![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
05/02/07 benefits improved gate, avalanche and dynamic dv/dt ruggedness fully characterized capacitance and avalanche soa enhanced body diode dv/dt and di/dt capability lead-free www.irf.com 1 d 2 pak irfs4410pbf to-220ab irfb4410pbf to-262 irfsl4410pbf irfb4410pbf irfs4410pbf irfsl4410pbf hexfet power mosfet applications high efficiency synchronous rectification in smps uninterruptible power supply high speed power switching hard switched and high frequency circuits s d g s d g s d g s d g v dss 100v r ds ( on ) typ. 8.0m max. 10m i d 88a absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v a i d @ t c = 100c continuous drain current, v gs @ 10v i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v dv/dt peak diode recovery v/ns t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw avalanche characteristics e as (thermally limited) sin g le pulse avalanche ener g y mj i ar avalanche current a e ar repetitive avalanche ener g y mj thermal resistance symbol parameter typ. max. units r jc junction-to-case ??? 0.61 r cs case-to-sink, flat greased surface , to-220 0.50 ??? c/w r ja junction-to-ambient, to-220 ??? 62 r ja junction-to-ambient (pcb mount) , d 2 pak ??? 40 220 see fig. 14, 15, 16a, 16b 200 19 -55 to + 175 20 1.3 10lb in (1.1n m) 300 max. 88 63 380
2 www.irf.com calculated continuous current based on maximum allowable junction temperature. package limitation current is 75a. repetitive rating; pulse width limited by max. junction temperature. limited by t jmax , starting t j = 25c, l = 0.14mh r g = 25 ? , i as = 58a, v gs =10v. part not recommended for use above this value. i sd 58a, di/dt 650a/s, v dd v (br)dss , t j 175c. pulse width 400s; duty cycle 2%. s d g c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss . when mounted on 1" square pcb (fr-4 or g-10 material). for recommended footprint and soldering techniques refer to application note #an-994. r is measured at t j approximately 90c. r jc (end of life) for d 2 pak and to-262 = 0.75c/w. note: this is the maximum measured value after 1000 temperature cycles from -55 to 150c and is accounted for by the physical wearout of the die attach medium. static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 100 ??? ??? v ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.094 ??? v/c r ds(on) static drain-to-source on-resistance ??? 8.0 10 m ? v gs(th) gate threshold voltage 2.0 ??? 4.0 v i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 200 na gate-to-source reverse leakage ??? ??? -200 r g gate input resistance ??? 1.5 ??? ? f = 1mhz, open drain dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 120 ??? ??? s q g total gate charge ??? 120 180 nc q gs gate-to-source charge ??? 31 ??? q gd gate-to-drain ("miller") charge ??? 44 ??? t d(on) turn-on delay time ??? 24 ??? ns t r rise time ??? 80 ??? t d(off) turn-off delay time ??? 55 ??? t f fall time ??? 50 ??? c iss input capacitance ??? 5150 ??? pf c oss output capacitance ??? 360 ??? c rss reverse transfer capacitance ??? 190 ??? c oss eff. (er) effective output capacitance (ener g y related) ??? 420 ??? c oss eff. (tr) effective output capacitance (time related) ??? 500 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 88 a (body diode) i sm pulsed source current ??? ??? 380 a (body diode) v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 38 56 ns t j = 25c v r = 85v, ??? 51 77 t j = 125c i f = 58a q rr reverse recovery charge ??? 61 92 nc t j = 25c di/dt = 100a/s ??? 110 170 t j = 125c i rrm reverse recovery current ??? 2.8 ??? a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) i d = 58a r g = 4.1 ? v gs = 10v v dd = 65v t j = 25c, i s = 58a, v gs = 0v integral reverse p-n junction diode. conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 58a v ds = v gs , i d = 150a v ds = 100v, v gs = 0v v ds = 100v, v gs = 0v, t j = 125c mosfet symbol showing the v ds = 80v conditions v gs = 10v v gs = 0v v ds = 50v ? = 1.0mhz v gs = 0v, v ds = 0v to 80v , see fig.11 v gs = 0v, v ds = 0v to 80v , see fig. 5 conditions v ds = 50v, i d = 58a i d = 58a v gs = 20v v gs = -20v www.irf.com 3 fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 60s pulse width tj = 175c vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 2 3 4 5 6 7 8 9 10 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 25v 60s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 58a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 20406080100120 q g total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v v ds = 50v v ds = 20v i d = 58a 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 60s pulse width tj = 25c 4.5v 4 www.irf.com fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 v sd , source-to-drain voltage (v) 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 100 105 110 115 120 125 130 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) 0 20406080100120 v ds, drain-to-source voltage (v) 0.0 0.5 1.0 1.5 2.0 e n e r g y ( j ) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 700 800 900 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 6.7a 9.7a bottom 58a 25 50 75 100 125 150 175 t c , case temperature (c) 0 25 50 75 100 i d , d r a i n c u r r e n t ( a ) limited by package 0 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) operation in this area limited by r ds (on) tc = 25c tj = 175c single pulse 100sec 1msec 10msec dc www.irf.com 5 fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long as neither t jmax nor i av (max) is exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) = t/ z thjc i av = 2 t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.2736 0.000376 0.3376 0.004143 j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci i / ri ci= i / ri 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 58a 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart =25c (single pulse) 6 www.irf.com fig 16. threshold voltage vs. temperature -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 150a i d = 250a i d = 1.0ma i d = 1.0a 100 200 300 400 500 600 700 800 900 1000 di f /dt (a/s) 0 5 10 15 20 i r r m ( a ) i f = 38a v r = 85v t j = 25c _____ t j = 125c ---------- 100 200 300 400 500 600 700 800 900 1000 di f /dt (a/s) 0 5 10 15 20 i r r m ( a ) i f = 19a v r = 85v t j = 25c _____ t j = 125c ---------- 100 200 300 400 500 600 700 800 900 1000 di f /dt (a/s) 0 50 100 150 200 250 300 350 400 q r r ( n c ) i f = 19a v r = 85v t j = 25c _____ t j = 125c ---------- 100 200 300 400 500 600 700 800 900 1000 di f /dt (a/s) 0 50 100 150 200 250 300 350 400 q r r ( n c ) i f = 38a v r = 85v t j = 25c _____ t j = 125c ---------- www.irf.com 7 fig 22a. switching time test circuit fig 22b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - fig 21b. unclamped inductive waveforms fig 21a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 23a. gate charge test circuit fig 23b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 20. ! for n-channel hexfet power mosfets 1k vcc dut 0 l ? ? ? p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period " " + - + + + - - - ? ? !"!! ? # $$ ? !"!!%" 8 www.irf.com to-220ab packages are not recommended for surface mount application. !"!# $% $&' ( ) ( ** +, - ( ( ) . )/, *0 www.irf.com 9 to-262 part marking information to-262 package outline dimensions are shown in millimeters (inches) |