Part Number Hot Search : 
1N967 3KP12CA 87667 KSD5001 PI3HDMI S0400 152MR 070912FR
Product Description
Full Text Search
 

To Download FZ06BIA083FI Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  FZ06BIA083FI preliminary datasheet flowsol 0 bi 600v/30a high efficiency ultra fast switching frequency low inductive design sic in boost transformerless solar inverters FZ06BIA083FI tj=25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 600 v t h =80c 36 t c =80c 49 t h =80c 42 t c =80c 63 maximum junction temperature t j max 150 c input boost mosfet v ds 600 v t h =80c 30 t c =80c 37 t h =80c 92 t c =80c 139 t j max 150 c 230 t j =25c t j =150c 360 i 2 t maximum junction temperature i d pulsed drain current forward current per diode surge forward current power dissipation per diode v a w a a w t j =t j max 20 t j =t j max t p limited by t j max i dpulse gate-source peak voltage drain to source breakdown voltage dc drain current power dissipation p tot v gs a types i2t-value maximum ratings i fav a 2 s i fsm condition dc current t j =t j max features flow0 housing target applications schematic t p =10ms 370 bypass diode p tot 1 revi sion: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition input boost diode t h =80c 20 t c =80c 25 t h =80c 41 t c =80c 62 boost and buck mosfet t h =80c 17 t c =80c 20 t h =80c 74 t c =80c 111 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm 70 tc=25c 85 clearance insulation voltage creepage distance t op operation temperature under switching condition -40?+(tjmax - 25) c storage temperature t stg -40?+125 c t j =t j max v a c t p limited by t j max repetitive peak forward current v rrm t j max p tot power dissipation peak repetitive reverse voltage dc forward current i frm maximum junction temperature i f w power dissipation t j max drain to source breakdown voltage v ds dc drain current i d pulsed drain current i dpulse p tot gate-source peak voltage vgs maximum junction temperature a v c v 150 20 175 a 600 t p limited by t j max w 600 t j =t j max a t j =t j max t j =t j max t j =25c 2 revi sion: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max t j =25c 0,7 1,01 1,3 t j =125c 0,93 t j =25c 0,86 t j =125c 0,75 t j =25c t j =125c 0,012 t j =25c 0,05 t j =125c thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um  = 1 w/mk 1,68 k/w t j =25c 0,04 t j =125c 0,09 t j =25c 2,1 3 3,9 t j =125c t j =25c 200 t j =125c t j =25c 25 t j =125c t j =25c 28 t j =125c 27 t j =25c 5 t j =125c 6 t j =25c 154 t j =125c 167 t j =25c 10 t j =125c 9 t j =25c 0,063 t j =125c 0,072 t j =25c 0,025 t j =125c 0,025 t j =25c t j =125c t j =25c t j =125c t j =25c t j =125c tj=25c 1 1,54 1,8 t j =150c 1,71 t j =25c 400 t j =150c t j =25c 17 t j =150c 15 t j =25c 9 t j =150c 10 t j =25c 0,058 t j =150c 0,064 t j =25c 0,005 t j =150c 0,006 di ( rec ) max t j =25c 4244 /d t t j =150c 2752 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um  = 1 w/mk 2,34 k/w i gss na v 0,003 v (gs)th ns pf a/ s mws v mws c nc a ns ? 320 6800 51 reverse recovery time reverse recovered energy gate to source leakage current static drain to source on resistance gate threshold voltage input boost mosfet r ds(on) 600 100 0 400 15 a 10 400 10 48 44 v v ? ma 1200 characteristic values forward voltage threshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) s olar invert e v to r t 0,76 e on turn on delay time bypass diode 34 15 reverse current e off tj=25c 44 c iss q gs q gd 0 thermal grease thickness 50um  = 1 w/mk t f vgs=vds i r value conditions rise time turn off delay time total gate charge forward voltage input boost diode reverse leakage current peak recovery current peak rate of fall of recovery current reverse recovery charge e rec q rr i rrm i rm t rr r thjh c oss v f thermal resistance chip to heatsink per chip fall time turn-off energy loss per pulse input capacitance reverse transfer capacitance gate to source charge turn-on energy loss per pulse output capacitance gate to drain charge zero gate voltage drain current c rss rgon=4 ? rgon=4 ? t r t d(off) t d(on) i dss f=1mhz q g 10 20 0 rgoff=4 ? rgon=4 ? 10 10 16 400 15 15 a 400 150 k/w 3 revisio n: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value conditions t j =25c 118 t j =125c 233 t j =25c 3 4 5 t j =125c t j =25c 200 t j =125c t j =25c 25 t j =125c t j =25c 58 t j =125c 55 t j =25c 22 t j =125c 23 t j =25c 126 t j =125c 134 t j =25c 6 t j =125c 8 t j =25c 1,54 t j =125c 2,27 t j =25c 0,01 t j =125c 0,02 r 25 tj=25c 17,5 22 29,0 k ? r 100 tol. 5% 1486 ? * see details on thermistor charts on figure 2. tj=25c tj=25c 163 36 tj=25c tj=25c na thermistor reverse transfer capacitance thermal resistance chip to heatsink per chip input capacitance 15 turn-off energy loss per pulse total gate charge rated resistance* b-value b (25/100) tol. 3% power dissipation p mw 210 k 87 1400 nc gate to drain charge gate to source charge gate to source leakage current turn on delay time t f output capacitance turn-on energy loss per pulse fall time turn off delay time zero gate voltage drain current i dss rise time r thjh m ? a 0,95 pf ns 16 mws 5060 v gate threshold voltage static drain to source on resistance boost and buck mosfet c rss v (gs)th i gss t r t d(off) e on q gd t d(on) r ds(on) q g q gs rgoff=4 ? rgon=16 ? c iss c oss e off 10 0 f=1mhz 0 10 20 0 480 25 0,0019 21,6 46 600 400 4000 10 vds=vgs thermal grease thickness ? 50um = 1 w/mk k/w 4 revisio n: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet figure 1 mosfet figure 2 mosfet typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 6 v to 16 v in steps of 1 v v ge from 6 v to 16 v in steps of 1 v figure 3 mosfet typical transfer characteristics i c = f(v ge ) at t p = 250 s v ce = 10 v boost and buck typical output characteristics 0 8 16 24 32 40 012345 v ce (v) i c (a) 0 5 10 15 20 25 30 012345678 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 8 16 24 32 40 012345 v ce (v) i c (a) 5 revis ion: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet figure 4 mosfet figure 5 mosfet typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 400 v v ce = 400 v v ge = 10 v v ge = 10 v r gon = 16 ? i c = 15 a r goff = 4 ? figure 6 fred figure 7 fred typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 400 v v ce = 400 v v ge = 10 v v ge = 10 v r gon = 16 ? i c = 15 a boost and buck e off high t e off low t 0,00 0,02 0,04 0,06 0,08 0,10 0 5 10 15 20 25 30 i c (a) e (mws) e on high t e on low t 0,00 0,50 1,00 1,50 2,00 2,50 3,00 0 1530456075 r g (w) e (mws) e rec high t e rec low t 0,000 0,050 0,100 0,150 0,200 0,250 0,300 0 5 10 15 20 25 30 i c (a) e (mws) e rec high t e rec low t 0,000 0,050 0,100 0,150 0,200 0,250 0,300 0 1530456075 r g (w) e (mws) 6 revis ion: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet figure 8 mosfet figure 9 mosfet typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 400 v v ce = 400 v v ge = 10 v v ge = 10 v r gon = 16 ? i c = 15 a r goff = 4 ? figure 10 fred figure 11 fred typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 15 a r gon = 16 ? v ge = 10 v boost and buck t doff t f t don t r 0,00 0,01 0,10 1,00 0 5 10 15 20 25 30 i c (a) t (ms) t rr high t t rr low t 0,000 0,050 0,100 0,150 0,200 0,250 0 1 53 04 56 07 5 r gon (w) t rr (ms) t doff t f t don t r 0,00 0,01 0,10 1,00 0 1530456075 r g (w) t (ms) t rr high t t rr low t 0,000 0,050 0,100 0,150 0,200 0,250 0 5 10 15 20 25 30 i c (a) t rr (ms) 7 revis ion: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet figure 12 fred figure 13 fred typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of mosfet turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 15 a r gon = 16 ? v ge = 10 v figure 14 fred figure 15 fred typical reverse recovery current as a typical reverse recovery current as a function of collector current function of mosfet turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 15 a r gon = 16 ? v ge = 10 v boost and buck i rrm high t i rrm low t 0 20 40 60 80 100 120 0 1530456075 r gon (w) i rrm (a) q rr high t q rr low t 0 1 2 3 4 5 6 0 1530456075 r gon ( ) q rr (mc) i rrm high t i rrm low t 0 15 30 45 60 75 90 0 5 10 15 20 25 30 i c (a) i rrm (a) q rr high t q rr low t 0,00 1,00 2,00 3,00 4,00 5,00 6,00 0 5 10 15 20 25 30 i c (a) q rr (mc) 8 revis ion: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet figure 16 fred figure 17 fred typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of mosfet turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 15 a r gon = 16 ? v ge = 10 v figure 18 mosfet mosfet transient thermal impedance as a function of pulse width z thjh = f(t p ) at d = t p / t r thjh = 0,95 k/w igbt thermal model values r (c/w) tau (s) 0,03 6,6e+00 0,15 9,3e-01 0,55 1,6e-01 0,14 2,5e-02 0,04 2,6e-03 0,03 3,4e-04 boost and buck t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt high t di rec /dt high t di 0 /dt low t di rec /dt low t 0 5000 10000 15000 20000 25000 30000 35000 40000 0 1530456075 r gon (w) di rec / dt (a/ms) di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 2000 4000 6000 8000 10000 12000 14000 16000 0 5 10 15 20 25 30 i c (a) di rec / dt (a/ms) 9 revis ion: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet figure 19 mosfet figure 20 mosfet power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 150 c t j = 150 c v ge = 15 v figure 21 mosfet figure 22 mosfet safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce )v ge = f(q g ) at at d = single pulse i d = 47 a th = 80 oc v ge = 15 v t j =t jmax oc boost and buck 0 40 80 120 160 200 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t h ( o c) i c (a) v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 0 50 100 150 200 250 q g (nc) v ge (v) 120 v 480 v 10 rev ision: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet figure 1 igbt figure 2 igbt typical output characteristics typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 6 v to 16 v in steps of 1 v v ge from 5 v to 15 v in steps of 1 v figure 3 igbt figure 4 igbt typical transfer characteristics igbt transient thermal impedance i c = f(v ge ) as a function of pulse width z thjh = f(t p ) at t p = 250 s at v ce = 10 v d = tp / t r thjh = 0,95 k/w boost and buck 0 8 16 24 32 40 012345 v ce (v) i c (a) 0 5 10 15 20 25 30 024681012 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 8 16 24 32 40 012345 v ce (v) i c (a) t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 11 rev ision: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet figure 1 boost mosfet figure 2 boost fred typical output characteristics typical output characteristics i d = f(v ds ) i d = f(v ds ) at at t p = 250 s t p = 250 s t j = 25 c t j = 126 c v gs from 4 v to 14 v in steps of 1 v v gs from 4 v to 14 v in steps of 1 v figure 2 boost mosfet figure 3 boost fred typical transfer characteristics typical diode forward current as i d = f(v ds ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ds = 10 v input boost 0 10 20 30 40 50 0 0,8 1,6 2,4 3,2 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 0123456 v gs (v) i d (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 012345 v ce (v) i c (a) 0 20 40 60 80 100 012345 v ce (v) i c (a) 12 rev ision: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet figure 4 boost mosfet figure 5 boost mosfet typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i d ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ds = 400 v v ds = 400 v v gs = 10 v v gs = 10 v r gon = 4 ? i d = 15 a r goff = 4 ? figure 6 boost mosfet figure 7 boost mosfet typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector (drain) current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ds = 400 v v ds = 400 v v gs = 10 v v gs = 10 v r gon = 4 ? i d = 15 a r goff = 4 ? input boost e rec high t e rec low t 0 0,005 0,01 0,015 0,02 0,025 0 5 10 15 20 25 30 i c (a) e (mws) e rec high t e rec low t 0 0,003 0,006 0,009 0,012 0,015 0,018 0 4 8 12 16 20 r g ( ) e (mws) e off high t e on high t e on low t e off low t 0 0,04 0,08 0,12 0,16 0,2 0 5 10 15 20 25 30 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 0,04 0,08 0,12 0,16 0,2 0481 21 62 0 r g ( ) e (mws) 13 rev ision: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet figure 8 boost mosfet figure 9 boost mosfet typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i d ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ds = 400 v v ds = 400 v v gs = 10 v v gs = 10 v r gon = 4 ? i c = 15 a r goff = 4 ? figure 10 boost fred figure 11 boost fred typical reverse recovery time as a typical reverse recovery time as a function of collector current function of mosfet turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 15 a r gon = 4 ? v gs = 10 v input boost t doff t f t don t r 0,001 0,01 0,1 1 0 5 10 15 20 25 30 i d (a) t ( s) t doff t f t don t r 0,001 0,01 0,1 1 0 4 8 12 16 20 r g ( ) t ( s) t rr high t t rr low t 0 0,005 0,01 0,015 0,02 0,025 0,03 0 4 8 12 16 20 r gon ( ) t rr ( s) t rr high t t rr low t 0 0,004 0,008 0,012 0,016 0,02 0 5 10 15 20 25 30 i c (a) t rr ( s) 14 rev ision: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet figure 12 boost fred figure 13 boost fred typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of mosfet turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/125 c tj = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f =15 a r gon = 4 ? v gs =10 v figure 14 boost fred figure 15 boost fred typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 15 a r gon = 4 ? v gs = 10 v input boost i rrm high t i rrm low t 0 5 10 15 20 25 30 0 4 8 12 16 20 r gon ( ) irr m (a) q rr high t q rr low t 0,02 0,04 0,06 0,08 0,1 0 4 8 12 16 20 r gon ( ) q rr ( c) i rrm high t i rrm low t 0 5 10 15 20 25 0 5 10 15 20 25 30 i c (a) irr m (a) q rr high t q rr low t 0 0,02 0,04 0,06 0,08 0,1 0 5 10 15 20 25 30 i c (a) q rr ( c) 15 rev ision: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet figure 16 boost fred figure 17 boost fred typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c tj = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f =15 a r gon = 4 ? v gs =10 v figure 18 boost mosfet figure 19 boost fred igbt/mosfet transient thermal impeda nce fred transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,76 k/w r thjh = 2,34 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,03247 9,971 0,1024 2,885 0,1223 1,22 0,495 0,3437 0,4264 0,1797 0,9886 0,07039 0,1173 0,04698 0,4865 0,01004 0,03103 0,005891 0,2673 0,001614 0,03298 0,0004038 input boost di 0 /dt low t di rec /dt low t di 0 /dt high t di rec /dt high t 0 2000 4000 6000 8000 10000 12000 048121620 r gon ( ) di rec / dt (a/ s) di 0 /d t di rec /dt t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt high t di rec /dt high t di rec /dt low t di 0 /dt low t 0 1000 2000 3000 4000 5000 6000 0 5 10 15 20 25 30 i c (a) di rec / dt (a/ s) di 0 /dt di rec /dt 16 rev ision: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet figure 20 boost mosfet figure 21 boost mosfet power dissipation as a collector/drain current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 150 oc t j = 150 oc v gs = 10 v figure 22 boost fred figure 23 boost fred power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 oc t j = 175 oc input boost 0 40 80 120 160 200 0 50 100 150 200 th ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 th ( o c) i c (a) 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t h ( o c) i f (a) 17 rev ision: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet figure 24 boost mosfet figure 25 boost mosfet safe operating area as a function gate voltage vs gate charge of drain-source voltage i d = f(v ds )v gs = f(qg) at at d = single pulse i d = 44 a t h = 80 oc v gs = 10 v t j =t jmax oc input boost v ds (v) i d (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10us 100us 1ms 10ms 100ms dc 10 2 10 0 0 2 4 6 8 10 0 30 60 90 120 150 qg (nc) u gs (v) 120v 480v 18 revision: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet figure 1 bypass diode figure 2 bypass diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 sd = t p / t r thjh = 1,677 k/w figure 3 bypass diode figure 4 bypass diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 oc t j = 150 oc bypass diode 0 10 20 30 40 50 0 0,3 0,6 0,9 1,2 1,5 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) i f (a) 19 rev ision: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet figure 1 thermistor figure 2 thermistor typical ntc characteristic typical ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 5000 10000 15000 20000 25000 25 50 75 100 125 t (c) r/ ? [] ?= ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? 25 100 / 25 11 25 )( tt b ertr 20 rev ision: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet t j 124 c r g on 16 ? r goff 4 ? figure 1 output inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t dof f , t eof f turn-on switching waveforms & definition of t don , t eon (t eof f = integrating time for e of f )( t eon = integrating time for e on ) v ge (0%) = 0v v ge (0%) = 0v v ge (100%) = 10 v v ge (100%) = 10 v v c (100%) = 400 v v c (100%) = 400 v i c (100%) = 15 a i c (100%) = 15 a t doff = 0,13 s t don = 0,06 s t eoff = 0,15 s t eon = 0,19 s figure 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 400 v v c (100%) = 400 v i c (100%) = 15 a i c (100%) = 15 a t f = 0,01 s t r = 0,02 s switching definitions buck mosfet general conditions = = = i c 1% v ce 90% v ge 90% -20 0 20 40 60 80 100 120 140 -0,1 -0,05 0 0,05 0,1 0,15 0,2 0,25 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce5 % -50 30 110 190 270 350 430 510 2,9 2,95 3 3,05 3,1 3,15 3,2 3,25 3,3 time(us) % i c v ce t eon fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 0,07 0,075 0,08 0,085 0,09 0,095 0,1 0,105 0,11 time (us) % v ce i c t f i c10% i c90% -50 30 110 190 270 350 430 510 2,9 2,95 3 3,05 3,1 3,15 3,2 3,25 3,3 time(us) % tr v ce ic 21 rev ision: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eof f turn-on switching waveforms & definition of t eon p off (100%) = 6,13 kw p on (100%) = 6,13 kw e off (100%) = 0,02 mj e on (100%) = 2,27 mj t eoff = 0,15 s t eon = 0,19 s figure 7 output inverter fred figure 8 output inverter igbt gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t r r v geoff = 0v v d (100%) = 400 v v geon = 10 v i d (100%) = 15 a v c (100%) = 400 v i rrm (100%) = -63 a i c (100%) = 15 a t rr = 0,11 s q g = 159,93 nc switching definitions buck mosfet i c 1% v ge90% -30 0 30 60 90 120 150 -0,1 -0,05 0 0,05 0,1 0,15 0,2 time (us) % p off e off t eoff v ce3% v ge10% -50 50 150 250 350 450 550 2,95 3 3,05 3,1 3,15 3,2 3,25 time(us) % p on e on t eon -5 0 5 10 15 -20 0 20 40 60 80 100 120 140 160 180 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -450 -350 -250 -150 -50 50 150 250 350 3 3,05 3,1 3,15 3,2 3,25 3,3 time(us) % i d v d fitted 22 rev ision: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet figure 9 output inverter fred figure 10 output inverter fred turn-on switching waveforms & definition of t qr r turn-on switching waveforms & definition of t erec (t qrr = integrating time for q r r )( t erec = integrating time for e rec ) i d (100%) = 15 a p rec (100%) = 6,13 kw q rr (100%) = 4,31 c e rec (100%) = 0,17 mj t qrr = 300000,00 s t erec = ######### s figure 11 buck stage switching measurement circuit measurement circuits switching definitions buck mosfet t qrr -100 -50 0 50 100 150 200 3 3,06 3,12 3,18 3,24 3,3 3,36 3,42 3,48 time(us) % i d q rr -50 0 50 100 150 200 3 3,2 3,4 3,6 3,8 4 4,2 time(us) % p rec e rec t erec 23 rev ision: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet version ordering code in datamatrix as in packaging barcode as without thermal paste 12mm housing 10-FZ06BIA083FI-p896e p896e p896e outline pinout ordering code & marking ordering code and marking - outline - pinout 24 revi sion: 5 copyright by vincotech
FZ06BIA083FI preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for te chnically tr ained st aff. target product status datasheet status definition this datasheet contains the design specifications for product development. specific ations may change in any manner without notice. the dat a contained is exclusively intended for technica lly trai ned staff. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tes ted values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to i mprove reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product o r circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express wri tten approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. 25 revis ion: 5 copyright by vincotech


▲Up To Search▲   

 
Price & Availability of FZ06BIA083FI

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X