|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
05/2011 awl9565 802.11a/n power amplifer & switch with 802.11 b/g/n rx/tx/ bluetooth switch data sheet - rev 2.0 features 3% dynamic evm @ pout = +18 dbm with ? ieee 802.11a 64 qam ofdm at 54 mbps 30 db of linear power gain ? single +3.3 v nominal supply ? sp3t rf switch w/bluetooth and 2 ghz band ? tx/rx 1.0 db 2 ghz band rf switch tx path ? insertion loss 1.6 db 2 ghz band rf switch bt & rx path ? insertion loss sp2t rf switch for 5 ghz band tx/rx ? function 2.7 db 5 ghz band rf switch rx path ? insertion loss 5 ghz band tx power detector ? 1.8 v cmos logic level control ? 50 ? v -matched rf ports leadfree and rohs compliant ? 3 x 3 x 0.55 mm qfn package ? applications ? 802.11a/b/g/n wlan +bluetooth for fixed, mobile, and handheld applications. product description the anadigics awl9565 is a high performance ingap hbt feic that incorporates a 5 ghz power amplifer, 5 ghz sp2t rf switch and 2 ghz sp3t rf switch. the feic is designed for wlan transmit and receive applications in the 2.412-2.484 and 5.15-5.85 ghz bands. matched to 50 ohms and dc blocked at all rf inputs and outputs, the part requires no additional rf matching components off-chip. the antenna ports are switched between wlan transmit, wlan receive, bluetooth, and simultaneous wlan and bluetooth paths with low loss rf switches. the pa exhibits unparalleled linearity and effciency for ieee 802.11a/n wlan systems under the toughest signal confgurations within the standard. an on-chip power detector is incorporated in 5 ghz transmit path of the feic. all control circuits operate with +1.8 v cmos logic and consume ultra-low current in the off mode. figure 1: block diagram the awl9565 is manufactured using advanced ingap hbt technology that offers state-of-the-art reliability, temperature stability and ruggedness. 3 mm x 3 mm x 0.55 mm surface mount front end ic 2 g r x 2 g t x pa 5 g b t vb t 5 g r x vc c vtx 5 vr x 5 t x r x a n t t x r x a n t pa o n 2 g a n t 5 g a n t 5 g t x bt vr x 2 vd e t d e te c to r sp3 t t / r sw sp2 t t / r sw vtx 2 aw l9565
2 data sheet - rev 2.0 05/2011 awl9565 figure 2: pinout diagram table 1: pin description table a w l 9 5 6 5 vr x 2 1 vbt 2 bt 3 4 vr x 5 1 7 vt x 5 vc c paon 5 vt x 2 5 gan t vd et t xin 2 r xo u t 2 r xo u t 5 g n d t xin5 7 a w l 9 5 6 5 5 1 2 1 1 1 0 9 2g an t 6 8 1 6 1 5 1 3 1 4 1 8 1 9 2 0 g n d gn d gn d gn d pin name description pin name description 1 vtx2 switch control 2 ghz transmit path 11 paon5 5 ghz pa enable. on /off control 5 ghz transmit path power amplifier 2 vrx2 switch control for 2 ghz receive path 12 gnd ground 3 vbt switch control for bluetooth path 13 v cc power supply. bias for transistors 4 bt bluetooth rf port 14 vtx5 switch control for 5 ghz transmit path 5 rx out5 5 ghz rf receive output port 15 vrx5 switch control 5 ghz receive path 6 rx out2 2 ghz rf receive output port 16 vdet power detector output. dc coupled 7 gnd ground 17 5gant 5 ghz antenna port 8 tx in5 5 ghz rf transmit input port 18 gnd ground 9 gnd ground 19 gnd ground 10 tx in2 2 ghz rf transmit input port 20 2gant 2 ghz antenna port data sheet - rev 2.0 05/2011 awl9565 3 electrical characteristics table 2: absolute minimum and maximum ratings stresses in excess of the absolute ratings may cause permanent damage. functional operation is not implied under these conditions. exposure to absolute ratings for extended periods of time may adversely affect reliability. table 3: operating ranges the device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defned in the electrical specifcations. parameter min max unit comments dc power supply - +6.0 v rf input level, 5 ghz pa - +5 dbm modulated operating ambient temperature -40 +85 4 c storage temperature -55 +85 4 c storage humidity - 60 % junction temperature - 150 4 c esd tolerance 400 - v human body model (hbm) msl rating - msl-2 parameter min typ max unit comments operating frequency ranges 2412 5150 - - 2484 5850 mhz 802.11b/g/n 802.11a/n dc power supply voltage (v cc ) +2.8 +3.3 +4.8 v with rf applied control pin voltage (pa on , vbt, vrx2, vtx2, vrx5,vtx5) +1.4 0 +1.8 0 +v cc +0.5 v logic high/on logic low/off operating ambient temperature -40 - +85 4 c 4 data sheet - rev 2.0 05/2011 awl9565 table 4: electrical specifcations - 802.11a/n transmit path (t c = +25 c, v cc = +3.3 v, pa on = +1.8 v, vtx5 = +1.8 v, vrx5 = 0 v, static mode 64 qam ofdm 54 mbps) notes: (1) evm includes system noise foor of 1% (-40 db). parameter min typ max unit comments operating frequency 5150 - 5850 mhz power gain 27 30 33 db gain flatness - +/-1.5 - db across full band - +/-0.2 - db across any 40 mhz band error vector magnitude (evm) (1) current consumption - - -32 135 - - db ma p out = 17 dbm, dyn mode, 54 mbps avg current during packet - - -33 125 -29 150 db ma p out = 16 dbm, dyn mode, 54 mbps avg current during packet - - -36 75 - - db ma p out = 5 dbm, dyn mode, 54 mbps avg current during packet transmit mask 18.5 15.5 15.0 20.5 18.0 17.5 - - - dbm 802.11a, 6 mbps, ofdm 802.11n, 6.5 mbps, ht, 20 mhz ch 802.11n, 6.5 mbps, ht, 40 mhz ch pa noise figure - 6 - db psat - 24.5 - dbm group delay - 1.5 - ns group delay variation - 0.5 - ns for any 20 mhz channel input return loss 5 8 - db output return loss 5 7 - db tx output spurious levels 2fo 3fo 4fo - - - -30 -37 -60 -25 -31 -50 dbm/m- hz for power levels up to 18 dbm, ofdm @ 54 mbps output spurious levels non harmonics - -53 - dbc for power levels up to 18 dbm ofdm @ 54 mbps stability and load mismatch susceptibility - -45 - dbc unconditionally stable and no damage, 4:1 vswr, up to p out = 18 dbm, ofdm 54 mbps settling time - 3 4 b s within 0.5 db of final value i cc quiescent current 53 65 77 ma shutdown current - 12 50 b a v cc = 3.3 v, all other controls = 0 v data sheet - rev 2.0 05/2011 awl9565 5 table 6: electrical specifcation - 802.11a receive path (t c = +25 8 c, v cc = +3.3 v, paon = 0 v, vrx5 = +1.8 v, vtx5 = 0 v) table 5: electrical specifcation - power detector (t c = +25 8 c, v cc = +3.3 v, pa on = +1.8 v, vtx5 = +1.8 v, ofdm signal, 54 mbps) parameter min typ max unit comments voltage range 160 440 260 530 450 620 mv p out = 0 dbm p out = 20 dbm total internal load impedance - 5 - k v dynamic range - 20 - db resolution - 13 - mv/db video bandwidth - 5 - mhz adjustable with external rc load parameter min typ max unit comments operation frequency 5150 - 5850 mhz insertion loss - 2.7 3.5 db gain flatness - +/-0.5 - db across full band - +/-0.25 - db across any 40 mhz band input return loss 8 11 - db 50 v output return loss 12 16 - db 50 v port to port isolation 20 - - db 5g ant to 5g tx, switch in 5g rx mode iip 3 - 40 - dbm ip 1d b - 25 - dbm settling time - 0.5 1.0 ? s quiescent current - 0.8 - ma 6 data sheet - rev 2.0 05/2011 awl9565 table 7: electrical specifcations - 802.11b/g tx (t c = +25 8 c, v cc = +3.3 v, vtx2 = +1.8 v, vrx2 = vbt = 0 v) table 8: electrical specifcations - 802.11b/g rx (t c = +25 8 c, v cc = +3.3 v, vrx2 = +1.8 v, vbt = vtx2 = 0 v) parameter min typ max unit comments operation frequency 2412 - 2484 mhz insertion loss - 1.0 1.5 db gain flatness - +/-0.25 - db across any 40 mhz band input return loss 9 12 - db 50 v output return loss 7 10 - db 50 v iip 3 - 39 - dbm ip 1d b - 31 - dbm port to port isolation 20 - - db 2g tx to 2g rx, switch in 2g tx mode settling time - 0.5 1.0 ? s quiescent current - 1.3 - ma parameter min typ max unit comments operation frequency 2412 - 2484 mhz insertion loss - 1.6 2.4 db gain flatness - +/-0.25 - db across any 40 mhz band input return loss 5 8 - db 50 v output return loss 6 10 - db 50 v iip 3 - 33 - dbm ip 1d b - 26 - dbm port to port isolation 20 - - db 2g ant to 2g tx, switch in 2g rx mode settling time - 0.5 1.0 ? s quiescent current - 1.1 - ma data sheet - rev 2.0 05/2011 awl9565 7 table 9: electrical specifcations - bluetooth tx/rx (t c = +25 8 c, v cc = +3.3 v, vbt = +1.8 v, vrx2 = vtx2 = 0 v) table 10: electrical specifcations - switch and control pin (t c = +25 8 c, v cc = +3.3 v, v control pin high = +1.8 v, v control pin low = 0 v) parameter min typ max unit comments control pin steady state input current ( pa on5 ) - - 30 0.5 - - ? a logic hi/on logic low/off control pin steady state input current (vbt, vrx2, vtx2, vrx5, vtx5) - - 30 0.5 - - ? a logic hi/on logic low/off control pin input impedance - >10 - kv logic hi/on tx - rx isolation 20 - - db parameter min typ max unit comments operation frequency 2402 - 2480 mhz insertion loss - 1.6 2.4 db gain flatness - +/-0.25 - db across any 40 mhz band input return loss 5 9 - db 50 v output return loss 7 12 - db 50 v iip 3 - 34 - dbm ip 1d b - 26 - dbm port to port isolation 20 - - db 2g ant to 2g tx, switch in 2g rx mode settling time - 0.5 1.0 ? s quiescent current - 1.1 - ma 8 data sheet - rev 2.0 05/2011 awl9565 table 11: switch modes of operation modes of operation pa on vbt vrx2 vtx2 vrx5 vtx5 tx 2.4 ghz low low low high low low rx 2.4 ghz low low high low low low bt 2.4 ghz low high low low low low bt & rx 2.4 ghz low high high low low low tx 5 ghz high low low low low high rx 5 ghz low low low low high low power on reset low low low low low low v cc = +2.8 v to +4.8 v; logic state low = 0 v to +0.5 v; logic state high = +1.4 v to +4.8 v data sheet - rev 2.0 05/2011 awl9565 9 figure 3: tx path gain vs. output power across frequency (v cc = +3.3 v, temp = 25 8 c, 802.11a, 54 mbps ofdm) 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 gain (db) output power (dbm) figure 3: tx path gain vs. output power across frequency vcc = +3.3v, temp = +25c 802.11a, 54 mbps ofdm 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 gain (db) output power (dbm) figure 3: tx path gain vs. output power across frequency vcc = +3.3v, temp = +25c 802.11a, 54 mbps ofdm gain 5.15 ghz gain 5.50 ghz gain 5.85 ghz figure 4: tx path gain vs. output power across voltage (freq = 5.5 ghz, temp = 25 8 c, 802.11a, 54 mbps ofdm) 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 gain (db) output power (dbm) figure 4: tx path gain vs. output power across voltage freq = 5.5 ghz, temp = +25c 802.11a, 54 mbps ofdm 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 gain (db) output power (dbm) figure 4: tx path gain vs. output power across voltage freq = 5.5 ghz, temp = +25c 802.11a, 54 mbps ofdm gain 3.0v gain 3.3v gain 3.6v gain 4.2v gain 4.8v figure 5: tx path gain vs. output power across temperature (freq = 5.5 ghz, v cc = +3.3 v, 802.11a, 54 mbps ofdm) 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 gain (db) output power (dbm) figure 5: tx path gain vs. output power across temperature freq = 5.5 ghz, vcc = +3.3v 802.11a, 54 mbps ofdm 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 gain (db) output power (dbm) figure 5: tx path gain vs. output power across temperature freq = 5.5 ghz, vcc = +3.3v 802.11a, 54 mbps ofdm gain - 40c gain +25c gain +85c figure 6: tx path i cc vs. output power across frequency (v cc = +3.3 v, temp = 25 8 c, 802.11a, 54 mbps ofdm) 0 25 50 75 100 125 150 175 200 225 250 275 300 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 icc (ma) output power (dbm) figure 6: tx path icc vs. output power across frequency vcc = +3.3v, temp = +25c 802.11a, 54 mbps ofdm 0 25 50 75 100 125 150 175 200 225 250 275 300 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 icc (ma) output power (dbm) figure 6: tx path icc vs. output power across frequency vcc = +3.3v, temp = +25c 802.11a, 54 mbps ofdm icc 5.15 ghz icc 5.50 ghz icc 5.85 ghz figure 7: tx path i cc vs. output power across voltage (freq = 5.5 ghz, temp = 25 8 c, 802.11a, 54 mbps ofdm) 0 25 50 75 100 125 150 175 200 225 250 275 300 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 current (ma) output power (dbm) figure 7: tx path icc vs. output power across voltage freq = 5.5 ghz, temp = +25c 802.11a, 54 mbps ofdm 0 25 50 75 100 125 150 175 200 225 250 275 300 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 current (ma) output power (dbm) figure 7: tx path icc vs. output power across voltage freq = 5.5 ghz, temp = +25c 802.11a, 54 mbps ofdm icc 3.0v icc 3.3v icc 3.6v icc 4.2v icc 4.8v figure 8: tx path i cc vs. output power across temperature (freq = 5.5 ghz, v cc = +3.3 v, 802.11a, 54 mbps ofdm) 0 25 50 75 100 125 150 175 200 225 250 275 300 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 current (ma) output power (dbm) figure 8: tx path icc vs. output power across temperature freq = 5.5 ghz, vcc = +3.3v 802.11a, 54 mbps ofdm 0 25 50 75 100 125 150 175 200 225 250 275 300 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 current (ma) output power (dbm) figure 8: tx path icc vs. output power across temperature freq = 5.5 ghz, vcc = +3.3v 802.11a, 54 mbps ofdm icc - 40c icc +25c icc +85c performance data plots: 10 data sheet - rev 2.0 05/2011 awl9565 figure 9: tx path dynamic evm vs. output power across frequency (v cc = +3.3 v, temp = 25 8 c, 802.11a, 54 mbps ofdm) - 40 - 39 - 38 - 37 - 36 - 35 - 34 - 33 - 32 - 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 evm (db) output power (dbm) figure 9: tx path dynamic evm vs. output power across frequency vcc = +3.3v, temp = +25c 802.11a, 54 mbps ofdm - 40 - 39 - 38 - 37 - 36 - 35 - 34 - 33 - 32 - 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 evm (db) output power (dbm) figure 9: tx path dynamic evm vs. output power across frequency vcc = +3.3v, temp = +25c 802.11a, 54 mbps ofdm evm 5 .1 5 gh z evm 5 .5 0 gh z evm 5 .8 5 gh z figure 10: tx path dynamic evm vs. output power across voltage (freq = 5.5 ghz, temp = 25 8 c, 802.11a, 54 mbps ofdm) - 40 - 39 - 38 - 37 - 36 - 35 - 34 - 33 - 32 - 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 evm (db) output power (dbm) figure 10: tx path dynamic evm vs. output power across voltage freq = 5.5 ghz, temp = +25c 802.11a, 54 mbps ofdm - 40 - 39 - 38 - 37 - 36 - 35 - 34 - 33 - 32 - 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 evm (db) output power (dbm) figure 10: tx path dynamic evm vs. output power across voltage freq = 5.5 ghz, temp = +25c 802.11a, 54 mbps ofdm evm 3 .0 v evm 3 .3 v evm 3 .6 v evm 4 .2 v evm 4 .8 v figure 11: tx path dynamic evm vs. output power across temperature (freq = 5.5 ghz, v cc = +3.3 v, 802.11a, 54 mbps ofdm) - 40 - 39 - 38 - 37 - 36 - 35 - 34 - 33 - 32 - 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 evm (db) output power (dbm) figure 11: tx path dynamic evm vs. output power across temperature freq = 5.5 ghz, vcc = +3.3v 802.11a, 54 mbps ofdm - 40 - 39 - 38 - 37 - 36 - 35 - 34 - 33 - 32 - 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 evm (db) output power (dbm) figure 11: tx path dynamic evm vs. output power across temperature freq = 5.5 ghz, vcc = +3.3v 802.11a, 54 mbps ofdm evm - 40c evm +25c evm +85c figure 12: voltage detector vs. output power across frequency (v cc = +3.3 v, temp = 25 8 c, 802.11a, 54 mbps ofdm) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 detector voltage (v) output power (dbm) figure 12: voltage detector vs. output power across frequency vcc = +3.3v, temp = +25c 802.11a, 54 mbps ofdm 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 detector voltage (v) output power (dbm) figure 12: voltage detector vs. output power across frequency vcc = +3.3v, temp = +25c 802.11a, 54 mbps ofdm vd e t 5 .1 5 gh z vd e t 5 .5 0 gh z vd e t 5 .8 5 gh z figure 13:voltage detector vs. output power across voltage (freq = 5.5 ghz, temp = 25 8 c, 802.11a, 54 mbps ofdm) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 detector voltage (v) output power (dbm) figure 13: voltage detector vs. output power across voltage freq = 5.5 ghz, temp = +25c 802.11a, 54 mbps ofdm 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 detector voltage (v) output power (dbm) figure 13: voltage detector vs. output power across voltage freq = 5.5 ghz, temp = +25c 802.11a, 54 mbps ofdm vdet 3.0v vdet 3.3v vdet 3.6v vdet 4.2v vdet 4.8v figure 14:voltage detector vs. output power across temperature (freq = 5.5 ghz, v cc = +3.3 v, 802.11a, 54 mbps ofdm) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 detector voltage (v) output power (dbm) figure 14: voltage detector vs. output power across temperature freq = 5.5 ghz, vcc = +3.3v 802.11a, 54 mbps ofdm 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 detector voltage (v) output power (dbm) figure 14: voltage detector vs. output power across temperature freq = 5.5 ghz, vcc = +3.3v 802.11a, 54 mbps ofdm vdet - 40c vdet +25c vdet +85c data sheet - rev 2.0 05/2011 awl9565 11 figure 15: 5 ghz tx path s21 response (v cc = +3.3 v, temp = +25 8 c) - 50 - 40 - 30 - 20 - 10 0 10 20 30 40 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 s21 (db) frequency (ghz) figure 15: 5ghz tx path s21 response vcc = +3.3v, temp = +25 c - 50 - 40 - 30 - 20 - 10 0 10 20 30 40 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 s21 (db) frequency (ghz) figure 15: 5ghz tx path s21 response vcc = +3.3v, temp = +25 c s21 mag (db) figure 16: 5 ghz tx path s11 & s22 return loss (v cc = +3.3 v, temp = +25 8 c) - 30 - 28 - 26 - 24 - 22 - 20 - 18 - 16 - 14 - 12 - 10 - 8 - 6 - 4 - 2 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 s11/s22 (db) frequency (ghz) figure 16: 5ghz tx path s11 & s22 return loss vcc = +3.3v, temp = +25 c - 30 - 28 - 26 - 24 - 22 - 20 - 18 - 16 - 14 - 12 - 10 - 8 - 6 - 4 - 2 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 s11/s22 (db) frequency (ghz) figure 16: 5ghz tx path s11 & s22 return loss vcc = +3.3v, temp = +25 c s11 mag (db) s22 mag (db) figure 17: 5 ghz rx path s21 response (v cc = +3.3 v, temp = +25 8 c) - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 0 1 2 3 4 5 6 7 8 s21 (db) frequency (ghz) figure 17: 5ghz rx path s21 response vcc = +3.3v, temp = +25 c - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 0 1 2 3 4 5 6 7 8 s21 (db) frequency (ghz) figure 17: 5ghz rx path s21 response vcc = +3.3v, temp = +25 c s21 mag (db) figure 18: 5 ghz rx path s11 & s22 return loss (v cc = +3.3 v, temp = +25 8 c) - 30 - 28 - 26 - 24 - 22 - 20 - 18 - 16 - 14 - 12 - 10 - 8 - 6 - 4 - 2 0 0 1 2 3 4 5 6 7 8 s11/s22 (db) frequency (ghz) figure 18: 5ghz rx path s11 & s22 return loss vcc = +3.3v, temp = +25 c - 30 - 28 - 26 - 24 - 22 - 20 - 18 - 16 - 14 - 12 - 10 - 8 - 6 - 4 - 2 0 0 1 2 3 4 5 6 7 8 s11/s22 (db) frequency (ghz) figure 18: 5ghz rx path s11 & s22 return loss vcc = +3.3v, temp = +25 c s11 mag (db) s22 mag (db) figure 19: 2 ghz rx path s21 response (v cc = +3.3 v, temp = +25 8 c) - 30 - 28 - 26 - 24 - 22 - 20 - 18 - 16 - 14 - 12 - 10 - 8 - 6 - 4 - 2 0 0 1 2 3 4 5 6 7 8 s11/s22 (db) frequency (ghz) figure 20: 2ghz rx path s11 & s22 return loss vcc = +3.3v, temp = +25 c - 30 - 28 - 26 - 24 - 22 - 20 - 18 - 16 - 14 - 12 - 10 - 8 - 6 - 4 - 2 0 0 1 2 3 4 5 6 7 8 s11/s22 (db) frequency (ghz) figure 20: 2ghz rx path s11 & s22 return loss vcc = +3.3v, temp = +25 c s11 mag (db) s22 mag (db) figure 20: 2 ghz rx path s11 & s22 return loss (v cc = +3.3 v, temp = +25 8 c) - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 0 1 2 3 4 5 6 7 8 s21 (db) frequency (ghz) figure 19: 2ghz rx path s21 response vcc = +3.3v, temp = +25 c - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 0 1 2 3 4 5 6 7 8 s21 (db) frequency (ghz) figure 19: 2ghz rx path s21 response vcc = +3.3v, temp = +25 c s21 mag (db) 12 data sheet - rev 2.0 05/2011 awl9565 figure 21: 2 ghz tx path response (v cc = +3.3 v, temp = +25 8 c) - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 0 1 2 3 4 5 6 7 8 s21 (db) frequency (ghz) figure 21: 2ghz tx path s21 response vcc = +3.3v, temp = +25 c - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 0 1 2 3 4 5 6 7 8 s21 (db) frequency (ghz) figure 21: 2ghz tx path s21 response vcc = +3.3v, temp = +25 c s21 mag (db) figure 22: 2 ghz tx path s11 & s22 return loss (v cc = +3.3 v, temp = +25 8 c) - 30 - 28 - 26 - 24 - 22 - 20 - 18 - 16 - 14 - 12 - 10 - 8 - 6 - 4 - 2 0 0 1 2 3 4 5 6 7 8 s11/s22 (db) frequency (ghz) figure 22: 2ghz tx path s11 & s22 return loss vcc = +3.3v, temp = +25 c - 30 - 28 - 26 - 24 - 22 - 20 - 18 - 16 - 14 - 12 - 10 - 8 - 6 - 4 - 2 0 0 1 2 3 4 5 6 7 8 s11/s22 (db) frequency (ghz) figure 22: 2ghz tx path s11 & s22 return loss vcc = +3.3v, temp = +25 c s11 mag (db) s22 mag (db) figure 23: bluetooth path s21 response (v cc = +3.3 v, temp = +25 8 c) - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 0 1 2 3 4 5 6 7 8 s21 (db) frequency (ghz) figure 23: bluetooth path s21 response vcc = +3.3v, temp = +25 c - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 0 1 2 3 4 5 6 7 8 s21 (db) frequency (ghz) figure 23: bluetooth path s21 response vcc = +3.3v, temp = +25 c s21 mag (db) figure 24: bluetooth path s11 & s22 return loss (v cc = +3.3 v, temp = +25 8 c) - 30 - 28 - 26 - 24 - 22 - 20 - 18 - 16 - 14 - 12 - 10 - 8 - 6 - 4 - 2 0 0 1 2 3 4 5 6 7 8 s11/s22 (db) frequency (ghz) figure 24: bluetooth path s11 & s22 return loss vcc = +3.3v, temp = +25 c - 30 - 28 - 26 - 24 - 22 - 20 - 18 - 16 - 14 - 12 - 10 - 8 - 6 - 4 - 2 0 0 1 2 3 4 5 6 7 8 s11/s22 (db) frequency (ghz) figure 24: bluetooth path s11 & s22 return loss vcc = +3.3v, temp = +25 c s11 mag (db) s22 mag (db) data sheet - rev 2.0 05/2011 awl9565 13 application information figure 25: application circuit 5ghz ant 2ghz ant bluetooth out u1 awl9565 vrx2 1 vbt 2 bt 3 4 vrx5 15 vtx5 14 vcc5g 13 gnd 12 20 2gant 19 5gant 17 vdet 16 rxout2 6 rxout5 txin5 7 gnd 9 gnd 8 2ghz bt vbt2 vcc 5ghz pa pa on 5ghz 5ghz tx in 2ghz rx out c1 4.7uf +/ - 10% c1 4.7uf +/ - 10% 2ghz tx in det out c2 1000pf +/ - 10% c2 1000pf +/ - 10% r1 10kohm +/ - 10% r1 10kohm +/ - 10% 5ghz rx vrx5 5ghz tx vtx5 2ghz rx vrx2 2ghz tx vtx2 5ghz rx out 5 10 txin2 11 18 paon5 gnd vtx2 gnd although not shown in the schematic, a large value capacitor (~ 10 uf) should be connected to the voltage supply lines for low frequency decoupling. 14 data sheet - rev 2.0 05/2011 awl9565 figure 26: package outline - 20 pin, 3.0 x 3.0 x 0.55 mm qfn data sheet - rev 2.0 05/2011 awl9565 15 figure 27: recommended pcb layout warning anadigics products are not intended for use in life support appliances, devices or systems. use of an anadigics product in any such application without written consent is prohibited. important notice anadigics, inc. 141 mount bethel road warren, new jersey 07059, u.s.a. tel: +1 (908) 668-5000 fax: +1 (908) 668-5132 url: http://www.anadigics.com anadigics, inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. the product specifcations contained in advanced product information sheets and preliminary data sheets are subject to change prior to a products formal introduction. information in data sheets have been carefully checked and are assumed to be reliable; however, anadigics assumes no responsibilities for inaccuracies. anadigics strongly urges customers to verify that the information they are using is current before placing orders. data sheet - rev 2.0 05/2011 16 awl9565 ordering information order number temperature range package description component packaging awl9565hs41p7 -40 8 c to +85 8 c 20 pin, 3 x 3 x 0.55 mm surface mount module bags awl9565hs41p9 -40 8 c to +85 8 c 20 pin, 3 x 3 x 0.55 mm surface mount module partial reel awl9565hs41q7 -40 8 c to +85 8 c 20 pin, 3 x 3 x 0.55 mm surface mount module 2500 piece t/r EVA9565 -40 8 c to +85 8 c evaluation board evaluation board |
Price & Availability of EVA9565 |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |