![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
3/20/98 GA150TD120U "half-bridge" igbt double int-a-pak features v ces = 1200 v v ce (on) typ. = 2.4v @v ge = 15v , i c = 150a parameter typ. max. units r q jc thermal resistance, junction-to-case - igbt 0.16 r q jc thermal resistance, junction-to-case - diode 0.20 c/w r q cs thermal resistance, case-to-sink - module 0.1 mounting torque, case-to-heatsink 4.0 n m mounting torque, case-to-terminal 1, 2 & 3 ? 3.0 weight of module 400 g thermal / mechanical characteristics absolute maximum ratings parameter max. units v ces collector-to-emitter voltage 1200 v i c @ t c = 25c continuous collector current 150 i cm pulsed collector current ? 300 a i lm peak switching current ? 300 i fm peak diode forward current 300 v ge gate-to-emitter voltage 20 v v isol rms isolation voltage, any terminal to case, t = 1 min 2500 p d @ t c = 25c maximum power dissipation 780 w p d @ t c = 85c maximum power dissipation 406 t j operating junction temperature range -40 to +150 c t stg storage temperature range -40 to +125 ? standard: optimized for minimum saturation voltage and operating frequencies up to 10khz ? very low conduction and switching losses ? hexfred ? antiparallel diodes with ultra- soft recovery ? industry standard package ? ul approved benefits ? increased operating efficiency ? direct mounting to heatsink ? performance optimized for power conversion: ups, smps, welding ? lower emi, requires less snubbing preliminary ? generation 4 igbt technology . www.irf.com 1 ultra-fast tm speed igbt pd - 5.067a
GA150TD120U 2 www.irf.com parameter min. typ. max. units conditions q g total gate charge (turn-on) 1139 1709 v cc = 400v, v ge = 15v q ge gate - emitter charge (turn-on) 192 288 nc i c = 171a q gc gate - collector charge (turn-on) 377 566 t j = 25c t d(on) turn-on delay time 414 r g1 = 15 w , r g2 = 0 w t r rise time 208 ns i c = 150a t d(off) turn-off delay time 552 v cc = 720v t f fall time 342 v ge = 15v e on turn-on switching energy 29 mj see fig.17 through fig.21 e off turn-off switching energy 32 e ts total switching energy 61 90 c ies input capacitance 25630 v ge = 0v c oes output capacitance 1139 pf v cc = 30v c res reverse transfer capacitance 221 ? = 1 mhz t rr diode reverse recovery time 186 ns i c = 150a i rr diode peak reversecurrent 133 a r g1 = 15 q rr diode recovery charge 12381 nc r g2 = 0 di (rec) m /dt diode peak rate of fall of recovery 2524 a/s v cc = 720v during t b di/dt=1260a/s parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage 1200 v ge = 0v, i c = 1ma v ce(on) collector-to-emitter voltage 2.4 2.9 v ge = 15v, i c = 150a 2.2 v v ge = 15v, i c = 150a, t j = 125c v ge(th) gate threshold voltage 3.0 6.0 i c = 1.75 ma d v ge(th) / d t j temperature coeff. of threshold voltage -11 mv/c v ce = v ge , i c = 1.75ma g fe forward transconductance ? 201 s v ce = 25v, i c = 150a i ces collector-to-emitter leaking current 2 ma v ge = 0v, v ce = 1200v 20 v ge = 0v, v ce = 1200v, t j = 125c v fm diode forward voltage - maximum 2.7 3.5 v i f = 150a, v ge = 0v 2.6 i f = 150a, v ge = 0v, t j = 125c i ges gate-to-emitter leakage current 500 na v ge = 20v dynamic characteristics - t j = 125c (unless otherwise specified) electrical characteristics @ t j = 25c (unless otherwise specified) details of note ? through ? are on the last page w w GA150TD120U www.irf.com 3 fig. 1 - typical load current vs. frequency (load current = i rms of fundamental) fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics 10 100 1000 1.0 1.5 2.0 2.5 3.0 v , collector-to-emitter voltage (v) i , collector-to-emitter current (a) ce c v = 15v 80s pulse width ge t = 25 c j t = 125 c j 0.1 1 10 100 0 20 40 60 80 100 120 f, frequency (khz) load current (a) for both: duty cycle: 50% t = 125c t = 90c gate drive as specified sink j power dissipation = w 60% of rated voltage i ideal diodes square wave: 134 load current ( a ) 1 10 100 1000 5 6 7 8 v , gate-to-emitter voltage (v) i , collector-to-emitter current (a) ge c v = 50v 5s pulse width cc t = 25 c j t = 125 c j 25v GA150TD120U 4 www.irf.com fig. 6 - maximum effective transient thermal impedance, junction-to-case fig. 5 - typical collector-to-emitter voltage vs. junction temperature fig. 4 - maximum collector current vs. case temperature 25 50 75 100 125 150 0 50 100 150 200 t , case temperature ( c) maximum dc collector current(a) c -60 -40 -20 0 20 40 60 80 100 120 140 160 1.0 2.0 3.0 4.0 t , junction temperature ( c) v , collector-to-emitter voltage(v) j ce v = 15v 80 us pulse width ge i = a 300 c i = a 150 c i = a 75 c ( c ) 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 10 100 1000 1 th jc d = 0.50 0.01 0.02 0.05 0.10 0.20 sing le pulse (thermal response) therm al r esponse (z ) t , rectan g ular pulse duration ( sec ) a p t 2 1 t dm notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c GA150TD120U www.irf.com 5 fig. 7 - typical capacitance vs. collector-to-emitter voltage fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 9 - typical switching losses vs. gate resistance fig. 10 - typical switching losses vs. junction temperature r g , gate resistance ( w ) 1 10 100 0 10000 20000 30000 40000 50000 v , collector-to-emitter voltage (v) c, capacitance (pf) ce v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted ge ies ge gc , ce res gc oes ce gc c ies c oes c res 0 200 400 600 800 1000 1200 0 5 10 15 20 q , total gate charge (nc) v , gate-to-emitter voltage (v) g ge v = 400v i = 171a cc c 0 10 20 30 40 50 50 60 70 80 90 100 r , gate resistance (ohm) total switching losses (mj) g v = 720v v = 15v t = 25 c i = 150a cc ge j c 15 w -60 -40 -20 0 20 40 60 80 100 120 140 160 10 100 1000 t , junction temperature ( c ) total switching losses (mj) j r = 15ohm v = 15v v = 960v g ge cc i = a 300 c i = a 150 c i = a 75 c r g1 =15 w ;r g2 = 0 w 125 720v ( w ) GA150TD120U 6 www.irf.com fig. 11 - typical switching losses vs. collector-to-emitter current fig. 12 - reverse bias soa fig. 13 - typical forward voltage drop vs. instantaneous forward current fig. 14 - typical stored charge vs. di f /dt i c , collector current ( a ) instantaneous forward current - i f ( a ) q rr - ( nc) 10 100 1000 1.0 2.0 3.0 4.0 fm forward volta g e d rop - v (v) t = 125c t = 25c j j 0 5000 10000 15000 20000 25000 500 800 1100 1400 1700 2000 f di /dt - (a/s) i = 300a i = 150a i = 75a f f f r j j v = 720v t = 125c t = 25c 0 100 200 300 400 0 200 400 600 800 1000 1200 1400 ce safe operating area v , collector-to-em itter volta g e ( v ) a v = 20v t = 125c v measured at terminal (peak volta g e) ge j ce 0 50 100 150 200 250 300 350 0 25 50 75 100 125 150 i , collector current (a) total switching losses (mj) c r = 15ohm t = 150 c v = 720v v = 15v g j cc ge r g1 =15 w ;r g2 = 0 w GA150TD120U www.irf.com 7 fig. 15 - typical reverse recovery vs. di f /dt fig. 16 - typical recovery current vs. di f /dt trr - ( ns ) i rrm - ( a ) 0 100 200 300 400 500 800 1100 1400 1700 2000 f di /dt - (a/s) i = 300a i = 150a f f i = 75a f r j j v = 720v t = 125c t = 25c 0 50 100 150 200 250 500 800 1100 1400 1700 2000 f di /dt - (a /s) i = 300a f i = 150a f i = 75a f r j j v = 720v t = 125c t = 25c GA150TD120U 8 www.irf.com t1 ic vce t1 t2 90% ic 10% vce td(off) tf ic 5% ic t1+5 s vce ic dt 90% vge +vge eoff = fig. 18 - test waveforms for circuit of fig. 17, defining e off , t d(off) , t f fig. 17 - test circuit for measurement of i lm , e on , e off(diode) , t rr , q rr , i rr , t d(on) , t r , t d(off) , t f fig. 19 - test waveforms for circuit of fig. 17, defining e on , t d(on) , t r fig. 20 - test waveforms for circuit of fig. 17, defining e rec , t rr , q rr , i rr vce ic dt vce ie dt t2 t1 5% vce ic ipk vcc 10% ic vce t1 t2 dut voltage and current gate voltage d.u.t. +vg 10% +vg 90% ic tr td(on) diode reverse recovery energy tx eon = erec = t4 t3 vd id dt t4 t3 diode recovery w aveforms ic vpk 10% vcc irr 10% irr vcc trr qrr = trr tx id dt vd ic dt vce ic dt ic dt vd ic dt vce ic dt ic dt GA150TD120U www.irf.com 9 vg gate signal device under test current d.u.t. voltage in d.u.t. current in d1 t0 t1 t2 figure 22. pulsed collector current test circuit r l = 600v 4 x i c @25c 0 - 600v figure 21. macro waveforms for figure 17's test circuit d.u.t. v * c 50v l 1000v 6000f 100v figure 18. clamped inductive load test circuit GA150TD120U 10 www.irf.com case outline double int-a-pak world headquarters: 233 kansas st., el segundo, california 90245, tel: (310) 322 3331 european headquarters: hurst green, oxted, surrey rh8 9bb, uk tel: ++ 44 1883 732020 ir canada: 7321 victoria park ave., suite 201, markham, ontario l3r 2z8, tel: (905) 475 1897 ir germany: saalburgstrasse 157, 61350 bad homburg tel: ++ 49 6172 96590 ir italy: via liguria 49, 10071 borgaro, torino tel: ++ 39 11 451 0111 ir far east: k&h bldg., 2f, 30-4 nishi-ikebukuro 3-chome, toshima-ku, tokyo japan 171 tel: 81 3 3983 0086 ir southeast asia: 315 outram road, #10-02 tan boon liat building, singapore 0316 tel: 65 221 8371 http://www.irf.com/ data and specifications subject to change without notice. 3/98 notes: ? repetitive rating; v ge = 20v, pulse width limited by max. junction temperature. ? see fig. 17 ? for screws m5x0.8 ? pulse width 80s; single shot. dimensions are shown in millimeters (inches) |
Price & Availability of GA150TD120U
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |