|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 1 www.energymicro.com efm32gg230 datasheet f1024/f512 preliminary ? arm cortex-m3 cpu platform ? high performance 32-bit processor @ up to 48 mhz ? memory protection unit ? flexible energy management system ? 20 na @ 3 v shutoff mode ? 0.4a @ 3 v shutoff mode with rtc ? 0.9 a @ 3 v stop mode, including power-on reset, brown-out detector, ram and cpu retention ? 1.1 a @ 3 v deep sleep mode, including rtc with 32.768 khz oscillator, power-on reset, brown-out detector, ram and cpu retention ? 50 a/mhz @ 3 v sleep mode ? 200 a/mhz @ 3 v run mode, with code executed from flash ? 1024/512 kb flash ? read-while-write support ? 128/128 kb ram ? 56 general purpose i/o pins ? configurable push-pull, open-drain, pull resistor, drive strength ? configurable peripheral i/o locations ? 16 asynchronous external interrupts ? output state retention and wakeup from shutoff mode ? 12 channel dma controller ? 12 channel peripheral reflex system (prs) for autonomous in- ter-peripheral signaling ? hardware aes with 128/256-bit keys in 54/75 cycles ? timers/counters ? 4 16-bit timer/counter ? 43 compare/capture/pwm channels ? 16-bit low energy timer ? 1 24-bit and 1 32-bit real-time counter ? 3 16 /8 -bit pulse counter with asynchronous operation ? watchdog timer with dedicated rc oscillator @ 50 na ? backup power domain ? rtc and retention registers in a separate power domain, avail- able in all energy modes ? operation from backup battery when main power drains out ? communication interfaces ? 3 universal synchronous/asynchronous receiv- er/transmitter ? uart/spi/smartcard (iso 7816)/irda/i2s ? 2 low energy uart ? autonomous operation with dma in deep sleep mode ? 2 i 2 c interface with smbus support ? address recognition in stop mode ? ultra low power precision analog peripherals ? 12-bit 1 msamples/s analog to digital converter ? 8 single ended channels/4 differential channels ? on-chip temperature sensor ? 12-bit 500 ksamples/s digital to analog converter ? 2 single ended channels/1 differential channel ? 2 analog comparator ? capacitive sensing with up to 16 inputs ? 3 operational amplifier ? 6.1 mhz gbw, rail-to-rail, programmable gain ? supply voltage comparator ? low energy sensor interface (lesense) ? autonomous sensor monitoring in deep sleep mode ? wide range of sensors supported, including lc sen- sors and capacitive buttons ? ultra efficient power-on reset and brown-out detec- tor ? debug interface ? 2-pin serial wire debug interface ? 1-pin serial wire viewer ? embedded trace module v3.5 (etm) ? pre-programmed serial bootloader ? temperature range -40 to 85 oc ? single power supply 1.85 to 3.8 v ? qfn64 package 32-bit arm cortex-m0+, cortex-m3 and cortex-m4f microcontrollers for: ? energy, gas, water and smart metering ? health and fitness applications ? smart accessories ? alarm and security systems ? industrial and home automation ? www.energymicro.com/gecko
preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 2 www.energymicro.com 1 ordering information table 1.1 (p. 2 ) shows the available efm32gg230 devices. table 1.1. ordering information ordering code flash (kb) ram (kb) max speed (mhz) supply voltage (v) temperature package efm32gg230f512-qfn64 512 128 48 1.85 - 3.8 -40 - 85 oc qfn64 EFM32GG230F1024-QFN64 1024 128 48 1.85 - 3.8 -40 - 85 oc qfn64 visit www.energymicro.com for information on global distributors and representatives or contact sales@energymicro.com for additional information. preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 3 www.energymicro.com 2 system summary 2.1 system introduction the efm32 mcus are the world?s most energy friendly microcontrollers. with a unique combination of the powerful 32-bit arm cortex-m3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the efm32gg microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. this section gives a short introduction to each of the modules in general terms and also and shows a summary of the configuration for the efm32gg230 devices. for a complete feature set and in-depth information on the modules, the reader is referred to the efm32gg reference manual . a block diagram of the efm32gg230 is shown in figure 2.1 (p. 3 ) . figure 2.1. block diagram clock managem ent energy managem ent serial int erfaces i/o port s core and mem ory tim ers and triggers analog int erfaces securit y 32-bit bus peripheral reflex syst em arm cort ex ? -m3 processor flash program mem ory lesense high freq rc oscillat or high freq. cryst al oscillat or tim er/ count er low energy tim er pulse count er real tim e count er low freq. cryst al oscillat or low freq. rc oscillat or wat chdog tim er ram mem ory general purpose i/o mem ory prot ect ion unit dma cont roller debug int erface w/ etm ext ernal int errupt s pin reset hardware aes gg230f512/1024 adc dac pulse count er operat ional am plifier usart low energy uart i 2 c uart power-on reset volt age regulat or back-up power dom ain volt age com parat or brown-out det ect or back-up rtc pin wakeup ult ra low freq. rc oscillat or 2.1.1 arm cortex-m3 core the arm cortex-m3 includes a 32-bit risc processor which can achieve as much as 1.25 dhrystone mips/mhz. a memory protection unit with support for up to 8 memory segments is included, as well as a wake-up interrupt controller handling interrupts triggered while the cpu is asleep. the efm32 implementation of the cortex-m3 is described in detail in efm32 cortex-m3 reference manual . 2.1.2 debug interface (dbg) this device includes hardware debug support through a 2-pin serial-wire debug interface and an embed- ded trace module (etm) for data/instruction tracing . in addition there is also a 1-wire serial wire viewer pin which can be used to output profiling information, data trace and software-generated messages. 2.1.3 memory system controller (msc) the memory system controller (msc) is the program memory unit of the efm32gg microcontroller. the flash memory is readable and writable from both the cortex-m3 and dma. the flash memory is preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 4 www.energymicro.com divided into two blocks; the main block and the information block. program code is normally written to the main block. additionally, the information block is available for special user data and flash lock bits. there is also a read-only page in the information block containing system and device calibration data. read and write operations are supported in the energy modes em0 and em1. 2.1.4 direct memory access controller (dma) the direct memory access (dma) controller performs memory operations independently of the cpu. this has the benefit of reducing the energy consumption and the workload of the cpu, and enables the system to stay in low energy modes when moving for instance data from the usart to ram or from the external bus interface to a pwm-generating timer. the dma controller uses the pl230 dma controller licensed from arm. 2.1.5 reset management unit (rmu) the rmu is responsible for handling the reset functionality of the efm32gg. 2.1.6 energy management unit (emu) the energy management unit (emu) manage all the low energy modes (em) in efm32gg microcon- trollers. each energy mode manages if the cpu and the various peripherals are available. the emu can also be used to turn off the power to unused sram blocks. 2.1.7 clock management unit (cmu) the clock management unit (cmu) is responsible for controlling the oscillators and clocks on-board the efm32gg. the cmu provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. the high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive. 2.1.8 watchdog (wdog) the purpose of the watchdog timer is to generate a reset in case of a system failure, to increase appli- cation reliability. the failure may e.g. be caused by an external event, such as an esd pulse, or by a software failure. 2.1.9 peripheral reflex system (prs) the peripheral reflex system (prs) system is a network which lets the different peripheral module communicate directly with each other without involving the cpu. peripheral modules which send out reflex signals are called producers. the prs routes these reflex signals to consumer peripherals which apply actions depending on the data received. the format for the reflex signals is not given, but edge triggers and other functionality can be applied by the prs. 2.1.10 inter-integrated circuit interface (i2c) the i 2 c module provides an interface between the mcu and a serial i 2 c-bus. it is capable of acting as both a master and a slave, and supports multi-master buses. both standard-mode, fast-mode and fast- mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 mbit/s. slave arbitration and timeouts are also provided to allow implementation of an smbus compliant system. the interface provided to software by the i 2 c module, allows both fine-grained control of the transmission process and close to automatic transfers. automatic recognition of slave addresses is provided in all energy modes. preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 5 www.energymicro.com 2.1.11 universal synchronous/asynchronous receiver/transmitter (us- art) the universal synchronous asynchronous serial receiver and transmitter (usart) is a very flexible serial i/o module. it supports full duplex asynchronous uart communication as well as rs-485, spi, microwire and 3-wire. it can also interface with iso7816 smartcards , i2s devices and irda devices. 2.1.12 pre-programmed serial bootloader the bootloader presented in application note an0003 is pre-programmed in the device at factory. auto- baud and destructive write are supported. the autobaud feature, interface and commands are described further in the application note. 2.1.13 low energy universal asynchronous receiver/transmitter (leuart) the unique leuart tm , the low energy uart, is a uart that allows two-way uart communication on a strict power budget. only a 32.768 khz clock is needed to allow uart communication up to 9600 baud/ s. the leuart includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption. 2.1.14 timer/counter (timer) the 16-bit general purpose timer has 3 compare/capture channels for input capture and compare/pulse- width modulation (pwm) output. timer0 also includes a dead-time insertion module suitable for motor control applications. 2.1.15 real time counter (rtc) the real time counter (rtc) contains a 24-bit counter and is clocked either by a 32.768 khz crystal oscillator, or a 32.768 khz rc oscillator. in addition to energy modes em0 and em1, the rtc is also available in em2. this makes it ideal for keeping track of time since the rtc is enabled in em2 where most of the device is powered down. 2.1.16 backup real time counter (burtc) the backup real time counter (burtc) contains a 32-bit counter and is clocked either by a 32.768 khz crystal oscillator, a 32.768 khz rc oscillator or a 1 khz ulfrco. the burtc is available in all energy modes and it can also run in backup mode, making it operational even if the main power should drain out. 2.1.17 low energy timer (letimer) the unique letimer tm , the low energy timer, is a 16-bit timer that is available in energy mode em2 in addition to em1 and em0. because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. the letimer can be used to output a variety of waveforms with minimal software intervention. it is also connected to the real time counter (rtc), and can be configured to start counting on compare matches from the rtc. 2.1.18 pulse counter (pcnt) the pulse counter (pcnt) can be used for counting pulses on a single input or to decode quadrature encoded inputs. it runs off either the internal lfaclk or the pcntn_s0in pin as external clock source. the module may operate in energy mode em0 ? em3. preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 6 www.energymicro.com 2.1.19 analog comparator (acmp) the analog comparator is used to compare the voltage of two analog inputs, with a digital output indi- cating which input voltage is higher. inputs can either be one of the selectable internal references or from external pins. response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2.1.20 voltage comparator (vcmp) the voltage supply comparator is used to monitor the supply voltage from software. an interrupt can be generated when the supply falls below or rises above a programmable threshold. response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2.1.21 analog to digital converter (adc) the adc is a successive approximation register (sar) architecture, with a resolution of up to 12 bits at up to one million samples per second. the integrated input mux can select inputs from 8 external pins and 6 internal signals. 2.1.22 digital to analog converter (dac) the digital to analog converter (dac) can convert a digital value to an analog output voltage. the dac is fully differential rail-to-rail, with 12-bit resolution. it has two single ended output buffers which can be combined into one differential output. the dac may be used for a number of different applications such as sensor interfaces or sound output. 2.1.23 operational amplifier (opamp) the efm32gg230 features 3 operational amplifiers. the operational amplifier is a versatile general purpose amplifier with rail-to-rail differential input and rail-to-rail single ended output. the input can be set to pin, dac or opamp, whereas the output can be pin, opamp or adc. the current is programmable and the opamp has various internal configurations such as unity gain, programmable gain using internal resistors etc. 2.1.24 low energy sensor interface (lesense) the low energy sensor interface (lesense tm ), is a highly configurable sensor interface with support for up to 16 individually configurable sensors. by controlling the analog comparators and dac, lesense is capable of supporting a wide range of sensors and measurement schemes, and can for instance mea- sure lc sensors, resistive sensors and capacitive sensors. lesense also includes a programmable fsm which enables simple processing of measurement results without cpu intervention. lesense is available in energy mode em2, in addition to em0 and em1, making it ideal for sensor monitoring in applications with a strict energy budget. 2.1.25 backup power domain the backup power domain is a separate power domain containing a backup real time counter, burtc, and a set of retention registers, available in all energy modes. this power domain can be configured to automatically change power source to a backup battery when the main power drains out. the backup power domain enables the efm32gg230 to keep track of time and retain data, even if the main power source should drain out. 2.1.26 advanced encryption standard accelerator (aes) the aes accelerator performs aes encryption and decryption with 128-bit or 256-bit keys. encrypting or decrypting one 128-bit data block takes 52 hfcoreclk cycles with 128-bit keys and 75 hfcoreclk cycles with 256-bit keys. the aes module is an ahb slave which enables efficient access to the data preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 7 www.energymicro.com and key registers. all write accesses to the aes module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported. 2.1.27 general purpose input/output (gpio) in the efm32gg230, there are 56 general purpose input/output (gpio) pins, which are divided into ports with up to 16 pins each. these pins can individually be configured as either an output or input. more advances configurations like open-drain, filtering and drive strength can also be configured individually for the pins. the gpio pins can also be overridden by peripheral pin connections, like timer pwm outputs or usart communication, which can be routed to several locations on the device. the gpio supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. also, the input value of a pin can be routed through the peripheral reflex system to other peripherals. 2.2 configuration summary the features of the efm32gg230 is a subset of the feature set described in the efm32gg reference manual. table 2.1 (p. 7 ) describes device specific implementation of the features. table 2.1. configuration summary module configuration pin connections cortex-m3 full configuration na dbg full configuration dbg_swclk, dbg_swdio, dbg_swo msc full configuration na dma full configuration na rmu full configuration na emu full configuration na cmu full configuration cmu_out0, cmu_out1 wdog full configuration na prs full configuration na i2c0 full configuration i2c0_sda, i2c0_scl i2c1 full configuration i2c1_sda, i2c1_scl usart0 irda us0_tx, us0_rx. us0_clk, us0_cs usart1 i2s us1_tx, us1_rx, us1_clk, us1_cs usart2 i2s us2_tx, us2_rx, us2_clk, us2_cs leuart0 full configuration leu0_tx, leu0_rx leuart1 full configuration leu1_tx, leu1_rx timer0 full configuration with dti. tim0_cc[2:0] , tim0_cdti[2:0] timer1 full configuration tim1_cc[2:0] timer2 full configuration tim2_cc[2:0] timer3 full configuration tim3_cc[2:0] rtc full configuration na burtc full configuration na letimer0 full configuration let0_o[1:0] preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 8 www.energymicro.com module configuration pin connections pcnt0 pcnt0_s[1:0] pcnt1 8-bit count register pcnt1_s[1:0] pcnt2 8-bit count register pcnt2_s[1:0] acmp0 full configuration acmp0_ch[7:0], acmp0_o acmp1 full configuration acmp1_ch[7:0], acmp1_o vcmp full configuration na adc0 full configuration adc0_ch[7:0] dac0 full configuration dac0_out[1:0] , dac0_outxalt opamp full configuration outputs: opamp_outx, opamp_outxalt, inputs: opamp_px, opamp_nx aes full configuration na gpio 56 pins available pins are shown in table 4.3 (p. 51 ) 2.3 memory map the efm32gg230 memory map is shown in figure 2.2 (p. 8 ) , with ram and flash sizes for the largest memory configuration. figure 2.2. efm32gg230 memory map with largest ram and flash sizes preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 9 www.energymicro.com 3 electrical characteristics 3.1 test conditions 3.1.1 typical values the typical data are based on t amb =25c and v dd =3.0 v, as defined in table 3.2 (p. 9 ) , by simu- lation and/or technology characterisation unless otherwise specified. 3.1.2 minimum and maximum values the minimum and maximum values represent the worst conditions of ambient temperature, supply volt- age and frequencies, as defined in table 3.2 (p. 9 ) , by simulation and/or technology characterisa- tion unless otherwise specified. 3.2 absolute maximum ratings the absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. stress beyond the limits specified in table 3.1 (p. 9 ) may affect the device reliability or cause permanent damage to the device. functional operating conditions are given in table 3.2 (p. 9 ) . table 3.1. absolute maximum ratings symbol parameter condition min typ max unit t stg storage temperature range -40 150 1 c t s maximum soldering tem- perature latest ipc/jedec j-std-020 standard 260 c v ddmax external main supply volt- age 0 3.8 v v iopin voltage on any i/o pin -0.3 v dd +0.3 v 1 based on programmed devices tested for 10000 hours at 150oc. storage temperature affects retention of preprogrammed cal- ibration values stored in flash. please refer to the flash section in the electrical characteristics for information on flash data re- tention for different temperatures. 3.3 general operating conditions 3.3.1 general operating conditions table 3.2. general operating conditions symbol parameter min typ max unit t amb ambient temperature range -40 85 c v ddop operating supply voltage 1.85 3.8 v f apb internal apb clock frequency 48 mhz f ahb internal ahb clock frequency 48 mhz preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 10 www.energymicro.com 3.3.2 environmental table 3.3. environmental symbol parameter condition min typ max unit v esdhbm esd (human body model hbm) t amb =25c 2 kv v esdcdm esd (charged device model, cdm) t amb =25c 1 kv latch-up sensitivity test passed level a according to jedec jesd 78b method class ii, 85c. preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 11 www.energymicro.com 3.4 current consumption table 3.4. current consumption symbol parameter condition min typ max unit 32 mhz hfxo, all peripheral clocks disabled, v dd = 3.0 v 200 a/ mhz 28 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v 201 261 a/ mhz 21 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v 203 263 a/ mhz 14 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v 204 270 a/ mhz 11 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v 207 273 a/ mhz 6.6 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v 212 282 a/ mhz i em0 em0 current. no prescal- ing. running prime num- ber calculation code from flash. 1.2 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v 244 a/ mhz 32 mhz hfxo, all peripheral clocks disabled, v dd = 3.0 v 50 a/ mhz 28 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v 52 69 a/ mhz 21 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v 53 71 a/ mhz 14 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v 56 77 a/ mhz 11 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v 57 80 a/ mhz 6.6 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v 62 92 a/ mhz i em1 em1 current 1.2 mhz hfrco. all peripher- al clocks disabled, v dd = 3.0 v 114 a/ mhz em2 current with rtc at 1 hz, rtc prescaled to 1khz, 32.768 khz lfrco, v dd = 3.0 v, t amb =25c 1.1 a i em2 em2 current em2 current with rtc at 1 hz, rtc prescaled to 1khz, 32.768 khz lfrco, v dd = 3.0 v, t amb =85c 4.0 8.0 a v dd = 3.0 v, t amb =25c 0.9 a i em3 em3 current v dd = 3.0 v, t amb =85c 3.8 7.8 a v dd = 3.0 v, t amb =25c 0.02 a i em4 em4 current v dd = 3.0 v, t amb =85c 0.25 0.7 a preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 12 www.energymicro.com 3.5 transition between energy modes table 3.5. energy modes transitions symbol parameter min typ max unit t em10 transition time from em1 to em0 0 1 hf core clk cycles t em20 transition time from em2 to em0 2 s t em30 transition time from em3 to em0 2 s t em40 transition time from em4 to em0 163 s 1 core wakeup time only. 3.6 power management table 3.6. power management symbol parameter condition min typ max unit v bodextthr- bod threshold on falling external supply voltage 1.82 1.85 v v bodintthr- bod threshold on falling internally regulated supply voltage 1.62 1.68 v v bodextthr+ bod threshold on rising ex- ternal supply voltage 1.85 v v porthr+ power-on reset (por) threshold on rising external supply voltage 1.98 v t reset delay from reset is re- leased until program execu- tion starts applies to power-on reset, brown-out reset and pin re- set. 163 s c decouple voltage regulator decou- pling capacitor. x5r capacitor recommended. apply between decouple pin and ground 1 f preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 13 www.energymicro.com 3.7 flash table 3.7. flash symbol parameter condition min typ max unit ec flash flash erase cycles before failure 20000 cycles t amb <150c 10000 h t amb <85c 10 years ret flash flash data retention t amb <70c 20 years t w_prog word (32-bit) programming time 20 s < 512kb 20 20.4 20.8 ms >= 512kb, lperase == 0 20 20.4 20.8 ms t perase page erase time >= 512kb, lperase == 1 40 40.4 40.8 ms < 512kb 40 40.8 41.6 ms t derase device erase time >= 512kb 161.6 ms < 512kb 7 1 ma >= 512kb, lperase == 0 14 1 ma i erase erase current >= 512kb, lperase == 1 7 1 ma < 512kb 7 1 ma >= 512kb, lpwrite == 0 14 1 ma i write write current >= 512kb, lpwrite == 1 7 1 ma v flash supply voltage during flash erase and write 1.8 3.8 v 1 measured at 25c preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 14 www.energymicro.com 3.8 general purpose input output table 3.8. gpio symbol parameter condition min typ max unit v ioil input low voltage 0.3v dd v v ioih input high voltage 0.7v dd v sourcing 6 ma, v dd =1.8v, gpio_px_ctrl drive- mode = standard 0.75v dd v sourcing 6 ma, v dd =3.0v, gpio_px_ctrl drive- mode = standard 0.95v dd v sourcing 20 ma, v dd =1.8v, gpio_px_ctrl drive- mode = high 0.7v dd v v iooh output high voltage sourcing 20 ma, v dd =3.0v, gpio_px_ctrl drive- mode = high 0.9v dd v sinking 6 ma, v dd =1.8v, gpio_px_ctrl drive- mode = standard 0.25v dd v sinking 6 ma, v dd =3.0v, gpio_px_ctrl drive- mode = standard 0.05v dd v sinking 20 ma, v dd =1.8v, gpio_px_ctrl drive- mode = high 0.3v dd v v iool output low voltage sinking 20 ma, v dd =3.0v, gpio_px_ctrl drive- mode = high 0.1v dd v i ioleak input leakage current high impedance io connect- ed to ground or vdd +/-25 na r pu i/o pin pull-up resistor 40 kohm r pd i/o pin pull-down resistor 40 kohm r ioesd internal esd series resistor 200 ohm t ioglitch pulse width of pulses to be removed by the glitch sup- pression filter 10 50 ns 0.5 ma drive strength and load capacitance c l =12.5-25pf. 20+0.1c l 250 ns t ioof output fall time 2ma drive strength and load capacitance c l =350-600pf 20+0.1c l 250 ns v iohyst i/o pin hysteresis (v iothr+ - v iothr- ) v dd = 1.8 - 3.8 v 0.1v dd v preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 15 www.energymicro.com figure 3.1. typical low-level output current, 2v supply voltage 0.0 0.5 1.0 1.5 2.0 low-level out put volt age [ v] 0.00 0.05 0.10 0.15 0.20 low-level out put current [ m a] -40 c 25 c 85 c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 low-level out put volt age [ v] 0 1 2 3 4 5 low-level out put current [ m a] -40 c 25 c 85 c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 low-level out put volt age [ v] 0 5 10 15 20 low-level out put current [ m a] -40 c 25 c 85 c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 low-level out put volt age [ v] 0 5 10 15 20 25 30 35 40 45 low-level out put current [ m a] -40 c 25 c 85 c gpio_px_ctrl drivemode = high preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 16 www.energymicro.com figure 3.2. typical high-level output current, 2v supply voltage 0.0 0.5 1.0 1.5 2.0 high-level out put volt age [ v] ?0.20 ?0.15 ?0.10 ?0.05 0.00 high-level out put current [ m a] -40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 high-level out put volt age [ v] ?2.5 ?2.0 ?1.5 ?1.0 ?0.5 0.0 high-level out put current [ m a] -40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 high-level out put volt age [ v] ?20 ?15 ?10 ?5 0 high-level out put current [ m a] -40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 high-level out put volt age [ v] ?50 ?40 ?30 ?20 ?10 0 high-level out put current [ m a] -40c 25c 85c gpio_px_ctrl drivemode = high preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 17 www.energymicro.com figure 3.3. typical low-level output current, 3v supply voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 low-level out put volt age [ v] 0.0 0.1 0.2 0.3 0.4 0.5 low-level out put current [ m a] -40 c 25 c 85 c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 2.5 3.0 low-level out put volt age [ v] 0 2 4 6 8 10 low-level out put current [ m a] -40 c 25 c 85 c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 2.5 3.0 low-level out put volt age [ v] 0 5 10 15 20 25 30 35 40 low-level out put current [ m a] -40 c 25 c 85 c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 2.5 3.0 low-level out put volt age [ v] 0 10 20 30 40 50 low-level out put current [ m a] -40 c 25 c 85 c gpio_px_ctrl drivemode = high preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 18 www.energymicro.com figure 3.4. typical high-level output current, 3v supply voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 high-level out put volt age [ v] ?0.5 ?0.4 ?0.3 ?0.2 ?0.1 0.0 high-level out put current [ m a] -40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 2.5 3.0 high-level out put volt age [ v] ?6 ?5 ?4 ?3 ?2 ?1 0 high-level out put current [ m a] -40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 2.5 3.0 high-level out put volt age [ v] ?50 ?40 ?30 ?20 ?10 0 high-level out put current [ m a] -40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 2.5 3.0 high-level out put volt age [ v] ?50 ?40 ?30 ?20 ?10 0 high-level out put current [ m a] -40c 25c 85c gpio_px_ctrl drivemode = high preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 19 www.energymicro.com figure 3.5. typical low-level output current, 3.8v supply voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 low-level out put volt age [ v] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 low-level out put current [ m a] -40 c 25 c 85 c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 low-level out put volt age [ v] 0 2 4 6 8 10 12 14 low-level out put current [ m a] -40 c 25 c 85 c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 low-level out put volt age [ v] 0 10 20 30 40 50 low-level out put current [ m a] -40 c 25 c 85 c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 low-level out put volt age [ v] 0 10 20 30 40 50 low-level out put current [ m a] -40 c 25 c 85 c gpio_px_ctrl drivemode = high preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 20 www.energymicro.com figure 3.6. typical high-level output current, 3.8v supply voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 high-level out put volt age [ v] ?0.8 ?0.7 ?0.6 ?0.5 ?0.4 ?0.3 ?0.2 ?0.1 0.0 high-level out put current [ m a] -40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 high-level out put volt age [ v] ?9 ?8 ?7 ?6 ?5 ?4 ?3 ?2 ?1 0 high-level out put current [ m a] -40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 high-level out put volt age [ v] ?50 ?40 ?30 ?20 ?10 0 high-level out put current [ m a] -40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 high-level out put volt age [ v] ?50 ?40 ?30 ?20 ?10 0 high-level out put current [ m a] -40c 25c 85c gpio_px_ctrl drivemode = high preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 21 www.energymicro.com 3.9 oscillators 3.9.1 lfxo table 3.9. lfxo symbol parameter condition min typ max unit f lfxo supported nominal crystal frequency 32.768 khz esr lfxo supported crystal equiv- alent series resistance (esr) 30 120 kohm c lfxol supported crystal external load range 5 25 pf dc lfxo duty cycle 48 50 53.5 % i lfxo current consumption for core and buffer after start- up. esr=30 kohm, c l =10 pf, lfxoboost in cmu_ctrl is 1 190 na t lfxo start- up time. esr=30 kohm, c l =10 pf, 40% - 60% duty cycle has been reached, lfxoboost in cmu_ctrl is 1 400 ms for safe startup of a given crystal, the load capacitance should be larger than the value indicated in figure 3.7 (p. 21 ) and in table 3.10 (p. 22 ) for a given lfxoboost setting. the minimum supported load capacitance depends on the crystal shunt capacitance, c 0 , which is specified in crystal vendors? datasheet. figure 3.7. minimum load capacitance (c lfxol ) requirement for safe crystal startup 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 c0 [ pf] 2 4 6 8 10 12 14 16 18 20 cl [ pf] lfxoboost= 0,redlfxoboost= 1 lfxoboost= 0,redlfxoboost= 0 lfxoboost= 1,redlfxoboost= 1 lfxoboost= 1,redlfxoboost= 0 preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 22 www.energymicro.com table 3.10. minimum load capacitance (c lfxol ) requirement for safe crystal startup symbol capacitance [pf] shunt capacitance c 0 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 cl min lfxoboost = 0 redlfxoboost = 1 3.7 4.0 4.3 4.5 4.8 5.0 5.3 5.5 5.7 5.9 6.0 6.2 6.4 6.5 6.7 6.9 cl min lfxoboost = 1 redlfxoboost = 0 7.3 7.7 8.2 8.6 9.0 9.3 9.6 10.0 10.3 10.5 10.8 11.1 11.3 11.6 11.8 12.1 cl min lfxoboost = 1 redlfxoboost = 1 10.0 10.6 11.1 11.6 12.1 12.6 13.0 13.4 13.8 14.1 14.5 14.8 15.1 15.4 15.7 16.0 cl min lfxoboost = 1 redlfxoboost = 0 12.5 13.2 13.9 14.5 15.0 15.5 16.0 16.5 16.9 17.4 17.8 18.2 18.5 18.9 19.3 19.6 3.9.2 hfxo table 3.11. hfxo symbol parameter condition min typ max unit f hfxo supported nominal crystal frequency 4 48 mhz crystal frequency 32 mhz 30 60 ohm esr hfxo supported crystal equiv- alent series resistance (esr) crystal frequency 4 mhz 400 1500 ohm g mhfxo the transconductance of the hfxo input transistor at crystal startup hfxoboost in cmu_ctrl equals 0b11 20 ms c hfxol supported crystal external load range 5 25 pf dc hfxo duty cycle 46 50 54 % 4 mhz: esr=400 ohm, c l =20 pf, hfxoboost in cmu_ctrl equals 0b11 85 a i hfxo current consumption for hfxo after startup 32 mhz: esr=30 ohm, c l =10 pf, hfxoboost in cmu_ctrl equals 0b11 165 a t hfxo startup time 32 mhz: esr=30 ohm, c l =10 pf, hfxoboost in cmu_ctrl equals 0b11 400 s 3.9.3 lfrco table 3.12. lfrco symbol parameter condition min typ max unit f lfrco oscillation frequency , v dd = 3.0 v, t amb =25c 32.768 khz t lfrco startup time not including software calibration 150 s i lfrco current consumption 190 na tunestep l- frco frequency step for lsb change in tuning value 1.5 % preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 23 www.energymicro.com figure 3.8. calibrated lfrco frequency vs temperature and supply voltage 1.8 2.2 2.6 3.0 3.4 3.8 vdd [ v] 30 32 34 36 38 40 42 frequency [ khz] -40 c 25 c 85 c ?40 ?15 5 25 45 65 85 tem perat ure [ c] 30 32 34 36 38 40 42 frequency [ khz] 1.8 v 3 v 3.8 v 3.9.4 hfrco table 3.13. hfrco symbol parameter condition min typ max unit 28 mhz frequency band 28 mhz 21 mhz frequency band 21 mhz 14 mhz frequency band 14 mhz 11 mhz frequency band 11 mhz 7 mhz frequency band 6.6 1 mhz f hfrco oscillation frequency, v dd = 3.0 v, t amb =25c 1 mhz frequency band 1.2 2 mhz t hfrco_settling settling time after start-up f hfrco = 14 mhz 0.6 cycles f hfrco = 28 mhz 106 a f hfrco = 21 mhz 93 a f hfrco = 14 mhz 77 a f hfrco = 11 mhz 72 a f hfrco = 6.6 mhz 63 a i hfrco current consumption f hfrco = 1.2 mhz 22 a dc hfrco duty cycle f hfrco = 14 mhz 48.5 50 51 % tunestep h- frco frequency step for lsb change in tuning value 0.3 % 1 7 mhz for devices with prod. rev. < 19. 2 1 mhz for devices with prod. rev. < 19. preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 24 www.energymicro.com figure 3.9. calibrated hfrco 11 mhz band frequency vs temperature and supply voltage 1.8 2.2 2.6 3.0 3.4 3.8 vdd [ v] 10.80 10.85 10.90 10.95 11.00 11.05 11.10 11.15 frequency [ mhz] -40c 25c 85c ?40 ?15 5 25 45 65 85 tem perat ure [ c] 10.80 10.85 10.90 10.95 11.00 11.05 11.10 11.15 11.20 frequency [ mhz] 1.8 v 3 v 3.8 v figure 3.10. calibrated hfrco 14 mhz band frequency vs temperature and supply voltage 1.8 2.2 2.6 3.0 3.4 3.8 vdd [ v] 13.85 13.90 13.95 14.00 14.05 14.10 14.15 frequency [ mhz] -40 c 25 c 85 c ?40 ?15 5 25 45 65 85 tem perat ure [ c] 13.85 13.90 13.95 14.00 14.05 14.10 14.15 frequency [ mhz] 1.8 v 3 v 3.8 v figure 3.11. calibrated hfrco 21 mhz band frequency vs temperature and supply voltage 1.8 2.2 2.6 3.0 3.4 3.8 vdd [ v] 20.6 20.7 20.8 20.9 21.0 21.1 21.2 frequency [ mhz] -40 c 25 c 85 c ?40 ?15 5 25 45 65 85 tem perat ure [ c] 20.6 20.7 20.8 20.9 21.0 21.1 21.2 frequency [ mhz] 1.8 v 3 v 3.8 v preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 25 www.energymicro.com figure 3.12. calibrated hfrco 28 mhz band frequency vs temperature and supply voltage 1.8 2.2 2.6 3.0 3.4 3.8 vdd [ v] 27.4 27.5 27.6 27.7 27.8 27.9 28.0 28.1 frequency [ mhz] -40 c 25 c 85 c ?40 ?15 5 25 45 65 85 tem perat ure [ c] 27.4 27.5 27.6 27.7 27.8 27.9 28.0 28.1 frequency [ mhz] 1.8 v 3 v 3.8 v 3.9.5 ulfrco table 3.14. ulfrco symbol parameter condition min typ max unit f ulfrco oscillation frequency 25c, 3v 0.8 1.5 khz tc ulfrco temperature coefficient 0.05 %/c vc ulfrco supply voltage coefficient -18.2 %/v 3.10 analog digital converter (adc) table 3.15. adc symbol parameter condition min typ max unit single ended 0 v ref v v adcin input voltage range differential -v ref /2 v ref /2 v v adcrefin input range of external ref- erence voltage, single end- ed and differential 1.25 v dd v v adcrefin_ch7 input range of external neg- ative reference voltage on channel 7 see v adcrefin 0 v dd - 1.1 v v adcrefin_ch6 input range of external pos- itive reference voltage on channel 6 see v adcrefin 0.625 v dd v v adccmin common mode input range 0 v dd v i adcin input current 2pf sampling capacitors <100 na cmrr adc analog input common mode rejection ratio 65 db 1 msamples/s, 12 bit, exter- nal reference 351 a i adc average active current 10 ksamples/s 12 bit, internal 1.25 v reference, warmup- 67 a preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 26 www.energymicro.com symbol parameter condition min typ max unit mode in adcn_ctrl set to 0b00 10 ksamples/s 12 bit, internal 1.25 v reference, warmup- mode in adcn_ctrl set to 0b01 63 a 10 ksamples/s 12 bit, internal 1.25 v reference, warmup- mode in adcn_ctrl set to 0b10 64 a i adcref current consumption of in- ternal voltage reference internal voltage reference 65 a c adcin input capacitance 2 pf r adcin input on resistance 1 mohm r adcfilt input rc filter resistance 10 kohm c adcfilt input rc filter/decoupling capacitance 250 ff f adcclk adc clock frequency 13 mhz 6 bit 7 adc- clk cycles 10 bit 11 adc- clk cycles t adcconv conversion time 12 bit 13 adc- clk cycles t adcacq acquisition time programmable 1 256 adc- clk cycles t adcacqvdd3 required acquisition time for vdd/3 reference 2 s startup time of reference generator and adc core in normal mode 5 s t adcstart startup time of reference generator and adc core in keepadcwarm mode 1 s 1 msamples/s, 12 bit, single ended, internal 1.25v refer- ence 59 db 1 msamples/s, 12 bit, single ended, internal 2.5v refer- ence 63 db 1 msamples/s, 12 bit, single ended, v dd reference 65 db 1 msamples/s, 12 bit, differ- ential, internal 1.25v refer- ence 60 db snr adc signal to noise ratio (snr) 1 msamples/s, 12 bit, differ- ential, internal 2.5v reference 65 db preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 27 www.energymicro.com symbol parameter condition min typ max unit 1 msamples/s, 12 bit, differ- ential, 5v reference 54 db 1 msamples/s, 12 bit, differ- ential, v dd reference 67 db 1 msamples/s, 12 bit, differ- ential, 2xv dd reference 69 db 200 ksamples/s, 12 bit, sin- gle ended, internal 1.25v ref- erence 62 db 200 ksamples/s, 12 bit, sin- gle ended, internal 2.5v refer- ence 63 db 200 ksamples/s, 12 bit, single ended, v dd reference 67 db 200 ksamples/s, 12 bit, dif- ferential, internal 1.25v refer- ence 63 db 200 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 66 db 200 ksamples/s, 12 bit, differ- ential, 5v reference 66 db 200 ksamples/s, 12 bit, differ- ential, v dd reference 69 db 200 ksamples/s, 12 bit, differ- ential, 2xv dd reference 70 db 1 msamples/s, 12 bit, single ended, internal 1.25v refer- ence 58 db 1 msamples/s, 12 bit, single ended, internal 2.5v refer- ence 62 db 1 msamples/s, 12 bit, single ended, v dd reference 64 db 1 msamples/s, 12 bit, differ- ential, internal 1.25v refer- ence 60 db 1 msamples/s, 12 bit, differ- ential, internal 2.5v reference 64 db 1 msamples/s, 12 bit, differ- ential, 5v reference 54 db 1 msamples/s, 12 bit, differ- ential, v dd reference 66 db 1 msamples/s, 12 bit, differ- ential, 2xv dd reference 68 db 200 ksamples/s, 12 bit, sin- gle ended, internal 1.25v ref- erence 61 db sndr adc signal to noise-puls-distor- tion ratio (sndr) 200 ksamples/s, 12 bit, sin- gle ended, internal 2.5v refer- ence 65 db preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 28 www.energymicro.com symbol parameter condition min typ max unit 200 ksamples/s, 12 bit, single ended, v dd reference 66 db 200 ksamples/s, 12 bit, dif- ferential, internal 1.25v refer- ence 63 db 200 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 66 db 200 ksamples/s, 12 bit, differ- ential, 5v reference 66 db 200 ksamples/s, 12 bit, differ- ential, v dd reference 68 db 200 ksamples/s, 12 bit, differ- ential, 2xv dd reference 69 db 1 msamples/s, 12 bit, single ended, internal 1.25v refer- ence 64 dbc 1 msamples/s, 12 bit, single ended, internal 2.5v refer- ence 76 dbc 1 msamples/s, 12 bit, single ended, v dd reference 73 dbc 1 msamples/s, 12 bit, differ- ential, internal 1.25v refer- ence 66 dbc 1 msamples/s, 12 bit, differ- ential, internal 2.5v reference 77 dbc 1 msamples/s, 12 bit, differ- ential, v dd reference 76 dbc 1 msamples/s, 12 bit, differ- ential, 2xv dd reference 75 dbc 1 msamples/s, 12 bit, differ- ential, 5v reference 69 dbc 200 ksamples/s, 12 bit, sin- gle ended, internal 1.25v ref- erence 75 dbc 200 ksamples/s, 12 bit, sin- gle ended, internal 2.5v refer- ence 75 dbc 200 ksamples/s, 12 bit, single ended, v dd reference 76 dbc 200 ksamples/s, 12 bit, dif- ferential, internal 1.25v refer- ence 79 dbc 200 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 79 dbc 200 ksamples/s, 12 bit, differ- ential, 5v reference 78 dbc sfdr adc spurious-free dynamic range (sfdr) 200 ksamples/s, 12 bit, differ- ential, v dd reference 79 dbc preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 29 www.energymicro.com symbol parameter condition min typ max unit 200 ksamples/s, 12 bit, differ- ential, 2xv dd reference 79 dbc after calibration, single ended 0.3 mv v adcoffset offset voltage after calibration, differential 0.3 mv -1.92 mv/c tgrad adcth thermometer output gradi- ent -6.3 adc codes/ c dnl adc differential non-linearity (dnl) 0.7 lsb inl adc integral non-linearity (inl), end point method 1.2 lsb mc adc no missing codes 11.999 1 12 bits 1.25v reference 0.01 2 0.033 3 %/c gain ed gain error drift 2.5v reference 0.01 2 0.03 3 %/c 1.25v reference 0.2 2 0.7 3 lsb/c offset ed offset error drift 2.5v reference 0.2 2 0.62 3 lsb/c 1 on the average every adc will have one missing code, most likely to appear around 2048 +/- n*512 where n can be a value in the set {-3, -2, -1, 1, 2, 3}. there will be no missing code around 2048, and in spite of the missing code the adc will be monotonic at all times so that a response to a slowly increasing input will always be a slowly increasing output. around the one code that is missing, the neighbour codes will look wider in the dnl plot. the spectra will show spurs on the level of -78dbc for a full scale input for chips that have the missing code issue. 2 typical numbers given by abs(mean) / (85 - 25). 3 max number given by (abs(mean) + 3x stddev) / (85 - 25). the integral non-linearity (inl) and differential non-linearity parameters are explained in figure 3.13 (p. 29 ) and figure 3.14 (p. 30 ) , respectively. figure 3.13. integral non-linearity (inl) ideal t ransfer curve digit al ouput code analog input inl= |[ (v d - v ss )/ v lsbideal ] - d| where 0 < d < 2 n - 1 0 1 2 3 4092 4093 4094 4095 v offset act ual adc t ranfer funct ion before offset and gain correct ion act ual adc t ranfer funct ion aft er offset and gain correct ion inl error ( end point inl) preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 30 www.energymicro.com figure 3.14. differential non-linearity (dnl) ideal t ransfer curve digit al ouput code analog input dnl= |[ (v d + 1 - v d )/ v lsbideal ] - 1| where 0 < d < 2 n - 2 0 1 2 3 4092 4093 4094 4095 act ual t ransfer funct ion wit h one m issing code . 4 5 full scale range 0.5 lsb ideal code cent er ideal 50% transit ion point ideal spacing bet ween t wo adjacent codes v lsbideal = 1 lsb code widt h = 2 lsb dnl = 1 lsb exa m p le : adjacent input value v d + 1 corrresponds t o digit al out put code d + 1 exa m p le : input value v d corrresponds t o digit al out put code d preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 31 www.energymicro.com 3.10.1 typical performance figure 3.15. adc frequency spectrum, vdd = 3v, temp = 25 0 20 40 60 80 frequency [ khz] ?180 ?160 ?140 ?120 ?100 ?80 ?60 ?40 ?20 0 am plit ude [ db] 1.25v reference 0 20 40 60 80 frequency [ khz] ?160 ?140 ?120 ?100 ?80 ?60 ?40 ?20 0 am plit ude [ db] 2.5v reference 0 20 40 60 80 frequency [ khz] ?180 ?160 ?140 ?120 ?100 ?80 ?60 ?40 ?20 0 am plit ude [ db] 2xvddvss reference 0 20 40 60 80 frequency [ khz] ?160 ?140 ?120 ?100 ?80 ?60 ?40 ?20 0 am plit ude [ db] 5vdiff reference 0 20 40 60 80 frequency [ khz] ?180 ?160 ?140 ?120 ?100 ?80 ?60 ?40 ?20 0 am plit ude [ db] vdd reference preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 32 www.energymicro.com figure 3.16. adc integral linearity error vs code, vdd = 3v, temp = 25 0 512 1024 1536 2048 2560 3072 3584 4096 out put code ?1.0 ?0.5 0.0 0.5 1.0 1.5 inl (lsb) 1.25v reference 0 512 1024 1536 2048 2560 3072 3584 4096 out put code ?1.0 ?0.5 0.0 0.5 1.0 1.5 inl (lsb) 2.5v reference 0 512 1024 1536 2048 2560 3072 3584 4096 out put code ?0.6 ?0.4 ?0.2 0.0 0.2 0.4 0.6 0.8 inl (lsb) 2xvddvss reference 0 512 1024 1536 2048 2560 3072 3584 4096 out put code ?0.5 0.0 0.5 1.0 inl (lsb) 5vdiff reference 0 512 1024 1536 2048 2560 3072 3584 4096 out put code ?0.8 ?0.6 ?0.4 ?0.2 0.0 0.2 0.4 0.6 0.8 inl (lsb) vdd reference preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 33 www.energymicro.com figure 3.17. adc differential linearity error vs code, vdd = 3v, temp = 25 0 512 1024 1536 2048 2560 3072 3584 4096 out put code ?1.0 ?0.5 0.0 0.5 1.0 dnl (lsb) 1.25v reference 0 512 1024 1536 2048 2560 3072 3584 4096 out put code ?1.0 ?0.5 0.0 0.5 1.0 dnl (lsb) 2.5v reference 0 512 1024 1536 2048 2560 3072 3584 4096 out put code ?1.0 ?0.5 0.0 0.5 1.0 dnl (lsb) 2xvddvss reference 0 512 1024 1536 2048 2560 3072 3584 4096 out put code ?1.0 ?0.5 0.0 0.5 1.0 dnl (lsb) 5vdiff reference 0 512 1024 1536 2048 2560 3072 3584 4096 out put code ?1.0 ?0.5 0.0 0.5 1.0 dnl (lsb) vdd reference preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 34 www.energymicro.com figure 3.18. adc absolute offset, common mode = vdd /2 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd (v) ?4 ?3 ?2 ?1 0 1 2 3 4 5 act ual offset [ lsb] vref= 1v25 vref= 2v5 vref= 2xvddvss vref= 5vdiff vref= vdd offset vs supply voltage, temp = 25 ?40 ?15 5 25 45 65 85 tem p (c) ?1.0 ?0.5 0.0 0.5 1.0 1.5 2.0 act ual offset [ lsb] vref= 1v25 vref= 2v5 vref= 2xvddvss vref= 5vdiff vref= vdd offset vs temperature, vdd = 3v figure 3.19. adc dynamic performance vs temperature for all adc references, vdd = 3v ?40 ?15 5 25 45 65 85 tem perat ure [ c] 63 64 65 66 67 68 69 70 71 snr [ db] 1v25 2v5 vdd 5vdiff 2xvddvss signal to noise ratio (snr) ?40 ?15 5 25 45 65 85 tem perat ure [ c] 78.0 78.2 78.4 78.6 78.8 79.0 79.2 79.4 sfdr [ db] 1v25 2v5 vdd 5vdiff 2xvddvss spurious-free dynamic range (sfdr) preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 35 www.energymicro.com figure 3.20. adc temperature sensor readout ?40 ?25 ?15 ?5 5 15 25 35 45 55 65 75 85 tem perat ure [ c] 2100 2200 2300 2400 2500 2600 sensor readout vdd= 1.8 vdd= 3 vdd= 3.8 3.11 digital analog converter (dac) table 3.16. dac symbol parameter condition min typ max unit vdd voltage reference, single ended 0 v dd v v dacout output voltage range vdd voltage reference, differ- ential -v dd v dd v v daccm output common mode volt- age range 0 v dd v 500 ksamples/s, 12bit 400 a 100 ksamples/s, 12 bit 200 a i dac active current including ref- erences for 2 channels 1 ksamples/s 12 bit normal 38 a sr dac sample rate 500 ksam- ples/s continuous mode 1000 khz sample/hold mode 250 khz f dac dac clock frequency sample/off mode 250 khz cyc dacconv clock cyckles per conver- sion 2 t dacconv conversion time 2 s t dacsettle settling time 5 s 500 ksamples/s, 12 bit, sin- gle ended, internal 1.25v ref- erence 58 db 500 ksamples/s, 12 bit, sin- gle ended, internal 2.5v refer- ence 59 db snr dac signal to noise ratio (snr) 500 ksamples/s, 12 bit, dif- ferential, internal 1.25v refer- ence 58 db preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 36 www.energymicro.com symbol parameter condition min typ max unit 500 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 58 db 500 ksamples/s, 12 bit, differ- ential, v dd reference 59 db 500 ksamples/s, 12 bit, sin- gle ended, internal 1.25v ref- erence 57 db 500 ksamples/s, 12 bit, sin- gle ended, internal 2.5v refer- ence 54 db 500 ksamples/s, 12 bit, dif- ferential, internal 1.25v refer- ence 56 db 500 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 53 db sndr dac signal to noise-pulse dis- tortion ratio (sndr) 500 ksamples/s, 12 bit, differ- ential, v dd reference 55 db 500 ksamples/s, 12 bit, sin- gle ended, internal 1.25v ref- erence 62 dbc 500 ksamples/s, 12 bit, sin- gle ended, internal 2.5v refer- ence 56 dbc 500 ksamples/s, 12 bit, dif- ferential, internal 1.25v refer- ence 61 dbc 500 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 55 dbc sfdr dac spurious-free dynamic range(sfdr) 500 ksamples/s, 12 bit, differ- ential, v dd reference 60 dbc after calibration, single ended 2 mv v dacoffset offset voltage after calibration, differential 2 mv dnl dac differential non-linearity 1 lsb inl dac integral non-linearity 5 lsb mc dac no missing codes 12 bits 3.12 operational amplifier (opamp) the electrical characteristics for the operational amplifiers are based on simulations. table 3.17. opamp symbol parameter condition min typ max unit (opa2)biasprog=0xf, (opa2)halfbias=0x0, unity gain 400 a i opamp active current (opa2)biasprog=0x7, (opa2)halfbias=0x1, unity gain 100 a preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 37 www.energymicro.com symbol parameter condition min typ max unit (opa2)biasprog=0x0, (opa2)halfbias=0x1, unity gain 13 a (opa2)biasprog=0xf, (opa2)halfbias=0x0 101 db (opa2)biasprog=0x7, (opa2)halfbias=0x1 98 db g ol open loop gain (opa2)biasprog=0x0, (opa2)halfbias=0x1 91 db (opa2)biasprog=0xf, (opa2)halfbias=0x0 6.1 mhz (opa2)biasprog=0x7, (opa2)halfbias=0x1 1.8 mhz gbw opamp gain bandwidth product (opa2)biasprog=0x0, (opa2)halfbias=0x1 0.25 mhz (opa2)biasprog=0xf, (opa2)halfbias=0x0, c l =75 pf 64 (opa2)biasprog=0x7, (opa2)halfbias=0x1, c l =75 pf 58 pm opamp phase margin (opa2)biasprog=0x0, (opa2)halfbias=0x1, c l =75 pf 58 r input input resistance 100 mohm r load load resistance 200 ohm i load_dc dc load current 11 ma opaxhcmdis=0 v ss v dd v v input input voltage opaxhcmdis=1 v ss v dd -1.2 v v output output voltage v ss v dd v unity gain, v ss preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 40 www.energymicro.com 3.13 analog comparator (acmp) table 3.18. acmp symbol parameter condition min typ max unit v acmpin input voltage range 0 v dd v v acmpcm acmp common mode volt- age range 0 v dd v biasprog=0b0000, full- bias=0 and halfbias=1 in acmpn_ctrl register 0.1 a biasprog=0b1111, full- bias=0 and halfbias=0 in acmpn_ctrl register 2.87 a i acmp active current biasprog=0b1111, full- bias=1 and halfbias=0 in acmpn_ctrl register 195 a internal voltage reference off. using external voltage refer- ence 0 a i acmpref current consumption of in- ternal voltage reference internal voltage reference 5 a single ended 10 mv v acmpoffset offset voltage differential 10 mv v acmphyst acmp hysteresis programmable 17 mv csressel=0b00 in acmpn_inputsel 39 kohm csressel=0b01 in acmpn_inputsel 71 kohm csressel=0b10 in acmpn_inputsel 104 kohm r csres capacitive sense internal resistance csressel=0b11 in acmpn_inputsel 136 kohm the total acmp current is the sum of the contributions from the acmp and its internal voltage reference as given in equation 3.1 (p. 40 ) . i acmpref is zero if an external voltage reference is used. total acmp active current i acmptotal = i acmp + i acmpref (3.1) preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 41 www.energymicro.com figure 3.26. typical acmp characteristics 0 4 8 12 acmp_ctrl_biasprog 0.0 0.5 1.0 1.5 2.0 2.5 current [ ua] current consumption 0 2 4 6 8 10 12 14 acmp_ctrl_biasprog 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 response tim e [ us] hystsel= 0.0 hystsel= 2.0 hystsel= 4.0 hystsel= 6.0 response time 0 1 2 3 4 5 6 7 acmp_ctrl_hystsel 0 20 40 60 80 100 hyst eresis [ m v] biasprog= 0.0 biasprog= 4.0 biasprog= 8.0 biasprog= 12.0 hysteresis preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 42 www.energymicro.com 3.14 voltage comparator (vcmp) table 3.19. vcmp symbol parameter condition min typ max unit v vcmpin input voltage range v dd v v vcmpcm vcmp common mode volt- age range v dd v biasprog=0b0000 and halfbias=1 in vcmpn_ctrl register 0.1 a i vcmp active current biasprog=0b1111 and halfbias=0 in vcmpn_ctrl register. lpref=0. 14.7 a t vcmpref startup time reference gen- erator normal 10 s single ended 10 mv v vcmpoffset offset voltage differential 10 mv v vcmphyst vcmp hysteresis 17 mv the v dd trigger level can be configured by setting the triglevel field of the vcmp_ctrl register in accordance with the following equation: vcmp trigger level as a function of level setting v dd trigger level =1.667v+0.034 triglevel (3.2) 3.15 digital peripherals table 3.20. digital peripherals symbol parameter condition min typ max unit i usart usart current usart idle current, clock en- abled 7.5 a/ mhz i uart uart current uart idle current, clock en- abled 5.63 a/ mhz i leuart leuart current leuart idle current, clock enabled 150 na i i2c i2c current i2c idle current, clock en- abled 6.25 a/ mhz i timer timer current timer_0 idle current, clock enabled 8.75 a/ mhz i letimer letimer current letimer idle current, clock enabled 150 na i pcnt pcnt current pcnt idle current, clock en- abled 100 na i rtc rtc current rtc idle current, clock en- abled 100 na i aes aes current aes idle current, clock en- abled 2.5 a/ mhz preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 43 www.energymicro.com symbol parameter condition min typ max unit i gpio gpio current gpio idle current, clock en- abled 5.31 a/ mhz i prs prs current prs idle current 2,81 a/ mhz i dma dma current clock enable 8.12 a/ mhz preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 44 www.energymicro.com 4 pinout and package note please refer to the application note "an0002 efm32 hardware design considerations" for guidelines on designing printed circuit boards (pcb's) for the efm32gg230. 4.1 pinout the efm32gg230 pinout is shown in figure 4.1 (p. 44 ) and table 4.1 (p. 44 ) . alternate locations are denoted by "#" followed by the location number (multiple locations on the same pin are split with "/"). alternate locations can be configured in the location bitfield in the *_route register in the module in question. figure 4.1. efm32gg230 pinout (top view, not to scale) table 4.1. device pinout qfn64 pin# and name pin alternate functionality / description pin # pin name analog timers communication other 0 vss ground 1 pa0 tim0_cc0 #0/1/4 leu0_rx #4 i2c0_sda #0 prs_ch0 #0 gpio_em4wu0 2 pa1 tim0_cc1 #0/1 i2c0_scl #0 cmu_clk1 #0 prs_ch1 #0 preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 45 www.energymicro.com qfn64 pin# and name pin alternate functionality / description pin # pin name analog timers communication other 3 pa2 tim0_cc2 #0/1 cmu_clk0 #0 etm_td0 #3 4 pa3 tim0_cdti0 #0 les_altex2 #0 etm_td1 #3 5 pa4 tim0_cdti1 #0 les_altex3 #0 etm_td2 #3 6 pa5 tim0_cdti2 #0 leu1_tx #1 les_altex4 #0 etm_td3 #3 7 pa6 leu1_rx #1 etm_tclk #3 gpio_em4wu1 8 iovdd_0 digital io power supply 0. 9 pc0 dac0_out0alt #0/ opamp_out0alt acmp0_ch0 tim0_cc1 #4 pcnt0_s0in #2 us0_tx #5 us1_tx #0 i2c0_sda #4 les_ch0 #0 prs_ch2 #0 10 pc1 dac0_out0alt #1/ opamp_out0alt acmp0_ch1 tim0_cc2 #4 pcnt0_s1in #2 us0_rx #5 us1_rx #0 i2c0_scl #4 les_ch1 #0 prs_ch3 #0 11 pc2 dac0_out0alt #2/ opamp_out0alt acmp0_ch2 tim0_cdti0 #4 us2_tx #0 les_ch2 #0 12 pc3 dac0_out0alt #3/ opamp_out0alt acmp0_ch3 tim0_cdti1 #4 us2_rx #0 les_ch3 #0 13 pc4 dac0_p0 #0/ opamp_p0 acmp0_ch4 tim0_cdti2 #4 letim0_out0 #3 pcnt1_s0in #0 us2_clk #0 i2c1_sda #0 les_ch4 #0 14 pc5 dac0_n0 #0/ opamp_n0 acmp0_ch5 letim0_out1 #3 pcnt1_s1in #0 us2_cs #0 i2c1_scl #0 les_ch5 #0 15 pb7 lfxtal_p tim1_cc0 #3 us0_tx #4 us1_clk #0 16 pb8 lfxtal_n tim1_cc1 #3 us0_rx #4 us1_cs #0 17 pa8 tim2_cc0 #0 18 pa9 tim2_cc1 #0 19 pa10 tim2_cc2 #0 20 resetn reset input. active low, with internal pull-up. 21 pb11 dac0_out0 #0/ opamp_out0 tim1_cc2 #3 letim0_out0 #1 i2c1_sda #1 22 pb12 dac0_out1 #0/ opamp_out1 letim0_out1 #1 i2c1_scl #1 23 avdd_1 analog power supply 1 . 24 pb13 hfxtal_p us0_clk #4/5 leu0_tx #1 25 pb14 hfxtal_n us0_cs #4/5 leu0_rx #1 26 iovdd_3 digital io power supply 3. 27 avdd_0 analog power supply 0. 28 pd0 adc0_ch0 dac0_out0alt #4/ opamp_out0alt dac0_out2 #1/ pcnt2_s0in #0 us1_tx #1 preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 46 www.energymicro.com qfn64 pin# and name pin alternate functionality / description pin # pin name analog timers communication other opamp_out2 29 pd1 adc0_ch1 dac0_out1alt #4/ opamp_out1alt tim0_cc0 #3 pcnt2_s1in #0 us1_rx #1 dbg_swo #2 30 pd2 adc0_ch2 tim0_cc1 #3 us1_clk #1 dbg_swo #3 31 pd3 adc0_ch3 dac0_n2 #0/ opamp_n2 tim0_cc2 #3 us1_cs #1 etm_td1 #0/2 32 pd4 adc0_ch4 dac0_p2 #0/ opamp_p2 leu0_tx #0 etm_td2 #0/2 33 pd5 adc0_ch5 dac0_out2 #0/ opamp_out2 leu0_rx #0 etm_td3 #0/2 34 pd6 adc0_ch6 dac0_p1 #0/ opamp_p1 tim1_cc0 #4 letim0_out0 #0 pcnt0_s0in #3 us1_rx #2 i2c0_sda #1 les_altex0 #0 acmp0_o #2 etm_td0 #0 35 pd7 adc0_ch7 dac0_n1 #0/ opamp_n1 tim1_cc1 #4 letim0_out1 #0 pcnt0_s1in #3 us1_tx #2 i2c0_scl #1 cmu_clk0 #2 les_altex1 #0 acmp1_o #2 etm_tclk #0 36 pd8 bu_vin cmu_clk1 #1 37 pc6 acmp0_ch6 leu1_tx #0 i2c0_sda #2 les_ch6 #0 etm_tclk #2 38 pc7 acmp0_ch7 leu1_rx #0 i2c0_scl #2 les_ch7 #0 etm_td0 #2 39 vdd_dreg power supply for on-chip voltage regulator. 40 decouple decouple output for on-chip voltage regulator. an external capacitance of size c decouple is required at this pin. 41 pc8 acmp1_ch0 tim2_cc0 #2 us0_cs #2 les_ch8 #0 42 pc9 acmp1_ch1 tim2_cc1 #2 us0_clk #2 les_ch9 #0 gpio_em4wu2 43 pc10 acmp1_ch2 tim2_cc2 #2 us0_rx #2 les_ch10 #0 44 pc11 acmp1_ch3 us0_tx #2 les_ch11 #0 45 pc12 dac0_out1alt #0/ opamp_out1alt acmp1_ch4 cmu_clk0 #1 les_ch12 #0 46 pc13 dac0_out1alt #1/ opamp_out1alt acmp1_ch5 tim0_cdti0 #1/3 tim1_cc0 #0 tim1_cc2 #4 pcnt0_s0in #0 les_ch13 #0 47 pc14 dac0_out1alt #2/ opamp_out1alt acmp1_ch6 tim0_cdti1 #1/3 tim1_cc1 #0 pcnt0_s1in #0 us0_cs #3 les_ch14 #0 48 pc15 dac0_out1alt #3/ opamp_out1alt acmp1_ch7 tim0_cdti2 #1/3 tim1_cc2 #0 us0_clk #3 les_ch15 #0 dbg_swo #1 49 pf0 tim0_cc0 #5 letim0_out0 #2 us1_clk #2 leu0_tx #3 i2c0_sda #5 dbg_swclk #0/1/2/3 50 pf1 tim0_cc1 #5 letim0_out1 #2 us1_cs #2 leu0_rx #3 i2c0_scl #5 dbg_swdio #0/1/2/3 gpio_em4wu3 51 pf2 tim0_cc2 #5 leu0_tx #4 acmp1_o #0 dbg_swo #0 gpio_em4wu4 preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 47 www.energymicro.com qfn64 pin# and name pin alternate functionality / description pin # pin name analog timers communication other 52 pf3 tim0_cdti0 #2/5 prs_ch0 #1 etm_td3 #1 53 pf4 tim0_cdti1 #2/5 prs_ch1 #1 54 pf5 tim0_cdti2 #2/5 prs_ch2 #1 55 iovdd_5 digital io power supply 5. 56 pe8 pcnt2_s0in #1 prs_ch3 #1 57 pe9 pcnt2_s1in #1 58 pe10 tim1_cc0 #1 us0_tx #0 bootloader_tx 59 pe11 tim1_cc1 #1 us0_rx #0 les_altex5 #0 bootloader_rx 60 pe12 tim1_cc2 #1 us0_rx #3 us0_clk #0 i2c0_sda #6 cmu_clk1 #2 les_altex6 #0 61 pe13 us0_tx #3 us0_cs #0 i2c0_scl #6 les_altex7 #0 acmp0_o #0 gpio_em4wu5 62 pe14 tim3_cc0 #0 leu0_tx #2 63 pe15 tim3_cc1 #0 leu0_rx #2 64 pa15 tim3_cc2 #0 4.2 alternate functionality pinout a wide selection of alternate functionality is available for multiplexing to various pins. this is shown in table 4.2 (p. 47 ) . the table shows the name of the alternate functionality in the first column, followed by columns showing the possible location bitfield settings. note some functionality, such as analog interfaces, do not have alternate settings or a loca- tion bitfield. in these cases, the pinout is shown in the column corresponding to loca- tion 0. table 4.2. alternate functionality overview alternate location functionality 0 1 2 3 4 5 6 description acmp0_ch0 pc0 analog comparator acmp0, channel 0. acmp0_ch1 pc1 analog comparator acmp0, channel 1. acmp0_ch2 pc2 analog comparator acmp0, channel 2. acmp0_ch3 pc3 analog comparator acmp0, channel 3. acmp0_ch4 pc4 analog comparator acmp0, channel 4. acmp0_ch5 pc5 analog comparator acmp0, channel 5. acmp0_ch6 pc6 analog comparator acmp0, channel 6. acmp0_ch7 pc7 analog comparator acmp0, channel 7. acmp0_o pe13 pd6 analog comparator acmp0, digital output. acmp1_ch0 pc8 analog comparator acmp1, channel 0. acmp1_ch1 pc9 analog comparator acmp1, channel 1. preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 48 www.energymicro.com alternate location functionality 0 1 2 3 4 5 6 description acmp1_ch2 pc10 analog comparator acmp1, channel 2. acmp1_ch3 pc11 analog comparator acmp1, channel 3. acmp1_ch4 pc12 analog comparator acmp1, channel 4. acmp1_ch5 pc13 analog comparator acmp1, channel 5. acmp1_ch6 pc14 analog comparator acmp1, channel 6. acmp1_ch7 pc15 analog comparator acmp1, channel 7. acmp1_o pf2 pd7 analog comparator acmp1, digital output. adc0_ch0 pd0 analog to digital converter adc0, input channel number 0. adc0_ch1 pd1 analog to digital converter adc0, input channel number 1. adc0_ch2 pd2 analog to digital converter adc0, input channel number 2. adc0_ch3 pd3 analog to digital converter adc0, input channel number 3. adc0_ch4 pd4 analog to digital converter adc0, input channel number 4. adc0_ch5 pd5 analog to digital converter adc0, input channel number 5. adc0_ch6 pd6 analog to digital converter adc0, input channel number 6. adc0_ch7 pd7 analog to digital converter adc0, input channel number 7. bootloader_rx pe11 bootloader rx bootloader_tx pe10 bootloader tx bu_vin pd8 battery input for backup power domain cmu_clk0 pa2 pc12 pd7 clock management unit, clock output number 0. cmu_clk1 pa1 pd8 pe12 clock management unit, clock output number 1. dac0_n0 / opamp_n0 pc5 operational amplifier 0 external negative input. dac0_n1 / opamp_n1 pd7 operational amplifier 1 external negative input. dac0_n2 / opamp_n2 pd3 operational amplifier 2 external negative input. dac0_out0 / opamp_out0 pb11 digital to analog converter dac0_out0 / opamp output channel number 0. dac0_out0alt / opamp_out0alt pc0 pc1 pc2 pc3 pd0 digital to analog converter dac0_out0alt / opamp alternative output for channel 0. dac0_out1 / opamp_out1 pb12 digital to analog converter dac0_out1 / opamp output channel number 1. dac0_out1alt / opamp_out1alt pc12 pc13 pc14 pc15 pd1 digital to analog converter dac0_out1alt / opamp alternative output for channel 1. dac0_out2 / opamp_out2 pd5 pd0 digital to analog converter dac0_out2 / opamp output channel number 2. dac0_p0 / opamp_p0 pc4 operational amplifier 0 external positive input. dac0_p1 / opamp_p1 pd6 operational amplifier 1 external positive input. dac0_p2 / opamp_p2 pd4 operational amplifier 2 external positive input. dbg_swclk pf0 pf0 pf0 pf0 debug-interface serial wire clock input. note that this function is enabled to pin out of reset, and has a built-in pull down. dbg_swdio pf1 pf1 pf1 pf1 debug-interface serial wire data input / output. note that this function is enabled to pin out of reset, and has a built-in pull up. preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 49 www.energymicro.com alternate location functionality 0 1 2 3 4 5 6 description dbg_swo pf2 pc15 pd1 pd2 debug-interface serial wire viewer output. note that this function is not enabled after reset, and must be enabled by software to be used. etm_tclk pd7 pc6 pa6 embedded trace module etm clock . etm_td0 pd6 pc7 pa2 embedded trace module etm data 0. etm_td1 pd3 pd3 pa3 embedded trace module etm data 1. etm_td2 pd4 pd4 pa4 embedded trace module etm data 2. etm_td3 pd5 pf3 pd5 pa5 embedded trace module etm data 3. gpio_em4wu0 pa0 pin can be used to wake the system up from em4 gpio_em4wu1 pa6 pin can be used to wake the system up from em4 gpio_em4wu2 pc9 pin can be used to wake the system up from em4 gpio_em4wu3 pf1 pin can be used to wake the system up from em4 gpio_em4wu4 pf2 pin can be used to wake the system up from em4 gpio_em4wu5 pe13 pin can be used to wake the system up from em4 hfxtal_n pb14 high frequency crystal (4 - 48 mhz) negative pin. also used as external optional clock input pin. hfxtal_p pb13 high frequency crystal (4 - 48 mhz) positive pin. i2c0_scl pa1 pd7 pc7 pc1 pf1 pe13 i2c0 serial clock line input / output. i2c0_sda pa0 pd6 pc6 pc0 pf0 pe12 i2c0 serial data input / output. i2c1_scl pc5 pb12 i2c1 serial clock line input / output. i2c1_sda pc4 pb11 i2c1 serial data input / output. les_altex0 pd6 lesense alternate exite output 0. les_altex1 pd7 lesense alternate exite output 1. les_altex2 pa3 lesense alternate exite output 2. les_altex3 pa4 lesense alternate exite output 3. les_altex4 pa5 lesense alternate exite output 4. les_altex5 pe11 lesense alternate exite output 5. les_altex6 pe12 lesense alternate exite output 6. les_altex7 pe13 lesense alternate exite output 7. les_ch0 pc0 lesense channel 0. les_ch1 pc1 lesense channel 1. les_ch2 pc2 lesense channel 2. les_ch3 pc3 lesense channel 3. les_ch4 pc4 lesense channel 4. les_ch5 pc5 lesense channel 5. les_ch6 pc6 lesense channel 6. les_ch7 pc7 lesense channel 7. les_ch8 pc8 lesense channel 8. les_ch9 pc9 lesense channel 9. les_ch10 pc10 lesense channel 10. les_ch11 pc11 lesense channel 11. les_ch12 pc12 lesense channel 12. preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 50 www.energymicro.com alternate location functionality 0 1 2 3 4 5 6 description les_ch13 pc13 lesense channel 13. les_ch14 pc14 lesense channel 14. les_ch15 pc15 lesense channel 15. letim0_out0 pd6 pb11 pf0 pc4 low energy timer letim0, output channel 0. letim0_out1 pd7 pb12 pf1 pc5 low energy timer letim0, output channel 1. leu0_rx pd5 pb14 pe15 pf1 pa0 leuart0 receive input. leu0_tx pd4 pb13 pe14 pf0 pf2 leuart0 transmit output. also used as receive input in half duplex communication. leu1_rx pc7 pa6 leuart1 receive input. leu1_tx pc6 pa5 leuart1 transmit output. also used as receive input in half duplex communication. lfxtal_n pb8 low frequency crystal (typically 32.768 khz) negative pin. also used as an optional external clock input pin. lfxtal_p pb7 low frequency crystal (typically 32.768 khz) positive pin. pcnt0_s0in pc13 pc0 pd6 pulse counter pcnt0 input number 0. pcnt0_s1in pc14 pc1 pd7 pulse counter pcnt0 input number 1. pcnt1_s0in pc4 pulse counter pcnt1 input number 0. pcnt1_s1in pc5 pulse counter pcnt1 input number 1. pcnt2_s0in pd0 pe8 pulse counter pcnt2 input number 0. pcnt2_s1in pd1 pe9 pulse counter pcnt2 input number 1. prs_ch0 pa0 pf3 peripheral reflex system prs, channel 0. prs_ch1 pa1 pf4 peripheral reflex system prs, channel 1. prs_ch2 pc0 pf5 peripheral reflex system prs, channel 2. prs_ch3 pc1 pe8 peripheral reflex system prs, channel 3. tim0_cc0 pa0 pa0 pd1 pa0 pf0 timer 0 capture compare input / output channel 0. tim0_cc1 pa1 pa1 pd2 pc0 pf1 timer 0 capture compare input / output channel 1. tim0_cc2 pa2 pa2 pd3 pc1 pf2 timer 0 capture compare input / output channel 2. tim0_cdti0 pa3 pc13 pf3 pc13 pc2 pf3 timer 0 complimentary deat time insertion channel 0. tim0_cdti1 pa4 pc14 pf4 pc14 pc3 pf4 timer 0 complimentary deat time insertion channel 1. tim0_cdti2 pa5 pc15 pf5 pc15 pc4 pf5 timer 0 complimentary deat time insertion channel 2. tim1_cc0 pc13 pe10 pb7 pd6 timer 1 capture compare input / output channel 0. tim1_cc1 pc14 pe11 pb8 pd7 timer 1 capture compare input / output channel 1. tim1_cc2 pc15 pe12 pb11 pc13 timer 1 capture compare input / output channel 2. tim2_cc0 pa8 pc8 timer 2 capture compare input / output channel 0. tim2_cc1 pa9 pc9 timer 2 capture compare input / output channel 1. tim2_cc2 pa10 pc10 timer 2 capture compare input / output channel 2. tim3_cc0 pe14 timer 3 capture compare input / output channel 0. tim3_cc1 pe15 timer 3 capture compare input / output channel 1. tim3_cc2 pa15 timer 3 capture compare input / output channel 2. us0_clk pe12 pc9 pc15 pb13 pb13 usart0 clock input / output. us0_cs pe13 pc8 pc14 pb14 pb14 usart0 chip select input / output. us0_rx pe11 pc10 pe12 pb8 pc1 usart0 asynchronous receive. preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 51 www.energymicro.com alternate location functionality 0 1 2 3 4 5 6 description usart0 synchronous mode master input / slave output (miso). us0_tx pe10 pc11 pe13 pb7 pc0 usart0 asynchronous transmit.also used as receive in- put in half duplex communication. usart0 synchronous mode master output / slave input (mosi). us1_clk pb7 pd2 pf0 usart1 clock input / output. us1_cs pb8 pd3 pf1 usart1 chip select input / output. us1_rx pc1 pd1 pd6 usart1 asynchronous receive. usart1 synchronous mode master input / slave output (miso). us1_tx pc0 pd0 pd7 usart1 asynchronous transmit.also used as receive in- put in half duplex communication. usart1 synchronous mode master output / slave input (mosi). us2_clk pc4 usart2 clock input / output. us2_cs pc5 usart2 chip select input / output. us2_rx pc3 usart2 asynchronous receive. usart2 synchronous mode master input / slave output (miso). us2_tx pc2 usart2 asynchronous transmit.also used as receive in- put in half duplex communication. usart2 synchronous mode master output / slave input (mosi). 4.3 gpio pinout overview the specific gpio pins available in efm32gg230 is shown in table 4.3 (p. 51 ) . each gpio port is organized as 16-bit ports indicated by letters a through f, and the individual pin on this port in indicated by a number from 15 down to 0. table 4.3. gpio pinout port pin 15 pin 14 pin 13 pin 12 pin 11 pin 10 pin 9 pin 8 pin 7 pin 6 pin 5 pin 4 pin 3 pin 2 pin 1 pin 0 port a pa15 - - - - pa10 pa9 pa8 - pa6 pa5 pa4 pa3 pa2 pa1 pa0 port b - pb14 pb13 pb12 pb11 - - pb8 pb7 - - - - - - - port c pc15 pc14 pc13 pc12 pc11 pc10 pc9 pc8 pc7 pc6 pc5 pc4 pc3 pc2 pc1 pc0 port d - - - - - - - pd8 pd7 pd6 pd5 pd4 pd3 pd2 pd1 pd0 port e pe15 pe14 pe13 pe12 pe11 pe10 pe9 pe8 - - - - - - - - port f - - - - - - - - - - pf5 pf4 pf3 pf2 pf1 pf0 4.4 opamp pinout overview the specific opamp terminals available in efm32gg230 is shown in figure 4.2 (p. 52 ) . preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 52 www.energymicro.com figure 4.2. opamp pinout - + opa0 - + opa2 - + opa1 out0alt out0 out2 out1alt out1 pc4 pc5 pd4 pd3 pd6 pd7 pb11 pb12 pc0 pc1 pc2 pc3 pc12 pc13 pc14 pc15 pd0 pd1 pd5 4.5 qfn64 package figure 4.3. qfn64 note: 1. dimensioning & tolerancing confirm to asme y14.5m-1994. 2. all dimensions are in millimeters. angles are in degrees. preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 53 www.energymicro.com 3. dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip. dimension l1 represents terminal full back from package edge up to 0.1 mm is acceptable. 4. coplanarity applies to the exposed heat slug as well as the terminal. 5. radius on terminal is optional table 4.4. qfn64 (dimensions in mm) symbol a a1 a3 b d e d2 e2 e l l1 aaa bbb ccc ddd eee min 0.80 0.00 0.20 7.10 7.10 0.40 0.00 nom 0.85 - 0.25 7.20 7.20 0.45 max 0.90 0.05 0.203 ref 0.30 9.00 bsc 9.00 bsc 7.30 7.30 0.50 bsc 0.50 0.10 0.10 0.10 0.10 0.05 0.08 the qfn64 package uses nickel-palladium-gold preplated leadframe. all efm32 packages are rohs compliant and free of bromine (br) and antimony (sb). preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 54 www.energymicro.com 5 pcb layout and soldering 5.1 recommended pcb layout figure 5.1. qfn64 pcb land pattern e a d p1 p2 p3 p4 p5 p6 p7 p8 c b p9 f g table 5.1. qfn64 pcb land pattern dimensions (dimensions in mm) symbol dim. (mm) symbol pin number symbol pin number a 0.85 p1 1 p8 64 b 0.30 p2 16 p9 65 c 0.50 p3 17 - - d 8.90 p4 32 - - e 8.90 p5 33 - - f 7.20 p6 48 - - g 7.20 p7 49 - - preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 55 www.energymicro.com figure 5.2. qfn64 pcb solder mask e a d c b f g table 5.2. qfn64 pcb solder mask dimensions (dimensions in mm) symbol dim. (mm) symbol dimension in mm a 0.97 e 8.90 b 0.42 f 7.32 c 0.50 g 7.32 d 8.90 - - preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 56 www.energymicro.com figure 5.3. qfn64 pcb stencil design e a d c b x y z table 5.3. qfn64 pcb stencil design dimensions (dimensions in mm) symbol dim. (mm) symbol dim. (mm) a 0.75 e 8.90 b 0.22 x 2.70 c 0.50 y 2.70 d 8.90 z 0.80 1. the drawings are not to scale. 2. all dimensions are in millimeters. 3. all drawings are subject to change without notice. 4. the pcb land pattern drawing is in compliance with ipc-7351b. 5. stencil thickness 0.125 mm. 5.2 soldering information the latest ipc/jedec j-std-020 recommendations for pb-free reflow soldering should be followed. the packages have a moisture sensitivity level rating of 3, please see the latest ipc/jedec j-std-033 standard for msl description and level 3 bake conditions. preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 57 www.energymicro.com 6 chip marking, revision and errata 6.1 chip marking in the illustration below package fields and position are shown. figure 6.1. example chip marking 6.2 revision the revision of a chip can be determined from the "revision" field in figure 6.1 (p. 57 ) . if the revision says "es" (engineering sample), the revision must be read out electronically as specified in the reference manual. 6.3 errata please see the dxxxx_efm32gg230_errata.pdf for description and resolution of device erratas. this doc- ument is available in simplicity studio and online at http://www.energymicro.com/downloads/datasheets. preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 58 www.energymicro.com 7 revision history 7.1 revision 1.00 september 11th, 2012 updated the hfrco 1 mhz band typical value to 1.2 mhz. updated the hfrco 7 mhz band typical value to 6.6 mhz. other minor corrections. 7.2 revision 0.98 may 25th, 2012 corrected em3 current consumption in the electrical characteristics section. 7.3 revision 0.96 february 28th, 2012 added reference to errata document. corrected qfn64 package drawing. updated pcb land pattern, solder mask and stencil design. 7.4 revision 0.95 september 28th, 2011 flash configuration for giant gecko is now 1024kb or 512kb. for flash sizes below 512kb, see the leopard gecko family. corrected operating voltage from 1.8 v to 1.85 v. added rising por level to electrical characteristics section. updated minimum load capacitance (c lfxol ) requirement for safe crystal startup. added gain error drift and offset error drift to adc table. added opamp pinout overview. added reference to errata document. corrected qfn64 package drawing. updated pcb land pattern, solder mask and stencil design. 7.5 revision 0.91 march 21th, 2011 added new alternative locations for swo. corrected slew rate data for opamps. preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 59 www.energymicro.com 7.6 revision 0.90 february 4th, 2011 initial preliminary release. preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 60 www.energymicro.com a disclaimer and trademarks a.1 disclaimer energy micro as intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the energy micro products. characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "typical" parameters provided can and do vary in different applications. application examples described herein are for illustrative purposes only. energy micro reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. energy micro shall have no liability for the consequences of use of the infor- mation supplied herein. this document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. the products must not be used within any life support system without the specific written consent of energy micro. a "life support system" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. energy micro products are generally not intended for military applications. energy micro products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. a.2 trademark information energy micro, efm32, efr, logo and combinations thereof, and others are the registered trademarks or trademarks of energy micro as. arm, cortex, thumb are the registered trademarks of arm limited. other terms and product names may be trademarks of others. preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 61 www.energymicro.com b contact information b.1 energy micro corporate headquarters postal address visitor address technical support energy micro as p.o. box 4633 nydalen n-0405 oslo norway energy micro as sandakerveien 118 n-0484 oslo norway support.energymicro.com phone: +47 40 10 03 01 www.energymicro.com phone: +47 23 00 98 00 fax: + 47 23 00 98 01 b.2 global contacts visit www.energymicro.com for information on global distributors and representatives or contact sales@energymicro.com for additional information. americas europe, middle east and africa asia and pacific www.energymicro.com/americas www.energymicro.com/emea www.energymicro.com/asia preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 62 www.energymicro.com table of contents 1. ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. system summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1. system introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2. configuration summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3. memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3. electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1. test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2. absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3. general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.4. current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.5. transition between energy modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.6. power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.7. flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.8. general purpose input output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.9. oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.10. analog digital converter (adc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.11. digital analog converter (dac) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.12. operational amplifier (opamp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.13. analog comparator (acmp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.14. voltage comparator (vcmp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.15. digital peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4. pinout and package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1. pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2. alternate functionality pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3. gpio pinout overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.4. opamp pinout overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.5. qfn64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5. pcb layout and soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.1. recommended pcb layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2. soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6. chip marking, revision and errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1. chip marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.2. revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3. errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7. revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 7.1. revision 1.00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 7.2. revision 0.98 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 7.3. revision 0.96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 7.4. revision 0.95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 7.5. revision 0.91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 7.6. revision 0.90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 a. disclaimer and trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 a.1. disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 a.2. trademark information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 b. contact information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 b.1. energy micro corporate headquarters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 b.2. global contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 63 www.energymicro.com list of figures 2.1. block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2. efm32gg230 memory map with largest ram and flash sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1. typical low-level output current, 2v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2. typical high-level output current, 2v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3. typical low-level output current, 3v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4. typical high-level output current, 3v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5. typical low-level output current, 3.8v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.6. typical high-level output current, 3.8v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.7. minimum load capacitance (c lfxol ) requirement for safe crystal startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.8. calibrated lfrco frequency vs temperature and supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.9. calibrated hfrco 11 mhz band frequency vs temperature and supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.10. calibrated hfrco 14 mhz band frequency vs temperature and supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.11. calibrated hfrco 21 mhz band frequency vs temperature and supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.12. calibrated hfrco 28 mhz band frequency vs temperature and supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.13. integral non-linearity (inl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.14. differential non-linearity (dnl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.15. adc frequency spectrum, vdd = 3v, temp = 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.16. adc integral linearity error vs code, vdd = 3v, temp = 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.17. adc differential linearity error vs code, vdd = 3v, temp = 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.18. adc absolute offset, common mode = vdd /2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.19. adc dynamic performance vs temperature for all adc references, vdd = 3v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.20. adc temperature sensor readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.21. opamp common mode rejection ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.22. opamp positive power supply rejection ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.23. opamp negative power supply rejection ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.24. opamp voltage noise spectral density (unity gain) v out =1v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.25. opamp voltage noise spectral density (non-unity gain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.26. typical acmp characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1. efm32gg230 pinout (top view, not to scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2. opamp pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3. qfn64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.1. qfn64 pcb land pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2. qfn64 pcb solder mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3. qfn64 pcb stencil design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.1. example chip marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 64 www.energymicro.com list of tables 1.1. ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1. configuration summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1. absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2. general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3. environmental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4. current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.5. energy modes transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.6. power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.7. flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.8. gpio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.9. lfxo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.10. minimum load capacitance (c lfxol ) requirement for safe crystal startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.11. hfxo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.12. lfrco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.13. hfrco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14. ulfrco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.15. adc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.16. dac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.17. opamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.18. acmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.19. vcmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.20. digital peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.1. device pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2. alternate functionality overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3. gpio pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.4. qfn64 (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.1. qfn64 pcb land pattern dimensions (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2. qfn64 pcb solder mask dimensions (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3. qfn64 pcb stencil design dimensions (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 preliminary ...the world's most energy friendly microcontrollers 2012-09-11 - efm32gg230fxx - d0035_rev1.00 65 www.energymicro.com list of equations 3.1. total acmp active current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2. vcmp trigger level as a function of level setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 |
Price & Availability of EFM32GG230F1024-QFN64 |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |