd large signal voltage gain r l = 10 k , v out = 0.5 v to 2 v, t op = 25 c 80 89 t min < t op < t max 75 v cc - v oh high level output voltage r l = 10 k , t min < t op < t max 15 40 mv r l = 600 , t min < t op < t max 45 150 v ol low level output voltage r l = 10 k , t min < t op < t max 15 40 r l = 600 , t min < t op < t max 45 150 i out i sink v o = 2.5 v, t op = 25 c 18 32 ma t min < t op < t max 16 i source v o = 0 v, t = 25 c 18 35 t min < t op < t max 16 i cc supply current (per operator) no load, v out = v cc /2 , t min < t op < t max 0.78 1.1 ac performance gbp gain bandwidth product r l = 2 k , c l = 100 pf, f = 100 khz, t op = 25 c 20 mhz gain minimum gain for stability phase margin = 45, r f = 10k , r l = 2 k , c l = 100 pf, t op = 25 c positive gain configuration 4 v/v negative gain configuration -3 sr slew rate r l = 2k , c l = 100 pf, t op = 25 c 10 v/s electrical characteristics tsv99x, tsv99xa 6/25 doc id 12833 rev 9 e n equivalent input noise voltage f = 10 khz, t op = 25 c 21 thd+n total harmonic distortion g = -3, f = 1 khz, r l = 2 k , bw = 22 khz, v icm = v cc /2, v out = 2 v pp , t op = 25 c 0.0025 % 1. all parameter limits at temperatures other than 25 c are guaranteed by correlation. 2. guaranteed by design. table 4. electrical characteristics at v cc+ = +3.3 v, v cc- = 0 v, v icm = v cc /2, with r l connected to v cc /2, full temperature range (unless otherwise specified) (1) symbol parameter conditions min. typ. max. unit dc performance v io offset voltage tsv99x t op = 25 c 0.1 4.5 mv t min < t op < t max 7.5 offset voltage tsv99xa t op = 25 c 1.5 t min < t op < t max 3 v io / t input offset voltage drift - 2 - v/c i io input offset current (2) (v out = v cc /2) t op = 25 c 1 10 pa t min < t op < t max 100 i ib input bias current (2) (v out = v cc /2) t op = 25 c 1 10 t min < t op < t max 100 cmr common mode rejection ratio 20 log ( v ic / v io ) 0 v to 3.3 v, v out = 1.65 v, t op = 25 c 60 78 db t min < t op < t max 55 a vd large signal voltage gain r l = 10 k , v out = 0.5 v to 2.8 v, t=25 c 80 90 t min < t op < t max 75 v cc - v oh high level output voltage r l = 10 k , t min < t op < t max 15 40 mv r l = 600 , t min < t op < t max 45 150 v ol low level output voltage r l = 10 k , t min < t op < t max r l = 600 , t min < t op < t max - 15 45 40 150 i out i sink v o = 3.3 v, t op = 25 c 18 32 ma t min < t op < t max 16 i source v o = 0 v, t op = 25 c 18 35 t min < t op < t max 16 i cc supply current (per operator) no load, v out = v cc /2, t min < t op < t max 0.8 1.1 table 3. electrical characteristics at v cc+ = +2.5 v, v cc- = 0 v, v icm = v cc /2, with r l connected to v cc /2, full temperature range (unless otherwise specified) (1) symbol parameter conditions min. typ. max. unit nv hz ----------- - tsv99x, tsv99xa electrical characteristics doc id 12833 rev 9 7/25 ac performance gbp gain bandwidth product r l = 2 k , c l = 100 pf, f = 100 khz, t op = 25 c 20 mhz gain minimum gain for stability phase margin = 45, r f = 10k , r l = 2 k , c l = 100 pf, t op = 25 c positive gain configuration 4 v/v negative gain configuration -3 sr slew rate r l = 2 k , c l = 100 pf, f = 100 khz, t op = 25 c 10 v/s e n equivalent input noise voltage f = 10 khz, t op = 25 c 21 thd+n total harmonic distortion g = -3, f = 1 khz, r l = 2 k , bw = 22 khz, v icm = v cc /2, v out = 2.8 v pp , t op = 25 c 0.0018 % 1. all parameter limits at temperatures other than 25c are guaranteed by correlation. 2. guaranteed by design. table 5. electrical characteristics at v cc+ = +5 v, v cc- = 0 v, v icm = v cc /2, r l connected to v cc /2, full temperature range (unless otherwise specified) (1) symbol parameter condi tions min. typ. max. unit dc performance v io offset voltage tsv99x t op = 25 c 0.1 4.5 mv t min < t op < t max 7.5 offset voltage tsv99xa t op = 25 c 1.5 t min < t op < t max 3 v io / t input offset voltage drift - 2 - v/c i io input offset current (2) (v out = v cc /2) t op = 25 c 1 10 pa t min < t op < t max 100 i ib input bias current (2) (v out = v cc /2) t op = 25 c 1 10 t min < t op < t max 100 cmr common mode rejection ratio, 20 log ( v ic / v io ) 0 v to 5 v, v out = 2.5 v,t op = 25 c 62 82 db t min < t op < t max 57 svr supply voltage rejection ratio, 20 log ( v cc / v io ) v cc = 2.5 to 5 v 70 86 a vd large signal voltage gain r l = 10 k , v out = 0.5 v to 4.5 v, t = 25 c 80 91 t min < t op < t max 75 table 4. electrical characteristics at v cc+ = +3.3 v, v cc- = 0 v, v icm = v cc /2, with r l connected to v cc /2, full temperature range (unless otherwise specified) (1) (continued) symbol parameter conditions min. typ. max. unit nv hz ----------- - electrical characteristics tsv99x, tsv99xa 8/25 doc id 12833 rev 9 v cc - v oh high level output voltage r l = 10 k , t min < t op < t max 15 40 mv r l = 600 , t min < t op < t max 45 150 v ol low level output voltage r l = 10 k , t min < t op < t max 15 40 r l = 600 , t min < t op < t max 45 150 i out i sink v o = 5 v, t op = 25 c 18 32 ma t min < t amb < t max 16 i source v o = 0 v, t op = 25 c 18 35 t min < t amb < t max 16 i cc supply current (per operator) no load, v out = 2.5 v, t min < t op < t max 0.82 1.1 m a ac performance gbp gain bandwidth product r l = 2 k , c l = 100 pf, f = 100 khz, t op = 25 c 20 mhz gain minimum gain for stability phase margin = 45, r f = 10k , r l = 2 k , c l = 100 pf, t op = 25 c positive gain configuration 4 v/v negative gain configuration -3 sr slew rate r l = 2 k , c l = 100 pf, t op = 25 c 10 v/s e n equivalent input noise voltage f = 10 khz, t op = 25 c 21 thd+n total harmonic distortion g = -3, f = 1 khz, r l = 2 k , bw = 22 khz, v icm = v cc /2, v out = 4.4 v pp , t op = 25 c 0.0014 % 1. all parameter limits at temperatures other than 25c are guaranteed by correlation. 2. guaranteed by design. figure 1. input offset voltage distribution at t = 25 c figure 2. input offset voltage distribution at t = 125 c table 5. electrical characteristics at v cc+ = +5 v, v cc- = 0 v, v icm = v cc /2, r l connected to v cc /2, full temperature range (unless otherwise specified) (1) symbol parameter condi tions min. typ. max. unit nv hz ----------- - -5-4-3-2-1012345 0 20 40 60 80 100 120 140 vcc=5v vicm=2.5v tamb=25 c quantity of parts input offset voltage (mv) -5 -4 -3 -2 -1 0 1 2 3 4 5 0 10 20 30 40 tsv99x, tsv99xa electrical characteristics doc id 12833 rev 9 9/25 figure 3. supply current vs. input common mode voltage at v cc = 2.5 v figure 4. supply current vs. input common mode voltage at v cc = 5 v figure 5. output current vs. output voltage at v cc = 2.5 v figure 6. output current vs. output voltage at v cc = 5 v electrical characteristics tsv99x, tsv99xa 10/25 doc id 12833 rev 9 figure 7. voltage gain and phase vs frequency at v cc = 5 v and v icm = 0.5 v figure 8. voltage gain and phase vs frequency at v cc = 5 v and v icm = 2.5 v pha s e () pha s e () figure 9. positive slew rate figure 10. negative slew rate vin : from 0.5v to vcc-0.5v sr : calculated from 10% to 90% vin : from 0.5v to vcc-0.5v sr : calculated from 10% to 90% figure 11. distortion + noise vs. frequenc y figure 12. distortion + noise vs. output voltage tsv99x, tsv99xa electrical characteristics doc id 12833 rev 9 11/25 figure 13. noise vs. frequency figure 14. supply current vs. supply voltage application information tsv99x, tsv99xa 12/25 doc id 12833 rev 9 3 application information 3.1 driving resistive and capacitive loads these products are low-voltage, low-power operational amplifiers optimized to drive rather large resistive loads above 2 k .. tsv99x products are not unity gain stable. to en sure proper stability they must be used in a gain configuration, with a minimum gain of -3 or +4. however, they can be used in a ?follower? configuration by adding a small, in-series resistor at the output, which drastically impr oves the stability of the device ( figure 15 shows the recommended in-series resistor values). once the in-series resistor value has been selected, the stability of the ci rcuit should be tested on the bench and simulated with the simulation model. another way to improve stability and reduce peaking is to add a capacitor in parallel with the feedback resistor. as shown in figure 16 , the feedback capacitor drastically reduces the peaking versus capacitive load (inver ting gain configuration, gain = -2). 3.2 pcb layouts for correct operation, it is advised to add 10 nf decoupling capacitors as close as possible to the power supply pins. figure 15. in-series resistor vs. capacitive load when tsv99x used in follower configuration figure 16. peaking versus capacitive load, with or without feedback capacitor in inverting gain configuration tsv99x, tsv99xa application information doc id 12833 rev 9 13/25 3.3 macromodel an accurate macromodel of the tsv99x is available on stmicroelectronics? web site at www.st.com . this model is a trade-off between accuracy and complexity (that is, time simulation) of the tsv99x operational amplifiers. it emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. it helps to validate a design approach and to select the right operational amplifier, however, it does not replace on-board measurements . package information tsv99x, tsv99xa 14/25 doc id 12833 rev 9 4 package information in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental compliance. ecopack ? specifications, grade definitions and product status are available at: www.st.com . ecopack ? is an st trademark. tsv99x, tsv99xa package information doc id 12833 rev 9 15/25 4.1 sot23-5 package information figure 17. sot23-5 package mechanical drawing table 6. sot23-5 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a 0.90 1.20 1.45 0.035 0.047 0.057 a1 0.15 0.006 a2 0.90 1.05 1.30 0.035 0.041 0.051 b 0.35 0.40 0.50 0.013 0.015 0.019 c 0.09 0.15 0.20 0.003 0.006 0.008 d 2.80 2.90 3.00 0.110 0.114 0.118 d1 1.90 0.075 e 0.95 0.037 e 2.60 2.80 3.00 0.102 0.110 0.118 f 1.50 1.60 1.75 0.059 0.063 0.069 l 0.10 0.35 0.60 0.004 0.013 0.023 k 0 degrees 10 degrees package information tsv99x, tsv99xa 16/25 doc id 12833 rev 9 4.2 dfn8 2x2 package information figure 18. dfn8 2x2 package mechanical drawing $ & |