|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 1 www.silabs.com EFM32ZG210 datasheet f32/f16/f8/f4 preliminary ? arm cortex-m0+ cpu platform ? high performance 32-bit processor @ up to 24 mhz ? wake-up interrupt controller ? flexible energy management system ? 20 na @ 3 v shutoff mode ? 0.5 a @ 3 v stop mode, including power-on reset, brown-out detector, ram and cpu retention ? 0.9 a @ 3 v deep sleep mode, including rtc with 32.768 khz oscillator, power-on reset, brown-out detector, ram and cpu retention ? 46 a/mhz @ 3 v sleep mode ? 114 a/mhz @ 3 v run mode, with code executed from flash ? 32/16/8/4 kb flash ? 4/4/2/2 kb ram ? 24 general purpose i/o pins ? configurable push-pull, open-drain, pull-up/down, input filter, drive strength ? configurable peripheral i/o locations ? 14 asynchronous external interrupts ? output state retention and wake-up from shutoff mode ? 4 channel dma controller ? 4 channel peripheral reflex system (prs) for autonomous in- ter-peripheral signaling ? hardware aes with 128-bit keys in 54 cycles ? timers/counters ? 2 16-bit timer/counter ? 23 compare/capture/pwm channels ? 1 24-bit real-time counter ? 1 16 -bit pulse counter ? watchdog timer with dedicated rc oscillator @ 50 na ? communication interfaces ? 1 universal synchronous/asynchronous receiv- er/transmitter ? uart/spi/smartcard (iso 7816) /irda /i2s ? triple buffered full/half-duplex operation ? low energy uart ? autonomous operation with dma in deep sleep mode ? i 2 c interface with smbus support ? address recognition in stop mode ? ultra low power precision analog peripherals ? 12-bit 1 msamples/s analog to digital converter ? 4 single ended channels/ differential channels ? on-chip temperature sensor ? current digital to analog converter ? selectable current range between 0.05 and 64 ua ? 1 analog comparator ? capacitive sensing with up to 2 inputs ? supply voltage comparator ? ultra efficient power-on reset and brown-out detec- tor ? 2-pin serial wire debug interface ? pre-programmed uart bootloader ? temperature range -40 to 85 oc ? single power supply 1.85 to 3.8 v ? qfn32 package 32-bit arm cortex-m0+, cortex-m3 and cortex-m4 microcontrollers for: ? energy, gas, water and smart metering ? health and fitness applications ? smart accessories ? alarm and security systems ? industrial and home automation ? www.silabs.com
preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 2 www.silabs.com 1 ordering information table 1.1 (p. 2 ) shows the available EFM32ZG210 devices. table 1.1. ordering information ordering code flash (kb) ram (kb) max speed (mhz) supply voltage (v) temperature (oc) package EFM32ZG210f4-qfn32 4 2 24 1.85 - 3.8 -40 - 85 qfn32 EFM32ZG210f8-qfn32 8 2 24 1.85 - 3.8 -40 - 85 qfn32 EFM32ZG210f16-qfn32 16 4 24 1.85 - 3.8 -40 - 85 qfn32 EFM32ZG210f32-qfn32 32 4 24 1.85 - 3.8 -40 - 85 qfn32 visit www.silabs.com for information on global distributors and representatives. preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 3 www.silabs.com 2 system summary 2.1 system introduction the efm32 mcus are the world?s most energy friendly microcontrollers. with a unique combination of the powerful 32-bit arm cortex-m0+, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the efm32zg microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. this section gives a short introduction to each of the modules in general terms and also shows a summary of the configuration for the EFM32ZG210 devices. for a complete feature set and in- depth information on the modules, the reader is referred to the efm32zg reference manual . a block diagram of the EFM32ZG210 is shown in figure 2.1 (p. 3 ) . figure 2.1. block diagram clock managem ent energy managem ent serial interfaces i/ o ports core and mem ory tim ers and triggers 32- bit bus peripheral reflex system arm cortex ? m0+ processor flash program mem ory high freq rc oscillator high freq crystal oscillator pulse counter low freq crystal oscillator low freq rc oscillator watchdog tim er ram mem ory general purpose i/ o debug interface ex ternal interrupts pin reset zg210f32/ 16/ 8/ 4 usart i 2 c power- on reset voltage regulator voltage com parator brown- out detector tim er/ counter real tim e counter current dac ultra low freq rc oscillator low energy uart? pin wakeup analog interfaces adc security hardware aes dma controller analog com parator 2.1.1 arm cortex-m0+ core the arm cortex-m0+ includes a 32-bit risc processor which can achieve as much as 0.9 dhrystone mips/mhz. a wake-up interrupt controller handling interrupts triggered while the cpu is asleep is in- cluded as well . the efm32 implementation of the cortex-m0+ is described in detail in arm cortex-m0+ devices generic user guide . 2.1.2 debug interface (dbg) this device includes hardware debug support through a 2-pin serial-wire debug interface. 2.1.3 memory system controller (msc) the memory system controller (msc) is the program memory unit of the efm32zg microcontroller. the flash memory is readable and writable from both the cortex-m0+ and dma . the flash memory is divided into two blocks; the main block and the information block. program code is normally written to the main block. additionally, the information block is available for special user data and flash lock bits. there is also a read-only page in the information block containing system and device calibration data. read and write operations are supported in the energy modes em0 and em1. preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 4 www.silabs.com 2.1.4 direct memory access controller (dma) the direct memory access (dma) controller performs memory operations independently of the cpu. this has the benefit of reducing the energy consumption and the workload of the cpu, and enables the system to stay in low energy modes when moving for instance data from the usart to ram or from the external bus interface to a pwm-generating timer. the dma controller uses the pl230 dma controller licensed from arm. 2.1.5 reset management unit (rmu) the rmu is responsible for handling the reset functionality of the efm32zg. 2.1.6 energy management unit (emu) the energy management unit (emu) manage all the low energy modes (em) in efm32zg microcon- trollers. each energy mode manages if the cpu and the various peripherals are available. the emu can also be used to turn off the power to unused sram blocks. 2.1.7 clock management unit (cmu) the clock management unit (cmu) is responsible for controlling the oscillators and clocks on-board the efm32zg. the cmu provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. the high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive. 2.1.8 watchdog (wdog) the purpose of the watchdog timer is to generate a reset in case of a system failure, to increase appli- cation reliability. the failure may e.g. be caused by an external event, such as an esd pulse, or by a software failure. 2.1.9 peripheral reflex system (prs) the peripheral reflex system (prs) system is a network which lets the different peripheral module communicate directly with each other without involving the cpu. peripheral modules which send out reflex signals are called producers. the prs routes these reflex signals to consumer peripherals which apply actions depending on the data received. the format for the reflex signals is not given, but edge triggers and other functionality can be applied by the prs. 2.1.10 inter-integrated circuit interface (i2c) the i 2 c module provides an interface between the mcu and a serial i 2 c-bus. it is capable of acting as both a master and a slave, and supports multi-master buses. both standard-mode, fast-mode and fast- mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 mbit/s. slave arbitration and timeouts are also provided to allow implementation of an smbus compliant system. the interface provided to software by the i 2 c module, allows both fine-grained control of the transmission process and close to automatic transfers. automatic recognition of slave addresses is provided in all energy modes. 2.1.11 universal synchronous/asynchronous receiver/transmitter (us- art) the universal synchronous asynchronous serial receiver and transmitter (usart) is a very flexible serial i/o module. it supports full duplex asynchronous uart communication as well as rs-485, spi, microwire and 3-wire. it can also interface with iso7816 smartcards, irda and i2s devices. preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 5 www.silabs.com 2.1.12 pre-programmed uart bootloader the bootloader presented in application note an0003 is pre-programmed in the device at factory. auto- baud and destructive write are supported. the autobaud feature, interface and commands are described further in the application note. 2.1.13 low energy universal asynchronous receiver/transmitter (leuart) the unique leuart tm , the low energy uart, is a uart that allows two-way uart communication on a strict power budget. only a 32.768 khz clock is needed to allow uart communication up to 9600 baud/ s. the leuart includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption. 2.1.14 timer/counter (timer) the 16-bit general purpose timer has 3 compare/capture channels for input capture and compare/pulse- width modulation (pwm) output. 2.1.15 real time counter (rtc) the real time counter (rtc) contains a 24-bit counter and is clocked either by a 32.768 khz crystal oscillator, or a 32.768 khz rc oscillator. in addition to energy modes em0 and em1, the rtc is also available in em2. this makes it ideal for keeping track of time since the rtc is enabled in em2 where most of the device is powered down. 2.1.16 pulse counter (pcnt) the pulse counter (pcnt) can be used for counting pulses on a single input or to decode quadrature encoded inputs. it runs off either the internal lfaclk or the pcntn_s0in pin as external clock source. the module may operate in energy mode em0 ? em3. 2.1.17 analog comparator (acmp) the analog comparator is used to compare the voltage of two analog inputs, with a digital output indi- cating which input voltage is higher. inputs can either be one of the selectable internal references or from external pins. response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2.1.18 voltage comparator (vcmp) the voltage supply comparator is used to monitor the supply voltage from software. an interrupt can be generated when the supply falls below or rises above a programmable threshold. response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2.1.19 analog to digital converter (adc) the adc is a successive approximation register (sar) architecture, with a resolution of up to 12 bits at up to one million samples per second. the integrated input mux can select inputs from 4 external pins and 6 internal signals. 2.1.20 current digital to analog converter (idac) the current digital to analog converter can source or sink a configurable constant current, which can be output on, or sinked from pin or adc. the current is configurable with several ranges of various step sizes. preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 6 www.silabs.com 2.1.21 advanced encryption standard accelerator (aes) the aes accelerator performs aes encryption and decryption with 128-bit. encrypting or decrypting one 128-bit data block takes 52 hfcoreclk cycles with 128-bit keys. the aes module is an ahb slave which enables efficient access to the data and key registers. all write accesses to the aes module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported. 2.1.22 general purpose input/output (gpio) in the EFM32ZG210, there are 24 general purpose input/output (gpio) pins, which are divided into ports with up to 16 pins each. these pins can individually be configured as either an output or input. more advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. the gpio pins can also be overridden by peripheral pin connections, like timer pwm outputs or usart communication, which can be routed to several locations on the device. the gpio supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. also, the input value of a pin can be routed through the peripheral reflex system to other peripherals. 2.2 configuration summary the features of the EFM32ZG210 is a subset of the feature set described in the efm32zg reference manual. table 2.1 (p. 6 ) describes device specific implementation of the features. table 2.1. configuration summary module configuration pin connections cortex-m0+ full configuration na dbg full configuration dbg_swclk, dbg_swdio, msc full configuration na dma full configuration na rmu full configuration na emu full configuration na cmu full configuration cmu_out0, cmu_out1 wdog full configuration na prs full configuration na i2c0 full configuration i2c0_sda, i2c0_scl usart0 full configuration with irda and i2s us0_tx, us0_rx. us0_clk, us0_cs leuart0 full configuration leu0_tx, leu0_rx timer0 full configuration tim0_cc[2:0] timer1 full configuration tim1_cc[2:0] rtc full configuration na pcnt0 full configuration, 16-bit count register pcnt0_s[1:0] acmp0 full configuration acmp0_ch[1:0], acmp0_o vcmp full configuration na adc0 full configuration adc0_ch[3:0] idac0 full configuration idac0_out aes full configuration na preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 7 www.silabs.com module configuration pin connections gpio 24 pins available pins are shown in table 4.3 (p. 51 ) 2.3 memory map the EFM32ZG210 memory map is shown in figure 2.2 (p. 7 ) , with ram and flash sizes for the largest memory configuration. figure 2.2. EFM32ZG210 memory map with largest ram and flash sizes preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 8 www.silabs.com 3 electrical characteristics 3.1 test conditions 3.1.1 typical values the typical data are based on t amb =25c and v dd =3.0 v, as defined in table 3.2 (p. 8 ) , by simu- lation and/or technology characterisation unless otherwise specified. 3.1.2 minimum and maximum values the minimum and maximum values represent the worst conditions of ambient temperature, supply volt- age and frequencies, as defined in table 3.2 (p. 8 ) , by simulation and/or technology characterisa- tion unless otherwise specified. 3.2 absolute maximum ratings the absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. stress beyond the limits specified in table 3.1 (p. 8 ) may affect the device reliability or cause permanent damage to the device. functional operating conditions are given in table 3.2 (p. 8 ) . table 3.1. absolute maximum ratings symbol parameter condition min typ max unit t stg storage tempera- ture range -40 150 1 c t s maximum soldering temperature latest ipc/jedec j-std-020 standard 260 c v ddmax external main sup- ply voltage 0 3.8 v v iopin voltage on any i/o pin -0.3 v dd +0.3 v 1 based on programmed devices tested for 10000 hours at 150oc. storage temperature affects retention of preprogrammed cal- ibration values stored in flash. please refer to the flash section in the electrical characteristics for information on flash data re- tention for different temperatures. 3.3 general operating conditions 3.3.1 general operating conditions table 3.2. general operating conditions symbol parameter min typ max unit t amb ambient temperature range -40 85 c v ddop operating supply voltage 1.85 3.8 v f apb internal apb clock frequency 24 mhz f ahb internal ahb clock frequency 24 mhz preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 9 www.silabs.com 3.4 current consumption table 3.3. current consumption symbol parameter condition min typ max unit 24 mhz hfxo, all peripheral clocks disabled, v dd = 3.0 v 114.9 a/ mhz 21 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 114.4 a/ mhz 14 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 116.6 a/ mhz 11 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 118.2 a/ mhz 6.6 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 123.5 a/ mhz i em0 em0 current. no prescaling. running prime number cal- culation code from flash. 1.2 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 155.1 a/ mhz 24 mhz hfxo, all peripheral clocks disabled, v dd = 3.0 v 48.0 a/ mhz 21 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 48.1 a/ mhz 14 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 50.1 a/ mhz 11 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 51.8 a/ mhz 6.6 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 57.1 a/ mhz i em1 em1 current 1.2 mhz hfrco. all peripheral clocks disabled, v dd = 3.0 v 89.1 a/ mhz em2 current with rtc at 1 hz, rtc prescaled to 1khz, 32.768 khz lfrco, v dd = 3.0 v, t amb =25c 0.86 a i em2 em2 current em2 current with rtc at 1 hz, rtc prescaled to 1khz, 32.768 khz lfrco, v dd = 3.0 v, t amb =85c 1.66 a v dd = 3.0 v, t amb =25c 0.49 a i em3 em3 current v dd = 3.0 v, t amb =85c 1.26 a v dd = 3.0 v, t amb =25c 0.02 a i em4 em4 current v dd = 3.0 v, t amb =85c 0.29 a preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 10 www.silabs.com 3.4.1 em0 current consumption figure 3.1. em0 current consumption while executing prime number calculation code from flash with hfrco running at 24mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 2.68 2.70 2.72 2.74 2.76 2.78 2.80 2.82 2.84 idd [m a] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 2.68 2.70 2.72 2.74 2.76 2.78 2.80 2.82 2.84 idd [m a] vdd= 2.0v vdd= 2.2v vdd= 2.4v vdd= 2.6v vdd= 2.8v vdd= 3.0v vdd= 3.2v vdd= 3.4v vdd= 3.6v vdd= 3.8v figure 3.2. em0 current consumption while executing prime number calculation code from flash with hfrco running at 21mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 2.30 2.35 2.40 2.45 idd [m a] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 2.30 2.35 2.40 2.45 idd [m a] vdd= 2.0v vdd= 2.2v vdd= 2.4v vdd= 2.6v vdd= 2.8v vdd= 3.0v vdd= 3.2v vdd= 3.4v vdd= 3.6v vdd= 3.8v preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 11 www.silabs.com figure 3.3. em0 current consumption while executing prime number calculation code from flash with hfrco running at 14mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 1.54 1.56 1.58 1.60 1.62 1.64 1.66 1.68 idd [m a] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 1.54 1.56 1.58 1.60 1.62 1.64 1.66 1.68 idd [m a] vdd= 2.0v vdd= 2.2v vdd= 2.4v vdd= 2.6v vdd= 2.8v vdd= 3.0v vdd= 3.2v vdd= 3.4v vdd= 3.6v vdd= 3.8v figure 3.4. em0 current consumption while executing prime number calculation code from flash with hfrco running at 11mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 1.22 1.24 1.26 1.28 1.30 1.32 1.34 idd [m a] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 1.22 1.24 1.26 1.28 1.30 1.32 1.34 idd [m a] vdd= 2.0v vdd= 2.2v vdd= 2.4v vdd= 2.6v vdd= 2.8v vdd= 3.0v vdd= 3.2v vdd= 3.4v vdd= 3.6v vdd= 3.8v preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 12 www.silabs.com figure 3.5. 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 idd [m a] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 idd [m a] vdd= 2.0v vdd= 2.2v vdd= 2.4v vdd= 2.6v vdd= 2.8v vdd= 3.0v vdd= 3.2v vdd= 3.4v vdd= 3.6v vdd= 3.8v 3.4.2 em1 current consumption figure 3.6. em1 current consumption with all peripheral clocks disabled and hfrco running at 24mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 1.10 1.12 1.14 1.16 1.18 1.20 idd [m a] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 1.10 1.12 1.14 1.16 1.18 1.20 idd [m a] vdd= 2.0v vdd= 2.2v vdd= 2.4v vdd= 2.6v vdd= 2.8v vdd= 3.0v vdd= 3.2v vdd= 3.4v vdd= 3.6v vdd= 3.8v preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 13 www.silabs.com figure 3.7. em1 current consumption with all peripheral clocks disabled and hfrco running at 21mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 idd [m a] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 idd [m a] vdd= 2.0v vdd= 2.2v vdd= 2.4v vdd= 2.6v vdd= 2.8v vdd= 3.0v vdd= 3.2v vdd= 3.4v vdd= 3.6v vdd= 3.8v figure 3.8. em1 current consumption with all peripheral clocks disabled and hfrco running at 14mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 idd [m a] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 idd [m a] vdd= 2.0v vdd= 2.2v vdd= 2.4v vdd= 2.6v vdd= 2.8v vdd= 3.0v vdd= 3.2v vdd= 3.4v vdd= 3.6v vdd= 3.8v preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 14 www.silabs.com figure 3.9. em1 current consumption with all peripheral clocks disabled and hfrco running at 11mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 0.53 0.54 0.55 0.56 0.57 0.58 0.59 idd [m a] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 0.53 0.54 0.55 0.56 0.57 0.58 0.59 idd [m a] vdd= 2.0v vdd= 2.2v vdd= 2.4v vdd= 2.6v vdd= 2.8v vdd= 3.0v vdd= 3.2v vdd= 3.4v vdd= 3.6v vdd= 3.8v figure 3.10. 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 0.350 0.355 0.360 0.365 0.370 0.375 0.380 0.385 0.390 0.395 idd [m a] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 0.350 0.355 0.360 0.365 0.370 0.375 0.380 0.385 0.390 0.395 idd [m a] vdd= 2.0v vdd= 2.2v vdd= 2.4v vdd= 2.6v vdd= 2.8v vdd= 3.0v vdd= 3.2v vdd= 3.4v vdd= 3.6v vdd= 3.8v preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 15 www.silabs.com 3.4.3 em2 current consumption figure 3.11. em2 current consumption. rtc prescaled to 1khz, 32.768 khz lfrco. 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 idd [ua] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 idd [ua] vdd= 2.0v vdd= 2.2v vdd= 2.4v vdd= 2.6v vdd= 2.8v vdd= 3.0v vdd= 3.2v vdd= 3.4v vdd= 3.6v vdd= 3.8v 3.4.4 em3 current consumption figure 3.12. em3 current consumption. 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 0.4 0.6 0.8 1.0 1.2 1.4 1.6 idd [ua] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] 0.4 0.6 0.8 1.0 1.2 1.4 1.6 idd [ua] vdd= 2.0v vdd= 2.2v vdd= 2.4v vdd= 2.6v vdd= 2.8v vdd= 3.0v vdd= 3.2v vdd= 3.4v vdd= 3.6v vdd= 3.8v preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 16 www.silabs.com 3.4.5 em4 current consumption figure 3.13. em4 current consumption. 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] ?0.1 0.0 0.1 0.2 0.3 0.4 0.5 idd [ua] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?15 5 25 45 65 85 tem perature [c] ?0.1 0.0 0.1 0.2 0.3 0.4 0.5 idd [ua] vdd= 2.0v vdd= 2.2v vdd= 2.4v vdd= 2.6v vdd= 2.8v vdd= 3.0v vdd= 3.2v vdd= 3.4v vdd= 3.6v vdd= 3.8v 3.5 transition between energy modes table 3.4. energy modes transitions symbol parameter min typ max unit t em10 transition time from em1 to em0 0 1 hf core clk cycles t em20 transition time from em2 to em0 2 s t em30 transition time from em3 to em0 2 s t em40 transition time from em4 to em0 163 s 1 core wakeup time only. 3.6 power management the efm32zg requires the avdd_x, vdd_dreg and iovdd_x pins to be connected together (with optional filter) at the pcb level. for practical schematic recommendations, please see the application note, "an0002 efm32 hardware design considerations". preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 17 www.silabs.com table 3.5. power management symbol parameter condition min typ max unit v bodextthr- bod threshold on falling external sup- ply voltage 1.82 1.85 v v bodintthr- bod threshold on falling internally reg- ulated supply volt- age 1.62 1.68 v v bodextthr+ bod threshold on rising external sup- ply voltage 1.85 v t reset delay from reset is released until program execution starts applies to power-on reset, brown-out reset and pin reset. 163 s c decouple voltage regulator decoupling capaci- tor. x5r capacitor recommended. apply between decouple pin and ground 1 f 3.7 flash table 3.6. flash symbol parameter condition min typ max unit ec flash flash erase cycles before failure 20000 cycles t amb <150c 10000 h t amb <85c 10 years ret flash flash data retention t amb <70c 20 years t w_prog word (32-bit) pro- gramming time 20 s t p_erase page erase time 20 20.4 20.8 ms t d_erase device erase time 40 40.8 41.6 ms i erase erase current 7 1 ma i write write current 7 1 ma v flash supply voltage dur- ing flash erase and write 1.8 3.8 v 1 measured at 25c preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 18 www.silabs.com 3.8 general purpose input output table 3.7. gpio symbol parameter condition min typ max unit v ioil input low voltage 0.3v dd v v ioih input high voltage 0.7v dd v sourcing 6 ma, v dd =1.85 v, gpio_px_ctrl drivemode = standard 0.75v dd v sourcing 6 ma, v dd =3.0 v, gpio_px_ctrl drivemode = standard 0.95v dd v sourcing 20 ma, v dd =1.85 v, gpio_px_ctrl drivemode = high 0.7v dd v v iooh output high voltage sourcing 20 ma, v dd =3.0 v, gpio_px_ctrl drivemode = high 0.9v dd v sinking 6 ma, v dd =1.85 v, gpio_px_ctrl drivemode = standard 0.25v dd v sinking 6 ma, v dd =3.0 v, gpio_px_ctrl drivemode = standard 0.05v dd v sinking 20 ma, v dd =1.85 v, gpio_px_ctrl drivemode = high 0.3v dd v v iool output low voltage sinking 20 ma, v dd =3.0 v, gpio_px_ctrl drivemode = high 0.1v dd v i ioleak input leakage cur- rent high impedance io connected to ground or vdd +/-25 na r pu i/o pin pull-up resis- tor 40 kohm r pd i/o pin pull-down re- sistor 40 kohm r ioesd internal esd series resistor 200 ohm t ioglitch pulse width of puls- es to be removed by the glitch sup- pression filter 10 50 ns 0.5 ma drive strength and load capacitance c l =12.5-25pf. 20+0.1c l 250 ns t ioof output fall time 2ma drive strength and load capacitance c l =350-600pf 20+0.1c l 250 ns v iohyst i/o pin hysteresis (v iothr+ - v iothr- ) v dd = 1.85 - 3.8 v 0.1v dd v preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 19 www.silabs.com figure 3.14. typical low-level output current, 2v supply voltage 0.0 0.5 1.0 1.5 2.0 low- level output voltage [v] 0.00 0.05 0.10 0.15 0.20 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 low- level output voltage [v] 0 1 2 3 4 5 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 low- level output voltage [v] 0 5 10 15 20 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 low- level output voltage [v] 0 5 10 15 20 25 30 35 40 45 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 20 www.silabs.com figure 3.15. typical high-level output current, 2v supply voltage 0.0 0.5 1.0 1.5 2.0 high- level output voltage [v] ?0.20 ?0.15 ?0.10 ?0.05 0.00 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 high- level output voltage [v] ?2.5 ?2.0 ?1.5 ?1.0 ?0.5 0.0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 high- level output voltage [v] ?20 ?15 ?10 ?5 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 high- level output voltage [v] ?50 ?40 ?30 ?20 ?10 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 21 www.silabs.com figure 3.16. typical low-level output current, 3v supply voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 low- level output voltage [v] 0.0 0.1 0.2 0.3 0.4 0.5 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 2.5 3.0 low- level output voltage [v] 0 2 4 6 8 10 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 2.5 3.0 low- level output voltage [v] 0 5 10 15 20 25 30 35 40 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 2.5 3.0 low- level output voltage [v] 0 10 20 30 40 50 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 22 www.silabs.com figure 3.17. typical high-level output current, 3v supply voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 high- level output voltage [v] ?0.5 ?0.4 ?0.3 ?0.2 ?0.1 0.0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 2.5 3.0 high- level output voltage [v] ?6 ?5 ?4 ?3 ?2 ?1 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 2.5 3.0 high- level output voltage [v] ?50 ?40 ?30 ?20 ?10 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 2.5 3.0 high- level output voltage [v] ?50 ?40 ?30 ?20 ?10 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 23 www.silabs.com figure 3.18. typical low-level output current, 3.8v supply voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 low- level output voltage [v] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 low- level output voltage [v] 0 2 4 6 8 10 12 14 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 low- level output voltage [v] 0 10 20 30 40 50 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 low- level output voltage [v] 0 10 20 30 40 50 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 24 www.silabs.com figure 3.19. typical high-level output current, 3.8v supply voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 high- level output voltage [v] ?0.8 ?0.7 ?0.6 ?0.5 ?0.4 ?0.3 ?0.2 ?0.1 0.0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 high- level output voltage [v] ?9 ?8 ?7 ?6 ?5 ?4 ?3 ?2 ?1 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 high- level output voltage [v] ?50 ?40 ?30 ?20 ?10 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 high- level output voltage [v] ?50 ?40 ?30 ?20 ?10 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 25 www.silabs.com 3.9 oscillators 3.9.1 lfxo table 3.8. lfxo symbol parameter condition min typ max unit f lfxo supported nominal crystal frequency 32.768 khz esr lfxo supported crystal equivalent series re- sistance (esr) 30 120 kohm c lfxol supported crystal external load range 5 25 pf dc lfxo duty cycle 48 50 53.5 % i lfxo current consump- tion for core and buffer after startup. esr=30 kohm, c l =10 pf, lfxoboost in cmu_ctrl is 1 190 na t lfxo start- up time. esr=30 kohm, c l =10 pf, 40% - 60% duty cycle has been reached, lfxoboost in cmu_ctrl is 1 400 ms for safe startup of a given crystal, the energyaware designer in simplicity studio contains a tool to help users configure both load capacitance and software settings for using the lfxo. for details regarding the crystal configuration, the reader is referred to application note "an0016 efm32 oscillator design consideration". 3.9.2 hfxo table 3.9. hfxo symbol parameter condition min typ max unit f hfxo supported nominal crystal frequency 4 24 mhz crystal frequency 24 mhz 30 60 ohm esr hfxo supported crystal equivalent series re- sistance (esr) crystal frequency 4 mhz 400 1500 ohm g mhfxo the transconduc- tance of the hfxo input transistor at crystal startup hfxoboost in cmu_ctrl equals 0b11 20 ms c hfxol supported crystal external load range 5 25 pf dc hfxo duty cycle 46 50 54 % 4 mhz: esr=400 ohm, c l =20 pf, hfxoboost in cmu_ctrl equals 0b11 85 a i hfxo current consump- tion for hfxo after startup 24 mhz: esr=30 ohm, c l =10 pf, hfxoboost in cmu_ctrl equals 0b11 165 a t hfxo startup time 24 mhz: esr=30 ohm, c l =10 pf, hfxoboost in cmu_ctrl equals 0b11 400 s preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 26 www.silabs.com 3.9.3 lfrco table 3.10. lfrco symbol parameter condition min typ max unit f lfrco oscillation frequen- cy , v dd = 3.0 v, t amb =25c 32.768 khz t lfrco startup time not in- cluding software calibration 150 s i lfrco current consump- tion 190 na tunestep l- frco frequency step for lsb change in tuning value 1.5 % figure 3.20. calibrated lfrco frequency vs temperature and supply voltage 1.8 2.2 2.6 3.0 3.4 3.8 vdd [v] 30 32 34 36 38 40 42 frequency [khz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 30 32 34 36 38 40 42 frequency [khz] 1.8 v 3 v 3.8 v preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 27 www.silabs.com 3.9.4 hfrco table 3.11. hfrco symbol parameter condition min typ max unit 21 mhz frequency band 21 mhz 14 mhz frequency band 14 mhz 11 mhz frequency band 11 mhz 7 mhz frequency band 6.6 mhz f hfrco oscillation frequen- cy, v dd = 3.0 v, t amb =25c 1 mhz frequency band 1.2 mhz t hfrco_settling settling time after start-up f hfrco = 14 mhz 0.6 cycles f hfrco = 21 mhz 93 a f hfrco = 14 mhz 77 a f hfrco = 11 mhz 72 a f hfrco = 6.6 mhz 63 a i hfrco current consump- tion f hfrco = 1.2 mhz 22 a dc hfrco duty cycle f hfrco = 14 mhz 48.5 50 51 % tunestep h- frco frequency step for lsb change in tuning value 0.3 % figure 3.21. calibrated hfrco 11 mhz band frequency vs supply voltage and temperature 1.8 2.2 2.6 3.0 3.4 3.8 vdd [v] 10.80 10.85 10.90 10.95 11.00 11.05 11.10 11.15 frequency [mhz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 10.80 10.85 10.90 10.95 11.00 11.05 11.10 11.15 11.20 frequency [mhz] 1.8 v 3 v 3.8 v preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 28 www.silabs.com figure 3.22. calibrated hfrco 14 mhz band frequency vs supply voltage and temperature 1.8 2.2 2.6 3.0 3.4 3.8 vdd [v] 13.85 13.90 13.95 14.00 14.05 14.10 14.15 frequency [mhz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 13.85 13.90 13.95 14.00 14.05 14.10 14.15 frequency [mhz] 1.8 v 3 v 3.8 v figure 3.23. calibrated hfrco 21 mhz band frequency vs supply voltage and temperature 1.8 2.2 2.6 3.0 3.4 3.8 vdd [v] 20.6 20.7 20.8 20.9 21.0 21.1 21.2 frequency [mhz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 20.6 20.7 20.8 20.9 21.0 21.1 21.2 frequency [mhz] 1.8 v 3 v 3.8 v 3.9.5 ulfrco table 3.12. ulfrco symbol parameter condition min typ max unit f ulfrco oscillation frequen- cy 25c, 3v 0.8 1.5 khz tc ulfrco temperature coeffi- cient 0.05 %/c vc ulfrco supply voltage co- efficient -18.2 %/v 3.10 analog digital converter (adc) table 3.13. adc symbol parameter condition min typ max unit v adcin input voltage range single ended 0 v ref v preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 29 www.silabs.com symbol parameter condition min typ max unit differential -v ref /2 v ref /2 v v adcrefin input range of exter- nal reference volt- age, single ended and differential 1.25 v dd v v adcrefin_ch7 input range of ex- ternal negative ref- erence voltage on channel 7 see v adcrefin 0 v dd - 1.1 v v adcrefin_ch6 input range of ex- ternal positive ref- erence voltage on channel 6 see v adcrefin 0.625 v dd v v adccmin common mode in- put range 0 v dd v i adcin input current 2pf sampling capacitors <100 na cmrr adc analog input com- mon mode rejection ratio 65 db 1 msamples/s, 12 bit, external reference 351 a 10 ksamples/s 12 bit, internal 1.25 v reference, warmup- mode in adcn_ctrl set to 0b00 67 a 10 ksamples/s 12 bit, internal 1.25 v reference, warmup- mode in adcn_ctrl set to 0b01 63 a i adc average active cur- rent 10 ksamples/s 12 bit, internal 1.25 v reference, warmup- mode in adcn_ctrl set to 0b10 64 a i adcref current consump- tion of internal volt- age reference internal voltage reference 65 a c adcin input capacitance 2 pf r adcin input on resistance 1 mohm r adcfilt input rc filter resis- tance 10 kohm c adcfilt input rc filter/de- coupling capaci- tance 250 ff f adcclk adc clock fre- quency 13 mhz 6 bit 7 adc- clk cycles t adcconv conversion time 8 bit 11 adc- clk cycles preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 30 www.silabs.com symbol parameter condition min typ max unit 12 bit 13 adc- clk cycles t adcacq acquisition time programmable 1 256 adc- clk cycles t adcacqvdd3 required acquisi- tion time for vdd/3 reference 2 s startup time of ref- erence generator and adc core in normal mode 5 s t adcstart startup time of ref- erence generator and adc core in keepadcwarm mode 1 s 1 msamples/s, 12 bit, single ended, internal 1.25v refer- ence 59 db 1 msamples/s, 12 bit, single ended, internal 2.5v reference 63 db 1 msamples/s, 12 bit, single ended, v dd reference 65 db 1 msamples/s, 12 bit, differen- tial, internal 1.25v reference 60 db 1 msamples/s, 12 bit, differen- tial, internal 2.5v reference 65 db 1 msamples/s, 12 bit, differen- tial, 5v reference 54 db 1 msamples/s, 12 bit, differen- tial, v dd reference 67 db 1 msamples/s, 12 bit, differen- tial, 2xv dd reference 69 db 200 ksamples/s, 12 bit, sin- gle ended, internal 1.25v refer- ence 62 db 200 ksamples/s, 12 bit, single ended, internal 2.5v reference 63 db 200 ksamples/s, 12 bit, single ended, v dd reference 67 db 200 ksamples/s, 12 bit, differ- ential, internal 1.25v reference 63 db 200 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 66 db 200 ksamples/s, 12 bit, differ- ential, 5v reference 66 db snr adc signal to noise ra- tio (snr) 200 ksamples/s, 12 bit, differ- ential, v dd reference 69 db preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 31 www.silabs.com symbol parameter condition min typ max unit 200 ksamples/s, 12 bit, differ- ential, 2xv dd reference 70 db 1 msamples/s, 12 bit, single ended, internal 1.25v refer- ence 58 db 1 msamples/s, 12 bit, single ended, internal 2.5v reference 62 db 1 msamples/s, 12 bit, single ended, v dd reference 64 db 1 msamples/s, 12 bit, differen- tial, internal 1.25v reference 60 db 1 msamples/s, 12 bit, differen- tial, internal 2.5v reference 64 db 1 msamples/s, 12 bit, differen- tial, 5v reference 54 db 1 msamples/s, 12 bit, differen- tial, v dd reference 66 db 1 msamples/s, 12 bit, differen- tial, 2xv dd reference 68 db 200 ksamples/s, 12 bit, sin- gle ended, internal 1.25v refer- ence 61 db 200 ksamples/s, 12 bit, single ended, internal 2.5v reference 65 db 200 ksamples/s, 12 bit, single ended, v dd reference 66 db 200 ksamples/s, 12 bit, differ- ential, internal 1.25v reference 63 db 200 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 66 db 200 ksamples/s, 12 bit, differ- ential, 5v reference 66 db 200 ksamples/s, 12 bit, differ- ential, v dd reference 68 db sinad adc signal-to-noise and distortion-ratio (sinad) 200 ksamples/s, 12 bit, differ- ential, 2xv dd reference 69 db 1 msamples/s, 12 bit, single ended, internal 1.25v refer- ence 64 dbc 1 msamples/s, 12 bit, single ended, internal 2.5v reference 76 dbc 1 msamples/s, 12 bit, single ended, v dd reference 73 dbc 1 msamples/s, 12 bit, differen- tial, internal 1.25v reference 66 dbc 1 msamples/s, 12 bit, differen- tial, internal 2.5v reference 77 dbc sfdr adc spurious-free dy- namic range (sf- dr) 1 msamples/s, 12 bit, differen- tial, v dd reference 76 dbc preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 32 www.silabs.com symbol parameter condition min typ max unit 1 msamples/s, 12 bit, differen- tial, 2xv dd reference 75 dbc 1 msamples/s, 12 bit, differen- tial, 5v reference 69 dbc 200 ksamples/s, 12 bit, sin- gle ended, internal 1.25v refer- ence 75 dbc 200 ksamples/s, 12 bit, single ended, internal 2.5v reference 75 dbc 200 ksamples/s, 12 bit, single ended, v dd reference 76 dbc 200 ksamples/s, 12 bit, differ- ential, internal 1.25v reference 79 dbc 200 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 79 dbc 200 ksamples/s, 12 bit, differ- ential, 5v reference 78 dbc 200 ksamples/s, 12 bit, differ- ential, v dd reference 79 dbc 200 ksamples/s, 12 bit, differ- ential, 2xv dd reference 79 dbc after calibration, single ended 0.3 mv v adcoffset offset voltage after calibration, differential 0.3 mv -1.92 mv/c tgrad adcth thermometer out- put gradient -6.3 adc codes/ c dnl adc differential non-lin- earity (dnl) 0.7 lsb inl adc integral non-linear- ity (inl), end point method 1.2 lsb mc adc no missing codes 11.999 1 12 bits 1 on the average every adc will have one missing code, most likely to appear around 2048 +/- n*512 where n can be a value in the set {-3, -2, -1, 1, 2, 3}. there will be no missing code around 2048, and in spite of the missing code the adc will be monotonic at all times so that a response to a slowly increasing input will always be a slowly increasing output. around the one code that is missing, the neighbour codes will look wider in the dnl plot. the spectra will show spurs on the level of -78dbc for a full scale input for chips that have the missing code issue. the integral non-linearity (inl) and differential non-linearity parameters are explained in figure 3.24 (p. 33 ) and figure 3.25 (p. 33 ) , respectively. preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 33 www.silabs.com figure 3.24. integral non-linearity (inl) ideal transfer curve digital ouput code analog input inl= | [(v d - v ss )/ v lsbideal ] - d| where 0 < d < 2 n - 1 0 1 2 3 4092 4093 4094 4095 v offset actual adc tranfer function before offset and gain correction actual adc tranfer function after offset and gain correction inl error ( end point inl) figure 3.25. differential non-linearity (dnl) ideal transfer curve digital ouput code analog input dnl= | [(v d + 1 - v d )/ v lsbideal ] - 1| where 0 < d < 2 n - 2 0 1 2 3 4092 4093 4094 4095 actual transfer function with one m issing code . 4 5 full scale range 0.5 lsb ideal code center ideal 50% transition point ideal spacing between two adjacent codes v lsbideal = 1 lsb code width = 2 lsb dnl = 1 lsb example: adjacent input value v d + 1 corrresponds to digital output code d + 1 example: input value v d corrresponds to digital output code d preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 34 www.silabs.com 3.10.1 typical performance figure 3.26. adc frequency spectrum, vdd = 3v, temp = 25c 1.25v reference 2.5v reference 2xvddvss reference 5vdiff reference vdd reference preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 35 www.silabs.com figure 3.27. adc integral linearity error vs code, vdd = 3v, temp = 25c 1.25v reference 2.5v reference 2xvddvss reference 5vdiff reference vdd reference preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 36 www.silabs.com figure 3.28. adc differential linearity error vs code, vdd = 3v, temp = 25c 1.25v reference 2.5v reference 2xvddvss reference 5vdiff reference vdd reference preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 37 www.silabs.com figure 3.29. adc absolute offset, common mode = vdd /2 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd (v) ?4 ?3 ?2 ?1 0 1 2 3 4 5 actual offset [lsb] vref= 1v25 vref= 2v5 vref= 2xvddvss vref= 5vdiff vref= vdd offset vs supply voltage, temp = 25c ?40 ?15 5 25 45 65 85 tem p (c) ?1.0 ?0.5 0.0 0.5 1.0 1.5 2.0 actual offset [lsb] vref= 1v25 vref= 2v5 vref= 2xvddvss vref= 5vdiff vref= vdd offset vs temperature, vdd = 3v figure 3.30. adc dynamic performance vs temperature for all adc references, vdd = 3v ?40 ?15 5 25 45 65 85 tem perature [c] 63 64 65 66 67 68 69 70 71 snr [db] 1v25 2v5 vdd 5vdiff 2xvddvss signal to noise ratio (snr) ?40 ?15 5 25 45 65 85 tem perature [c] 78.0 78.2 78.4 78.6 78.8 79.0 79.2 79.4 sfdr [db] 1v25 2v5 vdd 5vdiff 2xvddvss spurious-free dynamic range (sfdr) preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 38 www.silabs.com figure 3.31. adc temperature sensor readout ?40 ?25 ?15 ?5 5 15 25 35 45 55 65 75 85 tem perature [c] 2100 2200 2300 2400 2500 2600 sensor readout vdd= 1.8 vdd= 3 vdd= 3.8 3.11 current digital analog converter (idac) table 3.14. idac range 0 source symbol parameter condition min typ max unit em0, default settings 11.7 a i idac active current with stepsel=0x10 duty-cycled 10 na i 0x10 nominal idac out- put current with stepsel=0x10 0.84 a i step step size 0.049 a i d current drop at high impedance load v idac_out = v dd - 100mv 0.73 % tc idac temperature coeffi- cient v=3.0v, stepsel=0x10 0.3 na/c vc idac voltage coefficient v dd = 3.0 v, stepsel=0x10 11.7 na/v table 3.15. idac range 0 sink symbol parameter condition min typ max unit i idac active current with stepsel=0x10 em0, default settings 13.7 a i 0x10 nominal idac out- put current with stepsel=0x10 0.84 a i step step size 0.050 a i d current drop at high impedance load v idac_out = 200 mv 0.16 % tc idac temperature coeffi- cient v dd = 3.0 v, stepsel=0x10 0.2 na/c vc idac voltage coefficient t = 25 c, stepsel=0x10 12.5 na/v preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 39 www.silabs.com table 3.16. idac range 1 source symbol parameter condition min typ max unit em0, default settings 13.0 a i idac active current with stepsel=0x10 duty-cycled 10 na i 0x10 nominal idac out- put current with stepsel=0x10 3.17 a i step step size 0.097 a i d current drop at high impedance load v idac_out = v dd - 100mv 0.79 % tc idac temperature coeffi- cient v dd = 3.0 v, stepsel=0x10 0.7 na/c vc idac voltage coefficient t = 25 c, stepsel=0x10 38.4 na/v table 3.17. idac range 1 sink symbol parameter condition min typ max unit i idac active current with stepsel=0x10 em0, default settings 17.9 a i 0x10 nominal idac out- put current with stepsel=0x10 3.18 a i step step size 0.098 a i d current drop at high impedance load v idac_out = 200 mv 0.20 % tc idac temperature coeffi- cient v dd = 3.0 v, stepsel=0x10 0.7 na/c vc idac voltage coefficient t = 25 c, stepsel=0x10 40.9 na/v table 3.18. idac range 2 source symbol parameter condition min typ max unit em0, default settings 16.2 a i idac active current with stepsel=0x10 duty-cycled tbd na i 0x10 nominal idac out- put current with stepsel=0x10 tbd a i step step size 0.493 a i d current drop at high impedance load v idac_out = v dd - 100mv 1.26 % tc idac temperature coeffi- cient v dd = 3.0 v, stepsel=0x10 2.8 na/c vc idac voltage coefficient t = 25 c, stepsel=0x10 96.6 na/v table 3.19. idac range 2 sink symbol parameter condition min typ max unit i idac active current with stepsel=0x10 em0, default settings 28.4 a preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 40 www.silabs.com symbol parameter condition min typ max unit i 0x10 nominal idac out- put current with stepsel=0x10 8.44 a i step step size 0.495 a i d current drop at high impedance load v idac_out = 200 mv 0.55 % tc idac temperature coeffi- cient v dd = 3.0 v, stepsel=0x10 2.8 na/c vc idac voltage coefficient t = 25 c, stepsel=0x10 94.4 na/v table 3.20. idac range 3 source symbol parameter condition min typ max unit em0, default settings 18.3 a i idac active current with stepsel=0x10 duty-cycled 10 na i 0x10 nominal idac out- put current with stepsel=0x10 34.03 a i step step size 1.996 a i d current drop at high impedance load v idac_out = v dd - 100 mv 3.18 % tc idac temperature coeffi- cient v dd = 3.0 v, stepsel=0x10 10.9 na/c vc idac voltage coefficient t = 25 c, stepsel=0x10 159.5 na/v table 3.21. idac range 3 sink symbol parameter condition min typ max unit i idac active current with stepsel=0x10 em0, default settings 62.9 a i 0x10 nominal idac out- put current with stepsel=0x10 34.16 a i step step size 2.003 a i d current drop at high impedance load v idac_out = 200 mv 1.65 % tc idac temperature coeffi- cient v dd = 3.0 v, stepsel=0x10 10.9 na/c vc idac voltage coefficient t = 25 c, stepsel=0x10 148.6 na/v table 3.22. idac symbol parameter min typ max unit t idacstart start-up time, from enabled to output settled 40 s preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 41 www.silabs.com figure 3.32. idac source current as a function of voltage on idac_out ?2.0 ?1.5 ?1.0 ?0.5 0.0 v(idac_out) - vdd [v] 90 91 92 93 94 95 96 97 98 99 100 101 percentage of nom inal current [%] - 40c, 2.0v 25c, 3.0v 85c, 3.8v range 0 ?2.0 ?1.5 ?1.0 ?0.5 0.0 v(idac_out) - vdd [v] 90 91 92 93 94 95 96 97 98 99 100 101 percentage of nom inal current [%] - 40c, 2.0v 25c, 3.0v 85c, 3.8v range 1 ?2.0 ?1.5 ?1.0 ?0.5 0.0 v(idac_out) - vdd [v] 90 91 92 93 94 95 96 97 98 99 100 101 percentage of nom inal current [%] - 40c, 2.0v 25c, 3.0v 85c, 3.8v range 2 ?2.0 ?1.5 ?1.0 ?0.5 0.0 v(idac_out) - vdd [v] 90 91 92 93 94 95 96 97 98 99 100 101 percentage of nom inal current [%] - 40c, 2.0v 25c, 3.0v 85c, 3.8v range 3 preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 42 www.silabs.com figure 3.33. idac sink current as a function of voltage from idac_out 0.0 0.5 1.0 1.5 2.0 v(idac_out) [v] 95 96 97 98 99 100 101 percentage of nom inal current [%] - 40c, 2.0v 25c, 3.0v 85c, 3.8v range 0 0.0 0.5 1.0 1.5 2.0 v(idac_out) [v] 95 96 97 98 99 100 101 percentage of nom inal current [%] - 40c, 2.0v 25c, 3.0v 85c, 3.8v range 1 0.0 0.5 1.0 1.5 2.0 v(idac_out) [v] 95 96 97 98 99 100 101 percentage of nom inal current [%] - 40c, 2.0v 25c, 3.0v 85c, 3.8v range 2 0.0 0.5 1.0 1.5 2.0 v(idac_out) [v] 95 96 97 98 99 100 101 percentage of nom inal current [%] - 40c, 2.0v 25c, 3.0v 85c, 3.8v range 3 figure 3.34. idac linearity 0 5 10 15 20 25 30 step 0 1 2 3 4 5 idd [ua] range 0 range 1 0 5 10 15 20 25 30 step 0 10 20 30 40 50 60 70 idd [ua] range 2 range 3 preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 43 www.silabs.com 3.12 analog comparator (acmp) table 3.23. acmp symbol parameter condition min typ max unit v acmpin input voltage range 0 v dd v v acmpcm acmp common mode voltage range 0 v dd v biasprog=0b0000, full- bias=0 and halfbias=1 in acmpn_ctrl register 0.1 a biasprog=0b1111, full- bias=0 and halfbias=0 in acmpn_ctrl register 2.87 a i acmp active current biasprog=0b1111, full- bias=1 and halfbias=0 in acmpn_ctrl register 195 a internal voltage reference off. using external voltage refer- ence 0 a i acmpref current consump- tion of internal volt- age reference internal voltage reference 5 a single ended 10 mv v acmpoffset offset voltage differential 10 mv v acmphyst acmp hysteresis programmable 17 mv csressel=0b00 in acmpn_inputsel 39 kohm csressel=0b01 in acmpn_inputsel 71 kohm csressel=0b10 in acmpn_inputsel 104 kohm r csres capacitive sense internal resistance csressel=0b11 in acmpn_inputsel 136 kohm t acmpstart startup time 10 s the total acmp current is the sum of the contributions from the acmp and its internal voltage reference as given in equation 3.1 (p. 43 ) . i acmpref is zero if an external voltage reference is used. total acmp active current i acmptotal = i acmp + i acmpref (3.1) preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 44 www.silabs.com figure 3.35. acmp characteristics, vdd = 3v, temp = 25c, fullbias = 0, halfbias = 1 0 4 8 12 acmp_ctrl_biasprog 0.0 0.5 1.0 1.5 2.0 2.5 current [ua] current consumption, hystsel = 4 0 2 4 6 8 10 12 14 acmp_ctrl_biasprog 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 response tim e [us] hystsel= 0.0 hystsel= 2.0 hystsel= 4.0 hystsel= 6.0 response time 0 1 2 3 4 5 6 7 acmp_ctrl_hystsel 0 20 40 60 80 100 hysteresis [m v] biasprog= 0.0 biasprog= 4.0 biasprog= 8.0 biasprog= 12.0 hysteresis preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 45 www.silabs.com 3.13 voltage comparator (vcmp) table 3.24. vcmp symbol parameter condition min typ max unit v vcmpin input voltage range v dd v v vcmpcm vcmp common mode voltage range v dd v biasprog=0b0000 and halfbias=1 in vcmpn_ctrl register 0.1 a i vcmp active current biasprog=0b1111 and halfbias=0 in vcmpn_ctrl register. lpref=0. 14.7 a t vcmpref startup time refer- ence generator normal 10 s single ended 10 mv v vcmpoffset offset voltage differential 10 mv v vcmphyst vcmp hysteresis 17 mv t vcmpstart startup time 10 s the v dd trigger level can be configured by setting the triglevel field of the vcmp_ctrl register in accordance with the following equation: vcmp trigger level as a function of level setting v dd trigger level =1.667v+0.034 triglevel (3.2) 3.14 i2c table 3.25. i2c standard-mode (sm) symbol parameter min typ max unit f scl scl clock frequency 0 100 1 khz t low scl clock low time 4.7 s t high scl clock high time 4.0 s t su,dat sda set-up time 250 ns t hd,dat sda hold time 8 3450 2 , 3 ns t su,sta repeated start condition set-up time 4.7 s t hd,sta (repeated) start condition hold time 4.0 s t su,sto stop condition set-up time 4.0 s t buf bus free time between a stop and start condition 4.7 s 1 for the minimum hfperclk frequency required in standard-mode, see the i2c chapter in the efm32zg reference manual. 2 the maximum sda hold time (t hd,dat ) needs to be met only when the device does not stretch the low time of scl (t low ). 3 when transmitting data, this number is guaranteed only when i2cn_clkdiv < ((3450*10 -9 [s] * f hfperclk [hz]) - 5). preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 46 www.silabs.com table 3.26. i2c fast-mode (fm) symbol parameter min typ max unit f scl scl clock frequency 0 400 1 khz t low scl clock low time 1.3 s t high scl clock high time 0.6 s t su,dat sda set-up time 100 ns t hd,dat sda hold time 8 900 2 , 3 ns t su,sta repeated start condition set-up time 0.6 s t hd,sta (repeated) start condition hold time 0.6 s t su,sto stop condition set-up time 0.6 s t buf bus free time between a stop and start condition 1.3 s 1 for the minimum hfperclk frequency required in fast-mode, see the i2c chapter in the efm32zg reference manual. 2 the maximum sda hold time (t hd,dat ) needs to be met only when the device does not stretch the low time of scl (t low ). 3 when transmitting data, this number is guaranteed only when i2cn_clkdiv < ((900*10 -9 [s] * f hfperclk [hz]) - 5). table 3.27. i2c fast-mode plus (fm+) symbol parameter min typ max unit f scl scl clock frequency 0 1000 1 khz t low scl clock low time 0.5 s t high scl clock high time 0.26 s t su,dat sda set-up time 50 ns t hd,dat sda hold time 8 ns t su,sta repeated start condition set-up time 0.26 s t hd,sta (repeated) start condition hold time 0.26 s t su,sto stop condition set-up time 0.26 s t buf bus free time between a stop and start condition 0.5 s 1 for the minimum hfperclk frequency required in fast-mode plus, see the i2c chapter in the efm32zg reference manual. 3.15 digital peripherals table 3.28. digital peripherals symbol parameter condition min typ max unit i usart usart current usart idle current, clock en- abled 7.5 a/ mhz i i2c i2c current i2c idle current, clock enabled 6.25 a/ mhz i timer timer current timer_0 idle current, clock enabled 8.75 a/ mhz i pcnt pcnt current pcnt idle current, clock en- abled 100 na i rtc rtc current rtc idle current, clock enabled 100 na i aes aes current aes idle current, clock enabled 2.5 a/ mhz preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 47 www.silabs.com symbol parameter condition min typ max unit i gpio gpio current gpio idle current, clock en- abled 5.31 a/ mhz i prs prs current prs idle current 2,81 a/ mhz preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 48 www.silabs.com 4 pinout and package note please refer to the application note "an0002 efm32 hardware design considerations" for guidelines on designing printed circuit boards (pcb's) for the EFM32ZG210. 4.1 pinout the EFM32ZG210 pinout is shown in figure 4.1 (p. 48 ) and table 4.1 (p. 48 ) . alternate locations are denoted by "#" followed by the location number (multiple locations on the same pin are split with "/"). alternate locations can be configured in the location bitfield in the *_route register in the module in question. figure 4.1. EFM32ZG210 pinout (top view, not to scale) table 4.1. device pinout qfn32 pin# and name pin alternate functionality / description pin # pin name analog timers communication other 0 vss ground 1 pa0 tim0_cc0 #0/1/4 leu0_rx #4 i2c0_sda #0 prs_ch0 #0 gpio_em4wu0 2 pa1 tim0_cc1 #0/1 i2c0_scl #0 cmu_clk1 #0 prs_ch1 #0 preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 49 www.silabs.com qfn32 pin# and name pin alternate functionality / description pin # pin name analog timers communication other 3 pa2 tim0_cc2 #0/1 cmu_clk0 #0 4 iovdd_0 digital io power supply 0. 5 pc0 acmp0_ch0 tim0_cc1 #4 pcnt0_s0in #2 us1_tx #0 i2c0_sda #4 prs_ch2 #0 6 pc1 acmp0_ch1 tim0_cc2 #4 pcnt0_s1in #2 us1_rx #0 i2c0_scl #4 prs_ch3 #0 7 pb7 lfxtal_p tim1_cc0 #3 us1_clk #0 8 pb8 lfxtal_n tim1_cc1 #3 us1_cs #0 9 resetn reset input, active low. to apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up en- sure that reset is released. 10 pb11 idac0_out tim1_cc2 #3 11 avdd_2 analog power supply 2. 12 pb13 hfxtal_p leu0_tx #1 13 pb14 hfxtal_n leu0_rx #1 14 iovdd_3 digital io power supply 3. 15 avdd_0 analog power supply 0. 16 pd4 adc0_ch4 leu0_tx #0 17 pd5 adc0_ch5 leu0_rx #0 18 pd6 adc0_ch6 tim1_cc0 #4 pcnt0_s0in #3 us1_rx #2/3 i2c0_sda #1 acmp0_o #2 19 pd7 adc0_ch7 tim1_cc1 #4 pcnt0_s1in #3 us1_tx #2/3 i2c0_scl #1 cmu_clk0 #2 20 vdd_dreg power supply for on-chip voltage regulator. 21 decouple decouple output for on-chip voltage regulator. an external capacitance of size c decouple is required at this pin. 22 pc13 tim1_cc0 #0 tim1_cc2 #4 pcnt0_s0in #0 23 pc14 tim1_cc1 #0 pcnt0_s1in #0 us1_cs #3 prs_ch0 #2 24 pc15 tim1_cc2 #0 us1_clk #3 prs_ch1 #2 25 pf0 tim0_cc0 #5 us1_clk #2 leu0_tx #3 i2c0_sda #5 dbg_swclk #0 boot_tx 26 pf1 tim0_cc1 #5 us1_cs #2 leu0_rx #3 i2c0_scl #5 dbg_swdio #0 gpio_em4wu3 boot_rx 27 pf2 tim0_cc2 #5 leu0_tx #4 gpio_em4wu4 28 iovdd_5 digital io power supply 5. 29 pe10 tim1_cc0 #1 prs_ch2 #2 30 pe11 tim1_cc1 #1 prs_ch3 #2 31 pe12 tim1_cc2 #1 i2c0_sda #6 cmu_clk1 #2 32 pe13 i2c0_scl #6 acmp0_o #0 gpio_em4wu5 preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 50 www.silabs.com 4.2 alternate functionality pinout a wide selection of alternate functionality is available for multiplexing to various pins. this is shown in table 4.2 (p. 50 ) . the table shows the name of the alternate functionality in the first column, followed by columns showing the possible location bitfield settings. note some functionality, such as analog interfaces, do not have alternate settings or a loca- tion bitfield. in these cases, the pinout is shown in the column corresponding to loca- tion 0. table 4.2. alternate functionality overview alternate location functionality 0 1 2 3 4 5 6 description acmp0_ch0 pc0 analog comparator acmp0, channel 0. acmp0_ch1 pc1 analog comparator acmp0, channel 1. acmp0_o pe13 pd6 analog comparator acmp0, digital output. adc0_ch4 pd4 analog to digital converter adc0, input channel number 4. adc0_ch5 pd5 analog to digital converter adc0, input channel number 5. adc0_ch6 pd6 analog to digital converter adc0, input channel number 6. adc0_ch7 pd7 analog to digital converter adc0, input channel number 7. boot_rx pf1 bootloader rx boot_tx pf0 bootloader tx cmu_clk0 pa2 pd7 clock management unit, clock output number 0. cmu_clk1 pa1 pe12 clock management unit, clock output number 1. dbg_swclk pf0 debug-interface serial wire clock input. note that this function is enabled to pin out of reset, and has a built-in pull down. dbg_swdio pf1 debug-interface serial wire data input / output. note that this function is enabled to pin out of reset, and has a built-in pull up. gpio_em4wu0 pa0 pin can be used to wake the system up from em4 gpio_em4wu3 pf1 pin can be used to wake the system up from em4 gpio_em4wu4 pf2 pin can be used to wake the system up from em4 gpio_em4wu5 pe13 pin can be used to wake the system up from em4 hfxtal_n pb14 high frequency crystal negative pin. also used as external optional clock input pin. hfxtal_p pb13 high frequency crystal positive pin. i2c0_scl pa1 pd7 pc1 pf1 pe13 i2c0 serial clock line input / output. i2c0_sda pa0 pd6 pc0 pf0 pe12 i2c0 serial data input / output. idac0_out pb11 idac0 output leu0_rx pd5 pb14 pf1 pa0 leuart0 receive input. leu0_tx pd4 pb13 pf0 pf2 leuart0 transmit output. also used as receive input in half duplex communication. lfxtal_n pb8 low frequency crystal (typically 32.768 khz) negative pin. also used as an optional external clock input pin. lfxtal_p pb7 low frequency crystal (typically 32.768 khz) positive pin. pcnt0_s0in pc13 pc0 pd6 pulse counter pcnt0 input number 0. preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 51 www.silabs.com alternate location functionality 0 1 2 3 4 5 6 description pcnt0_s1in pc14 pc1 pd7 pulse counter pcnt0 input number 1. prs_ch0 pa0 pc14 peripheral reflex system prs, channel 0. prs_ch1 pa1 pc15 peripheral reflex system prs, channel 1. prs_ch2 pc0 pe10 peripheral reflex system prs, channel 2. prs_ch3 pc1 pe11 peripheral reflex system prs, channel 3. tim0_cc0 pa0 pa0 pa0 pf0 timer 0 capture compare input / output channel 0. tim0_cc1 pa1 pa1 pc0 pf1 timer 0 capture compare input / output channel 1. tim0_cc2 pa2 pa2 pc1 pf2 timer 0 capture compare input / output channel 2. tim1_cc0 pc13 pe10 pb7 pd6 timer 1 capture compare input / output channel 0. tim1_cc1 pc14 pe11 pb8 pd7 timer 1 capture compare input / output channel 1. tim1_cc2 pc15 pe12 pb11 pc13 timer 1 capture compare input / output channel 2. us1_clk pb7 pf0 pc15 usart1 clock input / output. us1_cs pb8 pf1 pc14 usart1 chip select input / output. us1_rx pc1 pd6 pd6 usart1 asynchronous receive. usart1 synchronous mode master input / slave output (miso). us1_tx pc0 pd7 pd7 usart1 asynchronous transmit.also used as receive input in half duplex communication. usart1 synchronous mode master output / slave input (mosi). 4.3 gpio pinout overview the specific gpio pins available in EFM32ZG210 is shown in table 4.3 (p. 51 ) . each gpio port is organized as 16-bit ports indicated by letters a through f, and the individual pin on this port in indicated by a number from 15 down to 0. table 4.3. gpio pinout port pin 15 pin 14 pin 13 pin 12 pin 11 pin 10 pin 9 pin 8 pin 7 pin 6 pin 5 pin 4 pin 3 pin 2 pin 1 pin 0 port a - - - - - - - - - - - - - pa2 pa1 pa0 port b - pb14 pb13 - pb11 - - pb8 pb7 - - - - - - - port c pc15 pc14 pc13 - - - - - - - - - - - pc1 pc0 port d - - - - - - - - pd7 pd6 pd5 pd4 - - - - port e - - pe13 pe12 pe11 pe10 - - - - - - - - - - port f - - - - - - - - - - - - - pf2 pf1 pf0 preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 52 www.silabs.com 4.4 qfn32 package figure 4.2. qfn32 note: 1. dimensioning & tolerancing confirm to asme y14.5m-1994. 2. all dimensions are in millimeters. angles are in degrees. 3. dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip. dimension l1 represents terminal full back from package edge up to 0.1 mm is acceptable. 4. coplanarity applies to the exposed heat slug as well as the terminal. 5. radius on terminal is optional table 4.4. qfn32 (preliminary) (dimensions in mm) symbol a a1 a3 b d e d2 e2 e l l1 aaa bbb ccc ddd eee min 0.80 0.00 0.25 4.30 4.30 0.30 0.00 nom 0.85 - 0.30 4.40 4.40 0.35 max 0.90 0.05 0.203 ref 0.35 6.00 bsc 6.00 bsc 4.50 4.50 0.65 bsc 0.40 0.10 0.10 0.10 0.10 0.05 0.08 the qfn32 package uses nickel-palladium-gold preplated leadframe. all efm32 packages are rohs compliant and free of bromine (br) and antimony (sb). preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 53 www.silabs.com 5 pcb layout and soldering 5.1 recommended pcb layout figure 5.1. qfn32 pcb land pattern e a d p1 p2 p3 p4 p5 p6 p7 p8 c b p9 f g table 5.1. qfn32 pcb land pattern dimensions (dimensions in mm) symbol dim. (mm) symbol pin number symbol pin number a 0.80 p1 1 p6 24 b 0.35 p2 8 p7 25 c 0.65 p3 26 p8 32 d 6.00 p4 16 p9 33 e 6.00 p5 17 - - f 4.40 - - - - g 4.40 - - - - preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 54 www.silabs.com figure 5.2. qfn32 pcb solder mask e a d c b f g table 5.2. qfn32 pcb solder mask dimensions (dimensions in mm) symbol dim. (mm) a 0.92 b 0.47 c 0.65 d 6.00 e 6.00 f 4.52 g 4.52 preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 55 www.silabs.com figure 5.3. qfn32 pcb stencil design e a d c b x y z table 5.3. qfn32 pcb stencil design dimensions (dimensions in mm) symbol dim. (mm) a 0.70 b 0.25 c 0.65 d 6.00 e 6.00 x 1.30 y 1.30 z 0.50 1. the drawings are not to scale. 2. all dimensions are in millimeters. 3. all drawings are subject to change without notice. 4. the pcb land pattern drawing is in compliance with ipc-7351b. 5. stencil thickness 0.125 mm. 6. for detailed pin-positioning, see figure 4.2 (p. 52 ) . 5.2 soldering information the latest ipc/jedec j-std-020 recommendations for pb-free reflow soldering should be followed. the packages have a moisture sensitivity level rating of 3, please see the latest ipc/jedec j-std-033 standard for msl description and level 3 bake conditions. place as many and as small as possible vias underneath each of the solder patches under the ground pad. preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 56 www.silabs.com 6 chip marking, revision and errata 6.1 chip marking in the illustration below package fields and position are shown. figure 6.1. example chip marking 6.2 revision the revision of a chip can be determined from the "revision" field in figure 6.1 (p. 56 ) . if the revision says "es" (engineering sample), the revision must be read out electronically as specified in the reference manual. 6.3 errata no known errata for EFM32ZG210. preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 57 www.silabs.com 7 revision history 7.1 revision 0.60 october 9th, 2013 added i2c characterization data. added idac characterization data. updated current consumption table and figures in electrical characteristics section. corrected the adc resolution from 12, 10 and 6 bit to 12, 8 and 6 bit. removed environmental information. updated trademark, disclaimer and contact information. other minor corrections. 7.2 revision 0.50 april 22nd, 2013 updated hfcore max frequency from 32 mhz to 24 mhz. updated pinout. other minor corrections. 7.3 revision 0.40 september 11th, 2012 updated cpu core from cortex m0 to cortex m0+. updated the hfrco 1 mhz band typical value to 1.2 mhz. updated the hfrco 7 mhz band typical value to 6.6 mhz. corrected operating voltage from 1.8 v to 1.85 v. other minor corrections. 7.4 revision 0.30 july 16th, 2011 updated the electrical characteristics section. 7.5 revision 0.20 june 8th, 2011 corrected all current values in electrical characteristics section. updated cortex m0 related items in the memory map. preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 58 www.silabs.com 7.6 revision 0.10 june 7th, 2011 initial preliminary release. preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 59 www.silabs.com a disclaimer and trademarks a.1 disclaimer silicon laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the silicon laboratories products. characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "typical" parameters provided can and do vary in different applications. application examples described herein are for illustrative purposes only. silicon laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. silicon laboratories shall have no liability for the conse- quences of use of the information supplied herein. this document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. the products must not be used within any life support system without the specific written consent of silicon laboratories. a "life support system" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. silicon laboratories products are generally not intended for military applications. silicon laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. a.2 trademark information silicon laboratories inc., silicon laboratories, silicon labs, silabs and the silicon labs logo, cmems?, efm, efm32, efr, energy micro, energy micro logo and combinations thereof, "the world?s most ener- gy friendly microcontrollers", ember?, ezlink?, ezmac?, ezradio?, ezradiopro?, dspll?, iso- modem?, precision32?, proslic?, siphy?, usbxpress? and others are trademarks or registered trademarks of silicon laboratories inc. arm, cortex, cortex-m3 and thumb are trademarks or reg- istered trademarks of arm holdings. keil is a registered trademark of arm limited. all other products or brand names mentioned herein are trademarks of their respective holders. preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 60 www.silabs.com b contact information silicon laboratories inc. 400 west cesar chavez austin, tx 78701 please visit the silicon labs technical support web page: http://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request. preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 61 www.silabs.com table of contents 1. ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. system summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1. system introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2. configuration summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3. memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3. electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1. test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2. absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3. general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.4. current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.5. transition between energy modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.6. power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.7. flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.8. general purpose input output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.9. oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.10. analog digital converter (adc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.11. current digital analog converter (idac) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.12. analog comparator (acmp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.13. voltage comparator (vcmp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.14. i2c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.15. digital peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4. pinout and package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.1. pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2. alternate functionality pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3. gpio pinout overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.4. qfn32 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5. pcb layout and soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.1. recommended pcb layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2. soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6. chip marking, revision and errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.1. chip marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.2. revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3. errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7. revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.1. revision 0.60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.2. revision 0.50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.3. revision 0.40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.4. revision 0.30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.5. revision 0.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.6. revision 0.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 a. disclaimer and trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 a.1. disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 a.2. trademark information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 b. contact information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 b.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 62 www.silabs.com list of figures 2.1. block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2. EFM32ZG210 memory map with largest ram and flash sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1. em0 current consumption while executing prime number calculation code from flash with hfrco running at 24mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2. em0 current consumption while executing prime number calculation code from flash with hfrco running at 21mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3. em0 current consumption while executing prime number calculation code from flash with hfrco running at 14mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4. em0 current consumption while executing prime number calculation code from flash with hfrco running at 11mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.6. em1 current consumption with all peripheral clocks disabled and hfrco running at 24mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.7. em1 current consumption with all peripheral clocks disabled and hfrco running at 21mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.8. em1 current consumption with all peripheral clocks disabled and hfrco running at 14mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.9. em1 current consumption with all peripheral clocks disabled and hfrco running at 11mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.11. em2 current consumption. rtc prescaled to 1khz, 32.768 khz lfrco. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.12. em3 current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.13. em4 current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.14. typical low-level output current, 2v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.15. typical high-level output current, 2v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.16. typical low-level output current, 3v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.17. typical high-level output current, 3v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.18. typical low-level output current, 3.8v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.19. typical high-level output current, 3.8v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.20. calibrated lfrco frequency vs temperature and supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.21. calibrated hfrco 11 mhz band frequency vs supply voltage and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.22. calibrated hfrco 14 mhz band frequency vs supply voltage and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.23. calibrated hfrco 21 mhz band frequency vs supply voltage and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.24. integral non-linearity (inl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.25. differential non-linearity (dnl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.26. adc frequency spectrum, vdd = 3v, temp = 25c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.27. adc integral linearity error vs code, vdd = 3v, temp = 25c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.28. adc differential linearity error vs code, vdd = 3v, temp = 25c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.29. adc absolute offset, common mode = vdd /2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.30. adc dynamic performance vs temperature for all adc references, vdd = 3v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.31. adc temperature sensor readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.32. idac source current as a function of voltage on idac_out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.33. idac sink current as a function of voltage from idac_out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.34. idac linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.35. acmp characteristics, vdd = 3v, temp = 25c, fullbias = 0, halfbias = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1. EFM32ZG210 pinout (top view, not to scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2. qfn32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.1. qfn32 pcb land pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2. qfn32 pcb solder mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3. qfn32 pcb stencil design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.1. example chip marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 63 www.silabs.com list of tables 1.1. ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1. configuration summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1. absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2. general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3. current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.4. energy modes transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.5. power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.6. flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.7. gpio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.8. lfxo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.9. hfxo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.10. lfrco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.11. hfrco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.12. ulfrco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.13. adc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.14. idac range 0 source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.15. idac range 0 sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.16. idac range 1 source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.17. idac range 1 sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.18. idac range 2 source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.19. idac range 2 sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.20. idac range 3 source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.21. idac range 3 sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.22. idac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.23. acmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.24. vcmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.25. i2c standard-mode (sm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.26. i2c fast-mode (fm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.27. i2c fast-mode plus (fm+) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.28. digital peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.1. device pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2. alternate functionality overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3. gpio pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.4. qfn32 (preliminary) (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.1. qfn32 pcb land pattern dimensions (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2. qfn32 pcb solder mask dimensions (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3. qfn32 pcb stencil design dimensions (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 preliminary ...the world's most energy friendly microcontrollers 2013-10-09 - EFM32ZG210fxx - d0065_rev0.60 64 www.silabs.com list of equations 3.1. total acmp active current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2. vcmp trigger level as a function of level setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 |
Price & Availability of EFM32ZG210 |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |