Part Number Hot Search : 
15420 NTE3057 KRA222 E11TP AHK11012 ISL63 REEL7 MBR4015
Product Description
Full Text Search
 

To Download LTC5569-15 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 for more information www.linear.com/ltc5569 typical application features description 300mhz to 4ghz 3.3v dual active downconverting mixer the lt c ? 5569 dual active downconverting mixer is opti - mized for diversity and mimo receiver applications that require low power and small size. each mixer includes an independent lo buffer amplifier , active mixer core, and bias cir cuit with enable pin. the symmetry of the ic as - sures that a phase and amplitude coherent lo is applied to each mixer . the rf inputs are 50 matched from 1.4ghz to 3.3ghz, and easily matched for higher or lower rf frequencies with simple external matching. the lo input is 50 matched from 1ghz to 3.5ghz, even when one or both mixers are disabled. the lo input is easily matched for higher or lower frequencies, as low as 350mhz, with simple external matching. the low capacitance differential if outputs are usable up to 1.6ghz. applications n high iip3: 26.8dbm at 1950mhz n 2db conversion gain n low noise figure: 11.7db at 1950mhz n 17db nf under 5dbm blocking n 44db channel isolation n low power: 3.3v/600mw total n very small solution size n enable pins for each mixer n wide if frequency range n lo input 50 matched in all modes n C40c to 105c operation n 16-lead (4mm 4mm) qfn package n wireless infrastructure diversity receivers n mimo infrastructure receivers n remote radio units l , lt, ltc, ltm, linear technology and the linear logo are registered trademarks of linear technology corporation. all other trademarks are the property of their respective owners. rfa rfb ena enb 10nf 1nf 10nf 1nf 2.7pf rf main 1nf 3.3v 10nf 3.9pf lo lo bpf dual if vga dual adc 3.3v 10nf ena enb v cca v ccb ifa + ltc5569 ifa ? ifb + ifb ? 1nf 190mhz 190mhz 270nh 270nh 270nh 270nh 2.7pf rf diversity bias rf bias lo lo rf bpf 5569 ta01a diversity receiver with 190mhz bandpass if matching mixer conversion gain, iip3 and nf vs if output frequency if output frequency (mhz) 140 0.5 g c (db) iip3 (dbm), ssb nf (db) 1.0 2.0 2.5 3.0 200 210 220 230 5.0 5560 ta01b 1.5 150 160 170 180 190 240 3.5 4.0 4.5 12 10 14 18 20 22 28 16 24 26 iip3 g c nf 30mhz rf = 1950 50mhz lo = 1760mhz p lo = 0dbm z rf = 50 z if = 50 t c = 25c test circuit in figure 1 ltc5569 5569fb
2 for more information www.linear.com/ltc5569 pin configuration absolute maximum ratings supply voltage v cca , v ccb , ifa + , ifa C , ifb + , ifb C ........................ 4.0 v enable input voltage (ena, enb) ..... C0 .3v to v cc + 0.3v mixer bias voltage (biasa, biasb) .. C0 .3v to v cc + 0.3v lo input power (350mhz to 4.5ghz) ................... 10 dbm lo input dc voltage ............................................... 0.1v rfa, rfb input power (300mhz to 4ghz) ........... 2 0dbm rfa, rfb input dc voltage .................................... 0.1v operating temperature range (t c ) ........ C40c to 105c jun ction temperature (t j ) .................................... 150 c storage temperature range .................. C 65c to 150c (note 1) 16 15 14 13 5 6 7 8 top view 17 gnd uf package 16-lead (4mm 4mm) plastic qfn 9 10 11 12 4 3 2 1 rfa gnd gnd rfb ena lo gnd enb biasa ifa + ifa ? v cca biasb ifb + ifb ? v ccb t jmax = 150c, t jc = 8c/w exposed pad (pin 17) is gnd, must be soldered to pcb order information lead free finish tape and reel part marking package description case temperature range ltc5569iuf#pbf ltc5569iuf#trpbf 5569 16-lead (4mm u 4mm) plastic qfn C40c to 105c consult ltc marketing for parts specified with wider operating temperature ranges. consult ltc marketing for information on non-standard lead based finish parts. for more information on lead free part marking, go to: http://www .linear.com/leadfree/ for more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/ ac electrical characteristics v cc = 3.3v, ena, enb = high. test circuit shown in figure 1. (notes 2, 3, 4) parameter conditions min typ max units rf input frequency range 300 to 4000 mhz lo input frequency range 350 to 4500 mhz if output frequency range external matching required lf to 1600 mhz rf input return loss z o = 50, 1400mhz to 3300mhz >12 db lo input return loss z o = 50, 1000mhz to 3500mhz >12 db if output impedance differential at 190mhz 530 ||1.3pf r||c lo input power C6 0 6 dbm ltc5569 5569fb
3 for more information www.linear.com/ltc5569 ac electrical characteristics v cc = 3.3v, ena, enb = high. t c = 25c, p lo = 0dbm, if = 190mhz, p rf = C6dbm (C6dbm/tone for 2-tone tests), unless otherwise noted. test circuit shown in figure 1. (notes 2, 3, 4) parameter conditions min typ max units power conversion gain rf = 450mhz, high side lo rf = 850mhz, high side lo rf = 1950mhz, low side lo rf = 2550mhz, low side lo rf = 3500mhz, low side lo 0.5 1.5 2.0 2.0 1.8 1.4 db db db db db conversion gain flatness rf = 1950 30mhz, lo = 1760mhz, if = 190 30mhz 0.05 db conversion gain vs t emperature t c = C40c to 105oc, rf = 1950mhz, low side lo C0.014 db/c 2-tone input 3rd order intercept (?f = 2mhz) rf = 450mhz, high side lo rf = 850mhz, high side lo rf = 1950mhz, low side lo rf = 2550mhz, low side lo rf = 3500mhz, low side lo 24.0 26.0 27.1 26.8 26.0 25.2 dbm dbm dbm dbm dbm 2-t one input 2nd order inter cept (?f = 190mhz, f spur = f rf1 C f rf2 ) f rf1 = 945mhz, f rf2 = 755mhz, f lo = 1040mhz f rf1 = 2045mhz, f rf2 = 1855mhz, f lo = 1760mhz 62.3 63.1 dbm dbm ssb noise figure rf = 450mhz, high side lo rf = 850mhz, high side lo rf = 1950mhz, low side lo rf = 2550mhz, low side lo rf = 3500mhz, low side lo 11.9 11.7 11.7 12.1 14.3 db db db db db ssb noise figure under blocking rf = 850mhz, high side lo, 750mhz blocker at 5dbm rf = 1950mhz, low side lo, 2050mhz blocker at 5dbm 17.5 17.0 db db lo to rf leakage lo = 350mhz to 1000mhz lo = 1000mhz to 2900mhz lo = 2900mhz to 4500mhz 57 >50 db db rf to if isolation rf = 300mhz to 1400mhz rf = 1400mhz to 3000mhz rf = 3000mhz to 4000mhz >28 >30 >31 db db db 1/2if output spurious product (f rf offset to produce spur at f if = 190mhz) 850mhz: f rf = 945mhz at C10dbm, f lo = 1040mhz 1950mhz: f rf = 1855mhz at C10dbm, f lo = 1760mhz C75 C71 dbc dbc 1/3if output spurious product (f rf offset to produce spur at f if = 190mhz) 850mhz: f rf = 976.67mhz at C10dbm, f lo = 1040mhz 1950mhz: f rf = 1823.33mhz at C10dbm, f lo = 1760mhz C88 C84 dbc dbc input 1db compression rf = 450mhz, high side lo rf = 850mhz, high side lo rf = 1950mhz, low side lo rf = 2550mhz, low side lo rf = 3500mhz, low side lo 11.1 10.4 10.2 10.4 10.2 dbm dbm dbm dbm dbm channel-to-channel isolation rf = 300mhz to 1000mhz rf = 1000mhz to 2700mhz rf = 2700mhz to 3000mhz rf = 3000mhz to 3300mhz rf = 3300mhz to 3800mhz >44 >44 >42 >36 >34 db db db db db ltc5569 5569fb
4 for more information www.linear.com/ltc5569 note 1: stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. exposure to any absolute maximum rating condition for extended periods may affect device reliability and lifetime. note 2: the ltc5569 is guaranteed functional over the C40c to 105c case temperature range ( jc = 8c/w). note 3: ssb noise figure measured with a small-signal noise source, bandpass filter and 2db matching pad on rf input, and bandpass filter on the lo input. note 4: channel a to channel b isolation is measured as the relative if output power of channel b to channel a, with the rf input signal applied to channel a. the rf input of channel b is 50 terminated, and both mixers are enabled. typical dc performance characteristics supply current vs supply voltage (one mixer enabled) supply current vs supply voltage (both mixers enabled) test circuit shown in figure 1. dc electrical characteristics v cc = 3.3v, t c = 25c. test circuit shown in figure 1. (note 2) parameter conditions min typ max units supply voltage (v cc ) 3.0 3.3 3.6 v supply current one mixer enabled both mixers enabled ena or enb = high ena and enb = high 90 180 106 212 ma ma shutdown currentboth mixers disabled ena and enb = low 200 a enable logic inputs (ena, enb) ena, enb input high voltage (on) 2.5 v ena, enb input low v oltage (off) 0.3 v ena, enb input current C0.3v to v cc + 0.3v 100 a turn-on time 0.6 s turn-off time 0.5 s mixer dc bias adjust (biasa, biasb) open-circuit dc voltage 2.2 v short-circuit dc current pin shorted to ground 1.8 ma v cc supply voltage (v) 3.0 98 t c = 105c 85c 55c 25c ?10c ?40c 96 94 92 90 88 86 84 3.3 3.5 5569 g01 3.1 3.2 3.4 3.6 supply current (ma) v cc supply voltage (v) 3.0 165 supply current (ma) 170 175 180 185 195 t c = 105c 85c 55c 25c ?40c 3.1 3.2 3.3 3.4 5569 g02 3.5 3.6 190 ?10c ltc5569 5569fb
5 for more information www.linear.com/ltc5569 conversion gain, iip3 and nf vs rf frequency (high side lo) rf isolation vs rf frequency lo leakage vs lo frequency channel isolation vs rf frequency conversion gain, iip3 and nf vs rf frequency (low side lo) 1950mhz conversion gain, iip3 and nf vs lo power (low side lo) 1950mhz conversion gain, iip3 and nf vs lo power (high side lo) 2550mhz conversion gain, iip3 and nf vs lo power (low side lo) 2550mhz conversion gain, iip3 and nf vs lo power (high side lo) typical performance characteristics 1400mhz to 3000mhz application. test circuit shown in figure 1. v cc = 3.3v, t c = 25c, p lo = 0dbm, p rf = C6dbm (C6dbm/tone for 2-tone iip3 tests, ? f = 2mhz), if = 190mhz unless otherwise noted. rf frequency (ghz) 1.4 10 iip3 (dbm), ssb nf (db) g c (db) 12 16 18 20 30 24 1.8 2.2 2.4 5569 g03 14 26 28 22 0 2 5 1 4 3 1.6 2.0 2.6 2.8 3.0 iip3 g c nf lo input power (dbm) ?6 0 g c (db), iip3 (dbm), ssb nf (db) 4 8 12 28 nf 20 ?2 2 4 24 16 2 6 10 26 18 22 14 ?4 0 6 5569 g04 85c 25c ?40c iip3 g c lo input power (dbm) ?6 0 g c (db), iip3 (dbm), ssb nf (db) 4 8 12 28 20 ?2 2 4 24 16 2 6 10 26 18 22 14 ?4 0 6 5569 g05 85c 25c ?40c iip3 g c nf rf frequency (ghz) 1.4 10 iip3 (dbm), ssb nf (db) g c (db) 12 16 18 20 30 24 1.8 2.2 2.4 5569 g06 14 26 28 22 0 2 5 1 4 3 1.6 2.0 2.6 2.8 3.0 iip3 g c nf lo input power (dbm) ?6 0 g c (db), iip3 (dbm), ssb nf (db) 4 8 12 28 nf 20 ?2 2 4 24 16 2 6 10 26 18 22 14 ?4 0 6 5569 g07 85c 25c ?40c iip3 g c lo input power (dbm) ?6 0 g c (db), iip3 (dbm), ssb nf (db) 4 8 12 28 20 ?2 2 4 24 16 2 6 10 26 18 22 14 ?4 0 6 5569 g08 85c 25c ?40c iip3 g c nf rf frequency (ghz) 1.4 isolation (db) 45 55 3.0 5569 g09 35 25 1.8 2.2 2.6 1.6 2.0 2.4 2.8 65 40 50 30 60 rf-lo rf-if lo frequency (ghz) 1.2 lo leakage (dbm) ?40 ?30 ?20 2.8 5569 g10 ?50 ?60 ?70 1.6 2.0 lo-if lo-rf 2.4 3.2 rf frequency (ghz) 1.4 isolation (db) 44 46 48 2.0 2.4 3.0 5569 g11 42 40 38 1.6 1.8 2.2 2.6 2.8 105c 25c ?40c ltc5569 5569fb
6 for more information www.linear.com/ltc5569 ssb noise figure vs rf blocker level 1950mhz conversion gain histogram conversion gain, iip3, nf and rf input p1db vs temperature 1950mhz iip3 histogram conversion gain, iip3 and nf vs supply voltage 1950mhz ssb nf histogram 2-tone if output power, im3 and im5 vs rf input power single tone if output power, 2 2 and 3 3 spurs vs rf input power 2 2 and 3 3 spur suppression vs lo power typical performance characteristics 1400mhz to 3000mhz application. test circuit shown in figure 1. v cc = 3.3v, t c = 25c, p lo = 0dbm, p rf = C6dbm (C6dbm/tone for 2-tone iip3 tests, ? f = 2mhz), if = 190mhz unless otherwise noted. rf input power (dbm/tone) ?12 ?90 output power/tone (dbm) ?70 ?50 im3 im5 ?30 ?9 ?6 ?3 0 5569 g12 3 ?10 10 ?80 ?60 ?40 ?20 0 6 if out rf1 = 1949mhz rf2 = 1951mhz lo = 1760mhz rf input power (dbm) ?15 ?85 output power (dbm) ?75 ?55 ?45 ?35 15 ?15 ?9 ?3 0 12 5569 g13 ?65 ?5 5 ?25 ?12 ?6 3 6 9 if out (rf = 1950mhz) 2rf-2lo (rf = 1855mhz) 3rf-3lo (rf = 1823.33mhz) lo = 1760mhz lo input power (dbm) ?6 ?90 relative spur level (dbc) ?85 ?80 ?75 ?70 ?60 ?4 ?2 0 2 5569 g14 4 6 ?65 2rf-2lo (rf = 1855mhz) 3rf-3lo (rf = 1823.33mhz) rf = 1950mhz p rf = ?10dbm lo = 1760mhz rf blocker power (dbm) ?25 ssb nf (db) 14 20 21 22 ?15 ?5 0 5569 g15 12 18 16 13 19 11 17 15 ?20 ?10 5 10 rf = 1950mhz blocker = 2050mhz lo = 1760mhz p lo = ?3dbm p lo = 3dbm p lo = 0dbm case temperature (c) ?45 0 g c and ssb nf (db), iip3 and p1db (dbm) 4 8 12 28 20 ?15 15 24 16 2 6 10 26 18 22 14 45 75 105 5569 g16 iip3 nf p1db g c rf = 1950mhz low side lo v cc supply voltage (v) 3.0 0 g c (db), iip3 (dbm), ssb nf (db) 6 12 18 3.1 3.2 3.3 3.4 5569 g17 3.5 24 30 iip3 nf g c 3 9 15 21 27 3.6 85c 25c ?40c rf = 1950mhz low side lo conversion gain (db) 1.0 distribution (%) 30 40 50 1.5 5569 g18 20 10 25 35 45 15 5 0 2.0 2.5 3.0 85c 25c ?40c rf = 1950mhz, low side lo iip3 (dbm) 24.5 distribution (%) 30 40 25.5 5569 g19 20 10 25 35 15 5 0 26.5 27.5 28.5 rf = 1950mhz, low side lo 85c 25c ?40c ssb noise figure (db) 9.9 distribution (%) 30 40 10.4 10.9 11.4 11.9 12.4 12.9 5569 g20 20 10 25 35 15 5 0 13.4 rf = 1950mhz low side lo 85c 25c ?40c ltc5569 5569fb
7 for more information www.linear.com/ltc5569 conversion gain, iip3 and nf vs rf frequency 850mhz conversion gain, iip3 and nf vs lo power 850mhz conversion gain, iip3 and nf vs supply voltage 2-tone if output power, im3 and im5 vs rf input power single tone if output power 2 2 and 3 3 spurs vs rf input power 2 2 and 3 3 spur suppression vs lo power channel isolation, rf isolation and lo leakage vs frequency conversion gain, iip3, nf and rf input p1db vs temperature ssb noise figure vs rf blocker level typical performance characteristics 700mhz to 1000mhz application. test circuit shown in figure 1. v cc = 3.3v, t c = 25c, p lo = 0dbm, p rf = C6dbm (C6dbm/tone for 2-tone iip3 tests, ? f = 2mhz), if = 190mhz unless otherwise noted. rf frequency (mhz) 700 0 g c (db), iip3 (dbm), ssb nf (db) 4 8 12 28 20 750 800 950 24 16 2 6 10 26 18 22 14 850 900 1000 5569 g21 iip3 nf g c high side lo lo input power (dbm) ?6 0 g c (db), iip3 (dbm), ssb nf (db) 4 8 12 28 20 ?2 2 4 24 16 2 6 10 26 18 22 14 ?4 0 6 5569 g22 85c 25c ?40c iip3 g c nf high side lo v cc supply voltage (v) 3.0 1 g c (db), iip3 (dbm), ssb nf (db) 4 10 13 16 3.4 28 5569 g23 7 3.2 3.1 3.5 3.3 3.6 19 22 25 85c 25c ?40c high side lo iip3 g c nf rf/lo frequency (mhz) 700 10 isolation (db) lo leakage (dbm) 20 30 40 50 60 70 ?60 ?50 ?40 ?30 ?20 ?10 0 800 900 1000 1100 5569 g24 1200 rf-lo iso lo-if lo-rf rf-if iso channel iso case temperature (c) ?45 0 g c , nf (db), iip3, p1db (dbm) 4 8 12 28 20 15 75 24 16 2 6 10 26 18 22 14 ?15 45 105 5569 g25 iip3 g c nf p1db rf = 850mhz high side lo rf blocker power (dbm) ?25 ssb nf (db) 14 20 21 22 ?15 ?5 0 5569 g26 12 18 16 13 19 11 17 15 ?20 ?10 5 10 rf = 850mhz blocker = 750mhz lo = 1040mhz p lo = ?3dbm p lo = 3dbm p lo = 0dbm rf input power (dbm/tone) ?12 ?80 output power/tone (dbm) ?60 ?40 ?20 ?9 ?6 ?3 0 5569 g27 3 0 20 ?70 ?50 ?30 ?10 10 6 if out im3 im5 rf1 = 849mhz rf2 = 851mhz lo = 1040mhz rf input power (dbm) ?15 ?85 output power (dbm) ?75 ?55 ?45 ?35 15 ?15 ?9 ?3 0 12 5569 g28 ?65 ?5 5 ?25 ?12 ?6 3 6 9 if out (rf = 850mhz) 2lo-2rf (rf = 945mhz) 3lo-3rf (rf = 976.67mhz) lo = 1040mhz lo input power (dbm) ?6 ?90 relative spur level (dbc) ?85 ?80 ?75 ?70 ?60 ?4 ?2 0 2 5569 g29 4 6 ?65 2lo-2rf (rf = 945mhz) 3lo-3rf (rf = 976.67mhz) rf = 850mhz p rf = ?10dbm lo = 1040mhz ltc5569 5569fb
8 for more information www.linear.com/ltc5569 3ghz to 4ghz application. test circuit shown in figure 1. conversion gain, iip3, nf and channel isolation vs rf frequency conversion gain, iip3 and nf vs rf frequency rf isolation and lo leakage vs rf and lo frequency 450mhz conversion gain, iip3 and nf vs lo power 3500mhz conversion gain, iip3 and nf vs lo power conversion gain, iip3 and rf input p1db vs temperature 3500mhz conversion gain, iip3 and nf vs supply voltage channel isolation vs rf frequency rf isolation and lo leakage vs rf and lo frequency typical performance characteristics 400mhz to 500mhz application. test circuit shown in figure 1. v cc = 3.3v, t c = 25c, p lo = 0dbm, p rf = C6dbm (C6dbm/tone for 2-tone iip3 tests, ? f = 2mhz), if = 190mhz unless otherwise noted. rf frequency (mhz) 400 1 g c (db), iip3 (dbm), ssb nf (db) channel isolation (db) 3 7 9 11 21 23 25 27 15 425 450 5569 g30 5 17 19 13 0 5 15 20 25 50 55 60 65 35 10 40 45 30 475 500 iip3 nf g c ch. iso lo input power (dbm) ?6 0 g c (db), iip3 (dbm), ssb nf (db) 3 9 12 15 2 27 5569 g31 6 ?2 ?4 4 0 6 18 21 24 85c 25c ?40c iip3 g c nf high side lo rf/lo frequency (mhz) 400 rf isolation (db) lo leakage (dbm) 45 50 55 550 650 5569 g32 40 35 30 450 500 600 60 65 70 ?50 ?40 ?30 ?60 ?70 ?80 ?20 ?10 0 700 rf-lo lo-if lo-rf rf-if rf frequency (ghz) 3.0 0 g c (db), iip3 (dbm), ssb nf (db) 2 6 8 10 20 22 24 26 14 3.2 3.4 5569 g33 4 16 18 12 3.6 4.03.8 iip3 nf g c low side lo lo input power (dbm) ?6 0 g c (db), iip3 (dbm), ssb nf (db) 3 9 12 15 2 27 5569 g34 6 ?2 ?4 4 0 6 18 21 24 85c 25c ?40c iip3 g c nf rf = 3.5ghz low side lo v cc supply voltage 3.0 0 g c (db), iip3 (dbm), ssb nf (db) 3 9 12 15 3.4 27 5569 g35 6 3.2 3.1 3.5 3.3 3.6 18 21 24 85c 25c ?40c iip3 g c nf rf = 3.5ghz low side lo rf/lo frequency (ghz) 2.6 0 rf isolation (db) lo leakage (dbm) 10 20 30 40 60 rf-lo rf-if lo-if lo-rf 2.9 3.2 3.5 3.8 5569 g36 4.1 4.4 50 ?60 ?50 ?40 ?30 ?20 0 ?10 case temperature (c) ?45 0 g c (db), iip3, p1db (dbm) 4 8 12 28 20 15 75 24 16 2 6 10 26 18 22 14 ?15 45 105 5569 g37 iip3 g c nf p1db rf = 3500mhz low side lo rf frequency (ghz) 3.0 isolation (db) 36 38 40 3.8 5569 g38 34 32 30 3.2 3.4 3.6 4.0 105c 25c ?40c ltc5569 5569fb
9 for more information www.linear.com/ltc5569 pin functions rfa/rfb (pin 1/pin 4): single-ended rf inputs for the a and b mixers, respectively. these pins are internally connected to the primary winding of the integrated rf transformers, which have low dc resistance to ground. series dc-blocking capacitors must be used if the rf sources have dc voltage present. the rf inputs are 50 impedance matched from 1.4ghz to 3.3ghz, as long as the mixer is enabled. operation down to 300mhz or up to 4ghz is possible with external matching. gnd (pins 2, 3, 10, exposed pad pin 17): ground. these pins must be soldered to the rf ground plane on the circuit board. the exposed pad metal of the package provides both electrical contact to ground and good thermal contact to the printed circuit board. lo (pin 11): single-ended local oscillator input. this pin is internally connected to the primary winding of an integrated transformer, which has low dc resistance to ground. a series dc-blocking capacitor must be used to avoid damage to the internal transformer. this input is 50 impedance matched from 1ghz to 3.5ghz, even when one or both mixers are disabled. operation down to 350mhz or up to 4500mhz is possible with external matching. ena/enb (pin 12/pin 9): enable pins for the a and b mixers, respectively. when the input voltage is greater than 2.5v, the mixer is enabled. when the input voltage is less than 0.3v, the mixer is disabled. typical input current is less than 30a. these pins have internal pull-down resistors. v cca /v ccb (pin 13/pin 8): power supply pins for the a and b mixers, respectively. these pins must be connected to a regulated 3.3v supply, with bypass capacitors located close to the pins. typical dc current consumption is 34ma, each. ifa + /ifa C (pin 15/pin 14), ifb + /ifb C (pin 6/pin 7): open- collector differential if outputs for the a and b mixers, respectively. these pins must be connected to the v cc supply through impedance-matching inductors or a transformer center tap. typical dc current consumption is 28ma into each pin. biasa/biasb (pin 16/pin 5): these pins allow adjustment of the mixer dc supply currents for mixers a and b, respec - tively. typical, open-circuit dc voltage is 2.2v. these pins should be left open circuited for optimum per formance. block diagram rfa gnd gnd rfb ena enb 5569 bd v cca biasa biasb v ccb ifa ? ifa + ifb + ifb ? bias rf bias lo lo rf 1 13 12 lo 11 9 8 16 14 15 5 7 6 2 3 gnd 10 4 ltc5569 5569fb
10 for more information www.linear.com/ltc5569 test circuit lo in 50 15 16 1 2 3 14 13 6 5 4 12 11 10 9 7 8 c6 ifa out 190mhz 50 rfa in 50 l1 l5 biasa rf 0.015" 0.062" 0.015" gnd bias gnd rfa gnd c1 dc1719a evaluation board layer stack-up (nelco n4000-13) c3 gnd rfb biasb ifb + ifb ? enb gnd lo ena ena c11 v cc 3.3v enb v ccb ifa + 17 gnd ifa ? v cca t1 8:1 ltc5569 t2 8:1 l3 l2 l4 c9 ifb out 190mhz 50 c8 c5 rfb in 50 l6 c2 c4 c10 5569 f01 c7 application rf match lo match rf (mhz) lo c1, c2 c3, c4 l5, l6 c5 c6 300 to 400 hs 120pf 18pf 3.3nh 1nf 10pf 400 to 500 hs 120pf 12pf 2nh 27pf 6.8pf 700 to 1000 hs 68pf 4.7pf 6.8pf 2.2pf 1400 to 3000 ls, hs 2.7pf 3.9pf 3000 to 4000 ls 3.9pf 0.7pf 3.9pf 0.3pf ls = low side, hs = high side ref des value size vendor ref des value size vendor c1, c2 see table 0402 avx c11 2.2f 0603 avx c3, c4 see table 0402 avx t1, t2 8:1 mini-circuits tc8-1-10ln+ c5 see table 0402 avx l1- l4 180nh 0603 coilcraft 0603hp c6 see table 0402 avx l5, l6 see table 0402 coilcraft 0402hp c7-c10 10nf 0402 avx figure 1. standard downmixer test circuit schematic (190mhz bandpass if matching) ltc5569 5569fb
11 for more information www.linear.com/ltc5569 applications information introduction the ltc5569 incorporates two identical, symmetric double- balanced active mixers with a common lo input, separate rf inputs and separate if outputs. see the pin functions and block diagram sections for a description of each pin. a test circuit schematic showing all external components required for the data sheet specified performance is shown in figure 1. a few additional components may be used to modify the dc supply current or frequency response, which will be discussed in the following sections. the lo and rf inputs are single ended. the if outputs are differential. low side or high side lo injection may be used. the test circuit, shown in figure 1, utilizes bandpass if output matching and 8:1 if transformers to realize 50 single-ended if outputs. the evaluation board layout is shown in figure 2. rf inputs a simplified schematic of the a-channel mixers rf input is shown in figure 3. the b-channel is identical, and not shown for clarity. as shown, one terminal of the integrated rf transformers primary winding is connected to pin 1, while the other terminal is dc-grounded internally. for this reason, a series dc-blocking capacitor (c1) is needed if the rf source has dc voltage present. the dc resistance of the primary winding is approximately 4. the secondary winding of the rf transformer is internally connected to the rf buffer amplifier. the rf inputs are 50 matched from 1400mhz to 3300mhz with a single 2.7pf series capacitor on each input. matching to rf frequencies above or below this frequency range is easily accomplished by adding shunt capacitor c3, shown in figure 3. for rf frequencies below 500mhz, series figure 2. evaluation board layout ltc5569 5569fb
12 for more information www.linear.com/ltc5569 applications information inductor l5 is also needed. the evaluation board does not include pads for the series inductors, so the 50 rf input traces need to be cut to install these in series. the rf input matching element values for each application are tabulated in figure 1. measured rf input return losses are shown in figure 4. the rf input impedance and input reflection coefficient, versus frequency are listed in table 1. table 1. rf input impedance and s11 (at pin 1, no external matching, mixer enabled) frequency (mhz) input impedance s11 mag angle 350 9.0 + j11.9 0.71 152.5 450 11.0 + j13.8 0.66 147.7 575 13.1 + j15.7 0.62 143.0 700 15.2 + j17.3 0.58 138.6 900 18.1 + j20.0 0.53 131.6 1100 21.3 + j22.4 0.49 124.6 1400 27.0 + j25.3 0.42 114.1 1700 33.4 + j26.8 0.36 103.9 1950 39.1 + j25.6 0.30 97.1 2200 43.4 + j21.5 0.23 94.2 2450 44.3 + j15.9 0.18 100.2 2700 40.8 + j9.9 0.15 126.5 3000 33.1 + j6.4 0.22 154.7 3300 24.3 + j6.8 0.36 159.9 3600 17.6 + j9.6 0.49 155.4 3900 12.9 + j12.7 0.61 149.6 lo input a simplified schematic of the lo input, with external components is shown in figure 5. similar to the rf in - puts, the integrated lo transformers primary winding is dc-grounded internally, and therefore requires an external dc-blocking capacitor . capacitor c5 provides the necessary dc-blocking, and optimizes the lo input match over the 1ghz to 3.5ghz frequency range. the nominal lo input level is 0dbm although the limiting amplifiers will deliver excellent performance over a 5db input power range. lo input power greater than +6dbm may cause conduction of the internal esd diodes. to optimize the lo input match for frequencies below 1ghz, the value of c5 is increased and shunt capacitor c6 is added. a summary of values for c5 and c6, versus lo frequency range is listed in table 2. measured lo input lo buffer lo buffer lo c6 5569 f05 ltc5569 11 c5 lo in figure 5. lo input schematic rf buffer rfa c3 5569 f03 l5 ltc5569 1 c1 rfa in figure 3. rf input schematic figure 4. rf input return loss frequency (ghz) 0.2 return loss (db) ?15 ?10 ?5 3.2 5569 f04 ?20 ?25 1.2 2.2 0.7 3.7 1.7 2.7 4.2 ?30 ?35 0 400mhz to 500mhz app. 700mhz to 1000mhz app. 1400mhz to 3000mhz app. 3ghz to 4ghz app. t c = 25c ltc5569 5569fb
13 for more information www.linear.com/ltc5569 applications information return losses are shown in figure 6. finally, lo input im - pedance and input reflection coefficient, versus frequency is shown in t able 3. table 2. lo input matching values vs lo frequency range frequency (mhz) c5 (pf) c6 (pf) 350 to 430 390 22 480 to 630 68 12 576 to 722 27 6.8 720 to 980 15 4.7 814 to 1155 6.8 2.2 1000 to 3500 3.9 2200 to 4000 3.9 0.3 the lo buffers have been designed such that the lo input figure 6. lo input return loss figure 7. lo input return loss for three operating states frequency (ghz) 0.2 return loss (db) ?10 ?5 0 1.7 2.7 4.2 5569 f06 ?15 ?20 ?25 0.7 1.2 2.2 3.2 3.7 c5 = 27pf, c6 = 6.8pf c5 = 6.8pf, c6 = 2.2pf c5 = 3.9pf c5 = 3.9pf, c6 = 0.3pf t c = 25c frequency (ghz) 0.2 return loss (db) 0 ?2 ?4 ?6 ?8 ?10 ?12 ?14 ?16 ?18 ?20 4.2 5569 f07 1.2 2.2 3.2 3.7 0.7 1.7 2.7 t c = 25c c5 = 3.9pf both mixers disabled one mixer enabled both mixers enabled table 3. lo input impedance and s11 (at pin 11, no external matching, both mixers enabled) frequency (mhz) input impedance s11 mag angle 350 5.5 + j15.1 0.82 146.1 400 6.0 + j17.3 0.81 141.3 450 6.9 + j19.5 0.79 136.7 500 8.0 + j21.8 0.77 131.9 600 10.3 + j26.5 0.73 122.6 800 17.6 + j35.7 0.63 104.5 1000 29.5 + j43.6 0.53 86.5 1500 70.8 + j28.3 0.28 40.5 2000 60.1 C j4.2 0.10 C20.2 2500 41.8 C j3.2 0.10 C156.6 3000 33.1 + j7.4 0.22 151.3 3500 29.8 + j19.2 0.34 122.9 4000 29.5 + j29.9 0.43 103.7 4500 32.0 + j37.6 0.46 90.9 impedance does not change significantly when one or both mixers are disabled. this feature only requires that supply voltage is applied to both mixers. the actual performance of this feature is shown in figure 7, where lo input return loss versus frequency is shown for the following three operating conditions: both mixers enabled, one mixer enabled, and both mixers disabled. as shown, the lo input return loss is better than 12db over the 1000mhz to 3500mhz frequency range for all three operating states. if outputs the a-channel if output schematic with external match - ing components is shown in figure 8. the b-channel is identical, and not shown for clarity . as shown, the outputs are differential open collector . each if output pin must ltc5569 5569fb
14 for more information www.linear.com/ltc5569 applications information be biased at the supply voltage (v cc ), which is applied through the external matching inductors (l1 and l3) shown in figure? 8. alternatively, the if outputs can be biased through the center tap of the if transformer. each if output pin on the ic draws approximately 28ma of dc supply current (56ma total per mixer). the differential if output impedance can be modeled as a parallel r-c circuit. these r-c values are listed in table 4, versus if frequency. this data is referenced to the pack - age pins (with no external components) and includes the effects of the ic and package parasitics. the values of l1 and l3 are calculated to resonate with the internal capacitance (c if ) at the desired if center frequency, using the following equation: l1, ? l3 1 2? s ? f if 2 ? 2?c if for if frequencies below 130mhz, the matching inductors are not needed due to the low if output capacitance. the evaluation board has the transformer center tap connected to the matching inductor center node, thus allowing the cir - cuit to be used without matching inductors. the measured if output return loss for this case is shown in figure 9. t able 4 summarizes the optimum if matching inductor val - ues, versus if center frequency, to be used in the standard downmixer test circuit shown in figure 1. the inductor values listed are less than the ideal calculated values due to the additional capacitance of the 8:1 transformer. for differential if output applications where the 8:1 transformer is eliminated, the ideal calculated values should be used. measured if output return losses are shown in figure 9. table 4. if output impedance and bandpass matching element values vs if frequency. if frequency (mhz) differential if output impedance (r if || c if ) bandpass matching l1, l3 (a) l2, l4 (b) 50 540||1.3pf open 140 532||1.3pf 330nh 190 530 ||1.3pf 180nh 240 525 ||1.3pf 110nh 300 519 ||1.3pf 72nh 380 511 ||1.3pf 43nh 456 502 ||1.3pf 30nh 580 490 ||1.33pf 810 477 ||1.35pf 1000 450 ||1.4pf figure 9. if output return lossbandpass matching with 8:1 transformer frequency (mhz) ?30 return loss (db) ?20 ?10 0 ?25 ?15 ?5 150 250 350 450 5569 f09 550 10050 200 300 400 500 no inductors 330nh 180nh 110nh 68nh 43nh 30nh 14 15 ltc5569 5569 f08 l1 l3 t1 8:1 c7 v cc ifa out 50 ifa + ifa ? v cc figure 8. if output schematic with bandpass matching and 8:1 transformer ltc5569 5569fb
15 for more information www.linear.com/ltc5569 applications information figure 11. conversion gain and if output return loss vs if frequencywideband matching with 4:1 transformer wideband if using load resistor and 4:1 transformer wide if bandwidth and high input 1db compression can be obtained by reducing the if output resistance with a shunt resistor (r3), as shown in figure 10. this will reduce the mixers conversion gain, but will not degrade the iip3 or noise figure. the evaluation board includes pads for r3 (and r4 for the b-channel). to accommodate the lower total if resistance, transformer t1 should be changed from an 8:1 impedance ratio to a 4:1 ratio. the value of the external matching inductors l1 and l3 needs to be adjusted to ac - count for the differences in the if transformer parasitics. t able 5 summarizes the measured conversion gain, iip3, noise figure, rf input p1db and if bandwidth for three values of load resistor . inductors l1 and l3 have been increased from 180nh to 270nh to keep the if match centered at 190mhz (the 8:1 transformer has higher ca - pacitance). also shown, for comparison, is the measured performance using an 8:1 if transformer and no load resis - tor . measured conversion gain and if output return loss versus if frequency are shown for each case in figure 11. table 5. measured performance using if load resistor (r3) and 4:1 transformer (rf = 1950mhz, low-side lo, if = 190mhz, v cc = 3.3v, t c = 25c) if xfmr r3 () g c (db) iip3 (dbm) ssb nf (db) input p1db (dbm) 0.5db if bandwidth (mhz) 8:1 2.0 26.8 11.7 10.2 C55/+85 4:1 1210 0.9 26.8 11.7 12.8 C90/+110 604 0.0 26.8 11.7 13.0 C100/+120 374 -1.1 26.8 11.8 13.3 C115/+120 if frequency (mhz) 50 ?1 0 2 170 250 5569 f11 ?2 ?3 90 130 210 290 330 ?4 ?5 1 5 15 35 ?5 ?15 ?25 ?35 25 conversion gain (db) if return loss (db) 8:1 1210 604 374 374 604 1210 8:1 14 15 ltc5569 5569 f10 l1 l3 t1 4:1 c7 10nf r3 v cc ifa out 50 ifa + ifa ? v cc figure 10. if output schematic with wideband matching and 4:1 transformer discrete if balun matching for narrowband if applications, it is possible to replace the if transformer with the discrete if balun shown in figure 12 (only the a-channel is shown for clarity). the values of l3, l7, c13 and c15 are calculated to realize a 180 phase shift at the desired if frequency, and provide a 50 single-ended output, using the equations listed below. inductor l1 is calculated to cancel the internal if capacitance (c if from table 4). l1 and l3 also supply dc bias to the if output pins. r5 and r7 are used to reduce the differential output resistance (r s ), which increases ltc5569 5569fb
16 for more information www.linear.com/ltc5569 applications information figure 13. if output return losses with discrete if balun matching the if bandwidth, but reduces the conversion gain. c17 is a dc-blocking capacitor. r s = 2?r5?r if 2?r5 + r if r5 = r7 ( ) l1 = 1 2?c if ? if ( ) 2 l7 = r s ?r l if l3 = l1?l7 l1 + l7 c13, c15 = 1 if r s ?r l these equations give a good starting point, but it is usually necessary to adjust the component values after building and testing the circuit. the final solution can be achieved with less iteration by considering the parasit - ics of l1 and l3 in the above calculations. specifically, the effective parallel resistance of l1 and l3 (calculated from the manufacturers q data) will reduce the value of r s , which in turn influences the calculated values of l7, c13 and c15. also, the effective parallel capacitance of l1 15 14 13 ifa ? v cca l1 l3 ltc5569 5569 f12 c7 10nf r5 c13 c17 1nf c15 v cc c9 10nf ifa out r l = 50 l7 ifa + r7 figure 12. discrete if balun matching and l3 (taken from the manufacturers srf data) must be considered, since it is in parallel with c if . frequently, the calculated value for l7 does not fall on a standard value for the desired if. in this case, a simple solution is to vary the value of r5 (r7), which changes the value of r s , until l7 is a standard value. discrete if balun element values for five common if fre - quencies are listed in table 6. measured if output return losses are shown in figure 13. measured conversion gain, iip3 and noise figure versus if output frequency is shown in figure 14. compared to the transformer-based if matching technique, the most significant performance difference, as shown in figure 14, is the limited if bandwidth. for low if frequen - cies, the passband bandwidth is small, whereas higher if frequencies offer wider bandwidth. table 6. discrete if balun element values (r l = 50) (values shown for the a channel and b channel if (mhz) r5, r7 (a) r6, r8 (b) () l1 (a) l2 (b) (nh) l3 (a) l4 (b) (nh) l7 (a) l8 (b) (nh) c13, c15 (a) c14, c16 (b) (pf) 170 475 330 91 120 7 190 750 270 82 120 6 240 332 180 56 82 5.6 300 604 110 43 72 3.9 380 475 68 30 56 3.3 if frequency (mhz) 90 return loss (db) ?15 ?10 ?5 390 5569 f13 ?20 ?25 190 290 140 440 240 340 490 ?30 ?35 0 170mhz 240mhz 380mhz ltc5569 5569fb
17 for more information www.linear.com/ltc5569 applications information figure 14. conversion gain, iip3 and ssb nf vs if output frequency using discrete if balun matching 15 14 ifa ? v cca v cca 16 biasa 54ma bias 3ma bias r1 ltc5569 5569 f12 ifa + 13 figure 15. biasa interface (biasb is identical) mixer bias current reduction the biasa and biasb pins (pins 16 and 5) are available for reducing the mixer core dc current consumption, of the a- and b-channels, respectively, at the expense of linearity and p1db. for the highest performance, these pins should be left open circuit. as shown in figure 15, an internal bias circuit produces a 3ma reference current for each mixer core. if a resistor is connected to pin 16, as shown in figure 15, a portion of the reference current can be shunted to ground, resulting in reduced mixer core current. for example, r1 = 1k will shunt away 1ma from pin 16 and reduce the mixer core current by 33%. the nominal, open-circuit dc voltage at the biasa and biasb pins is 2.2v. table 7 lists dc supply current and rf performance at 1950mhz for various values of r1. table 7. mixer performance with reduced current (rf = 1950mhz, low side lo, if = 190mhz) r1 () i cc (ma) g c (db) iip3 (dbm) p1db (dbm) nf (db) open 90.0 2.0 26.8 10.2 11.7 10k 85.2 1.9 25.6 10.2 11.4 1k 71.0 1.6 21.4 10.1 10.4 100 58.6 1.1 17.9 8.9 10.0 11 13 clamp 300k 500 ltc5569 v cca ena ena 5569 f16 figure 16. enable input circuit enable interfaces figure 16 shows a simplified schematic of the a-chan - nel enable interface. the b-channel is identical, and not shown for clarity . t o enable the a-channel mixer, the ena voltage must be higher than 2.5v. if the enable function is not required, the pin should be connected directly to v cc . the voltage at the ena pin should never exceed the power supply voltage (v cc ) by more than 0.3v. if this should oc - cur, the supply current could be sourced through the esd diode, potentially damaging the ic. the ena and enb pins have internal 300k pull-down resis - tors. therefore, an unused mixer will be disabled with its corresponding enable pin left floating. if frequency (mhz) 80 g c (db), ssb nf (db), iip3 (dbm) 14 22 18 26 320 5569 f14 10 6 2 ?2 16 24 20 28 12 8 4 0 140 200 260 380 440 170mhz 240mhz 380mhz iip3 g c nf rf = 1950mhz low side lo p lo = 0dbm z rf = 50 z if = 50 t c = 25c ltc5569 5569fb
18 for more information www.linear.com/ltc5569 supply voltage ramping fast ramping of the supply voltage can cause a current glitch in the internal esd clamp circuits connected to the v cca and v ccb pins. depending on the supply inductance, this could result in a supply voltage transient that exceeds the 4.0v maximum rating. a supply voltage ramp time greater than 1ms is recommended. applications information spurious output levels mixer spurious output levels versus harmonics of the rf and lo are tabulated in table 8. the spur levels were measured on a standard evaluation board using the test circuit shown in figure 1. the spur frequencies can be calculated using the following equation: f spur = (m ? f rf ) C (n ? f lo ) table 8. if output spur levels (dbm) (rf = 1950mhz, p rf = C2dbm, p if = 0dbm at 190mhz, low side lo, p lo = 0dbm, v cc = 3.3v, t c = 25c) n m 0 1 2 3 4 5 6 7 8 9 0 C56 C24 C58 C36 C51 C44 C58 C49 C80 1 C32 0 C56 C57 C68 C41 C69 C52 C75 C58 2 C59 C56 C67 C65 C76 C85 C71 C85 C80 * 3 * C88 C89 C74 * * * * C89 * 4 * * C85 * * * * * C85 * 5 * * * * * * * * * * 6 * * * * * * * * * 7 * * * *less than C90dbc ltc5569 5569fb
19 for more information www.linear.com/ltc5569 typical application voltage conversion gain, iip3 and nf vs if frequency if output frequency (mhz) 140 6.5 voltage conversion gain (db) ssb nf (db), iip3 (dbm) 7.0 8.0 8.5 9.0 200 210 220 230 11.0 5569 ta03b 7.5 150 160 170 180 190 240 9.5 10.0 10.5 10 12 16 18 20 28 iip3 nf g v 14 22 24 26 rf = 1950 50mhz lo = 1760mhz p lo = 0dbm z rf = 50 z if = 200 t c = 25c rfa ena 10nf 3.3pf 3.3pf 2.7pf rf main 3.3v ifa out 200 10nf 3.9pf lo lo ena 5569 ta03a v cca ifa + ltc5569 channel b not shown ifa ? 3300pf 390nh 82nh 82nh 681 390nh bias rf lo 3300pf 681 200 differential lowpass if output matching (element values shown for 190mhz if) ltc5569 5569fb
20 for more information www.linear.com/ltc5569 uf package 16-lead plastic qfn (4mm 4mm) (reference ltc dwg # 05-08-1692) 4.00 0.10 (4 sides) note: 1. drawing conforms to jedec package outline mo-220 variation (wggc) 2. drawing not to scale 3. all dimensions are in millimeters 4. dimensions of exposed pad on bottom of package do not include mold flash. mold flash, if present, shall not exceed 0.15mm on any side 5. exposed pad shall be solder plated 6. shaded area is only a reference for pin 1 location on the top and bottom of package pin 1 top mark (note 6) 0.55 0.20 1615 1 2 bottom view?exposed pad 2.15 0.10 (4-sides) 0.75 0.05 r = 0.115 typ 0.30 0.05 0.65 bsc 0.200 ref 0.00 ? 0.05 (uf16) qfn 10-04 recommended solder pad pitch and dimensions 0.72 0.05 0.30 0.05 0.65 bsc 2.15 0.05 (4 sides) 2.90 0.05 4.35 0.05 package outline pin 1 notch r = 0.20 typ or 0.35 45 chamfer package description please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings. ltc5569 5569fb
21 for more information www.linear.com/ltc5569 revision history rev date description page number a 10/11 revised turn-on time and turn-off time typical values in dc electrical characteristics 4 b 11/14 increase rf input absolute maximum power rating correct (increase) lo input power absolute maximum frequency range clarify case temperature range in order information extend if output frequency range down to low frequency clarify case temperature on supply current graphs correct x-axis label on graph g25 2 2 2 2 4 7 information furnished by linear technology corporation is believed to be accurate and reliable. however, no responsibility is assumed for its use. linear technology corporation makes no representa - tion that the interconnection of its circuits as described herein will not infringe on existing patent rights. ltc5569 5569fb
22 ? linear technology corporation 2011 lt 1114 rev b ? printed in usa for more information www.linear.com/ltc5569 related parts typical application part number description comments infrastructure ltc559x 600mhz to 4.5ghz dual downconverting mixer family 8.5db gain, 26.5dbm iip3, 9.9db nf, 3.3v/380ma supply lt5527 400mhz to 3.7ghz, 5v downconverting mixer 2.3db gain, 23.5dbm iip3 and 12.5db nf at 1900mhz, 5v/78ma supply lt5557 400mhz to 3.8ghz, 3.3v downconverting mixer 2.9db gain, 24.7dbm iip3 and 11.7db nf at 1950mhz, 3.3v/82ma supply ltc6400-x 300mhz low distortion if amp/adc driver fixed gain of 8db, 14db, 20db and 26db; >36dbm oip3 at 300mhz, differential i/o ltc6416 2ghz 16-bit adc buffer 40dbm oip3 to 300mhz, programmable fast recovery output clamping ltc6412 31db linear analog vga 35dbm oip3 at 240mhz, continuous gain range C14db to 17db lt5554 ultralow distort if digital vga 48dbm oip3 at 200mhz, 2db to 18db gain range, 0.125db gain steps lt5575 700mhz to 2.7ghz i/q demodulator 28dbm iip3, 13dbm p1db, 0.03db i/q amplitude match, 0.4 phase match lt5578 400mhz to 2.7ghz upconverting mixer 27dbm oip3 at 900mhz, 24.2dbm at 1.95ghz, integrated rf transformer lt5579 1.5ghz to 3.8ghz upconverting mixer 27.3dbm oip3 at 2.14ghz, nf = 9.9db, 3.3v supply, single-ended lo and rf ports ltc5588-1 200mhz to 6ghz i/q modulator 31dbm oip3 at 2.14ghz, C160.6dbm/hz noise floor rf power detectors lt5538 40mhz to 3.8ghz log detector 0.8db accuracy over temperature, C72dbm sensitivity, 75db dynamic range lt5581 6ghz low power rms detector 40db dynamic range, 1db accuracy over temperature, 1.5ma supply current ltc5582 40mhz to 10ghz rms detector 0.5db accuracy over temperature, 0.2db linearity error, 57db dynamic ltc5583 dual 6ghz rms power detector up to 60db dynamic range, 0.5db accuracy over temperature, >50db isolation adcs ltc2208 16-bit, 130msps adc 78dbfs noise floor, >83db sfdr at 250mhz ltc2285 dual 14-bit, 125msps low power adc 72.4db snr, 88db sfdr, 790mw power consumption ltc2268-14 dual 14-bit, 125msps serial output adc 73.1db snr, 88db sfdr, 299mw power consumption 200 differential highpass if output matching (element values shown for 190mhz if) rfa rfb ena enb 10nf 8.2pf 10nf 8.2pf 2.7pf rf main 8.2pf 3.3v ifa out 200 10nf 3.9pf lo lo 3.3v 10nf ena enb v cca v ccb ifa + ltc5569 ifa ? ifb + ifb ? 8.2pf 100nh 665 100nh 100nh 100nh 2.7pf rf diversity bias rf bias lo lo rf 5569 ta02a ifb out 200 665 665 665 if output frequency (mhz) 160 6.5 voltage conversion gain (db) ssb nf (db), iip3 (dbm) 7.0 8.0 8.5 9.0 200 11.0 5569 ta02b 7.5 180 170 210 190 220 9.5 10.0 10.5 10 12 16 18 20 28 14 22 24 26 iip3 g v nf rf = 1950 30mhz lo = 1760mhz p lo = 0dbm z rf = 50 z if = 200 t c = 25c voltage conversion gain, iip3 and nf vs if frequency linear technology corporation 1630 mccarthy blvd., milpitas, ca 95035-7417 (408) 432-1900 fax : (408) 434-0507 www.linear.com/ltc5569 ltc5569 5569fb


▲Up To Search▲   

 
Price & Availability of LTC5569-15

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X