![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
200 5 -11-07 rev. 2.4 page 1 spb12n50c3 cool mos? power transistor v ds @ t jmax 560 v r ds(on) 0.38 ? i d 11.6 a feature ? new revolutionary high voltage technology ? ultra low gate charge ? periodic avalanche rated ? extreme d v /d t rated ? ultra low effective capacitances ? improved transconductance pg-to263 - marking 12n50c3 type package ordering code spb12n50c3 pg-to263 q67040-s4641 maximum ratings parameter symbol value unit spb continuous drain current t c = 25 c t c = 100 c i d 11.6 7 a pulsed drain current, t p limited by t j ma x i d p uls 34.8 a avalanche energy, single pulse i d =5.5a, v dd =50v e as 340 mj avalanche energy, repetitive t ar limited by t jmax 2) i d =11.6a, v dd =50v e ar 0.6 avalanche current, repetitive t ar limited by t j ma x i ar 11.6 a gate source voltage v gs 20 v gate source voltage ac (f >1hz) v gs 30 power dissipation, t c = 25c p tot 125 w operating and storage temperature t j , t st g -55...+150 c reverse diode dv/dt dv/dt 15 v/ns c 7)
200 5 -11-07 rev. 2.4 page 2 spb12n50c3 maximum ratings parameter symbol value unit drain source voltage slope v ds = 400 v, i d = 11.6 a, t j = 125 c d v /d t 50 v/ns thermal characteristics parameter symbol values unit min. typ. max. thermal resistance, junction - case r thjc - - 1 k/w thermal resistance, junction - case, fullpak r thjc _ fp - - 3.8 thermal resistance, junction - ambient, leaded r thja - - 62 thermal resistance, junction - ambient, fullpak r thja _ fp - - 80 smd version, device on pcb: @ min. footprint @ 6 cm 2 cooling area 3) r thja - - - 35 62 - soldering temperature, reflow soldering, msl1 1.6 mm (0.063 in.) from case for 10s 4) t sold - - 260 c electrical characteristics, at t j =25c unless otherwise specified parameter symbol conditions values unit min. typ. max. drain-source breakdown voltage v (br)dss v gs =0v, i d =0.25ma 500 - - v drain-source avalanche breakdown voltage v (br)ds v gs =0v, i d =11.6a - 600 - gate threshold voltage v gs(th) i d =500 a, v gs =v ds 2.1 3 3.9 zero gate voltage drain current i dss v ds =500v, v gs =0v, t j =25c t j =150c - - 0.1 - 1 100 a gate-source leakage current i gss v gs =20v, v ds =0v - - 100 na drain-source on-state resistance r ds(on) v gs =10v, i d =7a t j =25c t j =150c - - 0.34 0.92 0.38 - gate input resistance r g f =1mhz, open drain - 1.4 - 200 5 -11-07 rev. 2.4 page 3 spb12n50c3 electrical characteristics , at t j = 25 c, unless otherwise specified parameter symbol conditions values unit min. typ. max. characteristics transconductance g fs v ds 2* i d * r ds(on)max , i d =7a - 8 - s input capacitance c iss v gs =0v, v ds =25v, f =1mhz - 1200 - pf output capacitance c oss - 400 - reverse transfer capacitance c rss - 30 - effective output capacitance, 5) energy related c o(er) v gs =0v, v ds =0v to 400v - 45 - effective output capacitance, 6) time related c o(tr) - 92 - turn-on delay time t d(on) v dd =380v, v gs =0/10v, i d =11.6a, r g =6.8 - 10 - ns rise time t r - 8 - turn-off delay time t d(off) - 45 - fall time t f - 8 - gate charge characteristics gate to source charge q gs v dd =400v, i d =11.6a - 5 - nc gate to drain charge q gd - 26 - gate charge total q g v dd =400v, i d =11.6a, v gs =0 to 10v - 49 - gate plateau voltage v (plateau) v dd =400v, i d =11.6a - 5 - v 1 limited only by maximum temperature 2 repetitve avalanche causes additional power losses that can be calculated as p av = e ar * f . 3 device on 40mm*40mm*1.5mm epoxy pcb fr4 with 6cm2 (one layer, 70 m thick) copper area for drain connection. pcb is vertical without blown air. 4 soldering temperature for to-263: 220c, reflow 5 c o(er) is a fixed capacitance that gives the same stored energy as c oss while v ds is rising from 0 to 80% v dss . 6 c o(tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . 7 i sd <=i d , di/dt<=400a/us, v dclink =400v, v peak 200 5 -11-07 rev. 2.4 page 5 spb12n50c3 1 power dissipation p tot = f ( t c ) 0 20 40 60 80 100 120 c 160 t c 0 10 20 30 40 50 60 70 80 90 100 110 120 w 140 spp12n50c3 p tot 2 power dissipation fullpak p tot = f ( t c ) 0 20 40 60 80 100 120 c 160 t c 0 4 8 12 16 20 24 28 w 36 p tot 3 safe operating area i d = f ( v ds ) parameter : d = 0 , t c =25c 10 0 10 1 10 2 10 3 v v ds -2 10 -1 10 0 10 1 10 2 10 a i d tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms dc 4 safe operating area fullpak i d = f ( v ds ) parameter: d = 0, t c = 25c 10 0 10 1 10 2 10 3 v v ds -2 10 -1 10 0 10 1 10 2 10 a i d tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms tp = 10 ms dc 200 5 -11-07 rev. 2.4 page 6 spb12n50c3 5 transient thermal impedance z thjc = f ( t p ) parameter: d = t p / t 10 -7 10 -6 10 -5 10 -4 10 -3 10 -1 s t p -4 10 -3 10 -2 10 -1 10 0 10 1 10 k/w z thjc d = 0.5 d = 0.2 d = 0.1 d = 0.05 d = 0.02 d = 0.01 single pulse 6 transient thermal impedance fullpak z thjc = f ( t p ) parameter: d = t p / t 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 1 s t p -4 10 -3 10 -2 10 -1 10 0 10 1 10 k/w z thjc d = 0.5 d = 0.2 d = 0.1 d = 0.05 d = 0.02 d = 0.01 single pulse 7 typ. output characteristic i d = f ( v ds ); t j =25c parameter: t p = 10 s, v gs 0 5 10 15 v 25 v ds 0 4 8 12 16 20 24 28 32 a 40 i d 4.5v 5v 5.5v 6v 6.5v 7v 20v 10v 8v 8 typ. output characteristic i d = f ( v ds ); t j =150c parameter: t p = 10 s, v gs 0 5 10 15 v 25 v ds 0 2 4 6 8 10 12 14 16 18 a 22 i d 4v 4.5v 5v 5.5v 6v 20v 8v 7.5v 7v 200 5 -11-07 rev. 2.4 page 7 spb12n50c3 9 typ. drain-source on resistance r ds(on) = f ( i d ) parameter: t j =150c, v gs 0 2 4 6 8 10 12 14 16 a 20 i d 0.4 0.6 0.8 1 1.2 1.4 1.6 2 r ds(on) 4v 4.5v 5v 5.5v 6v 6.5v 8v 20v 10 drain-source on-state resistance r ds(on) = f ( t j ) parameter : i d = 7 a, v gs = 10 v -60 -20 20 60 100 c 180 t j 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2.1 spp12n50c3 r ds(on) typ 98% 11 typ. transfer characteristics i d = f ( v gs ); v ds 2 x i d x r ds(on)max parameter: t p = 10 s 0 1 2 3 4 5 6 7 8 v 10 v gs 0 4 8 12 16 20 24 28 32 a 40 i d 25c 150c 12 typ. gate charge v gs = f ( q gate ) parameter: i d = 11.6 a pulsed 0 10 20 30 40 50 nc 70 q gate 0 2 4 6 8 10 12 v 16 spp12n50c3 v gs 0,8 v ds max ds max v 0,2 200 5 -11-07 rev. 2.4 page 8 spb12n50c3 13 forward characteristics of body diode i f = f (v sd ) parameter: t j , t p = 10 s 0 0.4 0.8 1.2 1.6 2 2.4 v 3 v sd -1 10 0 10 1 10 2 10 a spp12n50c3 i f t j = 25 c typ t j = 25 c (98%) t j = 150 c typ t j = 150 c (98%) 14 avalanche soa i ar = f ( t ar ) par.: t j 150 c 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 4 s t ar 0 1 2 3 4 5 6 7 8 9 a 11 i ar t j (start) =125c t j (start) =25c 15 avalanche energy e as = f ( t j ) par.: i d = 5.5 a, v dd = 50 v 20 40 60 80 100 120 c 160 t j 0 50 100 150 200 250 mj 350 e as 16 drain-source breakdown voltage v (br)dss = f ( t j ) -60 -20 20 60 100 c 180 t j 450 460 470 480 490 500 510 520 530 540 550 560 570 v 600 spp12n50c3 v (br)dss 200 5 -11-07 rev. 2.4 page 9 spb12n50c3 17 avalanche power losses p ar = f ( f ) parameter: e ar =0.6mj 10 4 10 5 10 6 hz f 0 50 100 150 200 w 300 p ar 18 typ. capacitances c = f ( v ds ) parameter: v gs =0v, f =1 mhz 0 100 200 300 v 500 v ds -1 10 0 10 1 10 2 10 3 10 4 10 pf c ciss coss crss 19 typ. c oss stored energy e oss = f ( v ds ) 0 100 200 300 v 500 v ds 0 1 2 3 4 j 6 e oss 200 5 -11-07 rev. 2.4 page 10 spb12n50c3 definition of diodes switching characteristics 5 11-07 rev. 2.4 p d j h 6 3 %12 1 & |