Part Number Hot Search : 
MEGA32 82B790 DAC2800D HER804FT 5Q0765 C2895A 2SC1514 5330H
Product Description
Full Text Search
 

To Download BUD42DG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  publication order number: bud42d/d ? semiconductor components industries, llc, 2005 august, 2005 ? rev. 3 1 bud42d high speed, high gain bipolar npn transistor with antisaturation network and transient voltage suppression capability the bud42d is a state?of?the?art bipolar transistor. t ight dynamic characteristics and lot to lot minimum spread make it ideally suitable for light ballast applications. features ? free?wheeling diode built?in ? flat dc current gain ? fast switching times and tight distribution ? ?6 sigma? process providing tight and reproducible parameter spreads ? epoxy meets ul 94 v?0 @ 0.125 in ? esd ratings: machine model, c; >400 v human body model, 3b; >8000 v ? pb?free packages are available two versions ? bud42d?1: case 369d for insertion mode ? bud42d, bud42dt4: case 369c for surface mount mode maximum ratings rating symbol value unit collector?emitter sustaining voltage v ceo 350 vdc collector?base breakdown voltage v cbo 650 vdc collector?emitter breakdown voltage v ces 650 vdc emitter?base voltage v ebo 9 vdc collector current ? continuous ? peak (note 1) i c i cm 4.0 8.0 adc base current ? continuous ? peak (note 1) i b i bm 1.0 2.0 adc total device dissipation @ t c = 25  c derate above 25  c p d 25 0.2 w w/  c operating and storage temperature t j , t stg ?65 to +150  c typical gain typical gain @ i c = 1 a, v ce = 2 v typical gain @ i c = 0.3 a, v ce = 1 v h fe h fe 13 16 ? ? maximum ratings are those values beyond which device damage can occur. maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. if these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 4 amperes 650 volts, 25 watts power transistor y = year ww = work week bud43d = device code g = pb?free packag e http://onsemi.com 1 base 3 emmitter 2 collector 4 collector dpak case 369c style 1 marking diagrams 1 2 3 4 dpak case 369d style 1 1 2 3 4 yww bu d42dg yww bu d42dg 1 base 3 emmitte r 2 collector 4 collector see detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet. ordering information
bud42d http://onsemi.com 2 1. pulse test: pulse width = 5.0 ms, duty cycle = 10%10 thermal characteristics characteristic symbol value unit thermal resistance, junction?to?case r  jc 5.0 c/w thermal resistance, junction?to?ambient r  ja 71.4 c/w maximum lead temperature for soldering pu rposes: 1/8 in from case for 5 seconds t l 260 c electrical characteristics (t c = 25 c unless otherwise noted) ????????????????????? ????????????????????? characteristic ???? ???? ??? ??? ???? ???? ??? ??? ??? ??? ????????????????????????????????? ????????????????????????????????? ????????????????????? ? ??????????????????? ? ????????????????????? collector?emitter sustaining voltage (i c = 100 ma, l = 25 mh) ???? ? ?? ? ???? v ceo(sus) ??? ? ? ? ??? 350 ???? ? ?? ? ???? 430 ??? ? ? ? ??? ? ??? ? ? ? ??? vdc ????????????????????? ????????????????????? ???? ???? ??? ??? ???? ???? ??? ??? ??? ??? ????????????????????? ? ??????????????????? ? ????????????????????? emitter?base breakdown voltage (i ebo = 1 ma) ???? ? ?? ? ???? v ebo ??? ? ? ? ??? 9.0 ???? ? ?? ? ???? 12 ??? ? ? ? ??? ? ??? ? ? ? ??? vdc ????????????????? ? ??????????????? ? ????????????????? collector cutoff current (v ce = rated v ceo , i b = 0) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? i ceo ??? ? ? ? ??? ? ? ???? ? ?? ? ???? ? ? ??? ? ? ? ??? 100 200 ??? ? ? ? ???  adc ????????????????? ????????????????? ????? ????? c @ t c = 125 c ???? ???? ??? ??? ???? ???? ??? ??? ??? ???  adc ????????????????????? ? ??????????????????? ? ????????????????????? emitter?cutoff current (v eb = 9 vdc, i c = 0) ???? ? ?? ? ???? i ebo ??? ? ? ? ??? ? ???? ? ?? ? ???? ? ??? ? ? ? ??? 100 ??? ? ? ? ???  adc ????????????????????????????????? ????????????????????????????????? on characteristics ????????????????????? ????????????????????? base?emitter saturation voltage (i c = 1 adc, i b = 0.2 adc) ???? ???? ??? ??? ???? ???? ??? ??? ??? ??? ????????????????????? ? ??????????????????? ? ????????????????????? collector?emitter saturation voltage (i c = 2 adc, i b = 0.5 adc) ???? ? ?? ? ???? v ce(sat) ??? ? ? ? ??? ? ???? ? ?? ? ???? 0.2 ??? ? ? ? ??? 1.0 ??? ? ? ? ??? vdc ????????????????????? ? ??????????????????? ? ????????????????????? dc current gain (i c = 1 adc, v ce = 2 vdc) (i c = 2 adc, v ce = 5 vdc) ???? ? ?? ? ???? h fe ??? ? ? ? ??? 8.0 10 ???? ? ?? ? ???? 13 12 ??? ? ? ? ??? ? ? ??? ? ? ? ??? ? ????????????????????????????????? ????????????????????????????????? diode characteristics ????????????????????? ? ??????????????????? ? ????????????????????? forward diode voltage (i ec = 1.0 adc) ???? ? ?? ? ???? v ec ??? ? ? ? ??? ? ???? ? ?? ? ???? 0.9 ??? ? ? ? ??? 1.5 ??? ? ? ? ??? v ????????????????????????????????? ????????????????????????????????? switching characteristics: resistive load (d.c. 10%, pulse width = 40  s) ????????????????????? ????????????????????? ???? ???? ??? ??? ???? ???? ??? ??? ??? ???  s ????????????????????? ? ??????????????????? ? ????????????????????? fall time (i c = 2.5 adc, i b1 = i b2 = 0.5 a, v cc = 150 v, v be = ?2 v) ???? ? ?? ? ???? t f ??? ? ? ? ??? ? ???? ? ?? ? ???? ? ??? ? ? ? ??? 0.8 ??? ? ? ? ???  s ????????????????????????????????? ????????????????????????????????? dynamic saturation voltage ???????? ? ?????? ? ? ?????? ? ? ?????? ? ? ?????? ? ? ?????? ? ? ?????? ? ???????? dynamic saturation voltage: determined 1  s and 3  s respectively after rising i b1 reaches 90% of final i b1 ??????? ? ????? ? ? ????? ? ? ????? ? ??????? i c = 400 ma i b1 = 40 ma v cc = 300 v ??? ? ? ? ??? @ 1  s ?????? ? ???? ? ?????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?? ? ???? v ce(dsat) ??? ? ? ? ??? ? ? ???? ? ?? ? ???? 2.8 3.2 ??? ? ? ? ??? ? ? ??? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??? v ??? ? ? ? ??? @ 3  s ?????? ? ???? ? ?????? @ t c = 25 c @ t c = 125 c ??? ? ? ? ??? ? ? ???? ? ?? ? ???? 0.75 1.3 ??? ? ? ? ??? ? ? ??????? ? ????? ? ? ????? ? ??????? i c = 1 a i b1 = 200 ma v cc = 300 v ??? ???  s ?????? ?????? c @ t c = 125 c ??? ??? ???? ???? ??? ??? ??? ? ? ? ??? @ 3  s ?????? ? ???? ? ?????? @ t c = 25 c @ t c = 125 c ??? ? ? ? ??? ? ? ???? ? ?? ? ???? 0.35 0.6 ??? ? ? ? ??? ? ?
bud42d http://onsemi.com 3 typical static characteristics figure 1. dc current gain @ v ce = 1 v 100 10 1 10 1 0.1 0.01 0.001 i c , collector current (amps) h fe , dc current gain t j = 125 c t j = 25 c t j = ?20 c figure 2. dc current gain @ v ce = 5 v 100 10 1 10 1 0.1 0.01 0.001 i c , collector current (amps) h fe , dc current gain figure 3. collector saturation region 3 2 0 10 0.1 0.01 0.001 i b , base current (amps) i c = 0.2 a figure 4. collector?emitter saturation voltage 10 1 0.01 10 1 0.1 0.01 0.001 i c , collector current (amps) t j = 125 c t j = 25 c t j = ?20 c i c /i b = 5 v ce , voltage (volts) v ce , voltage (volts) 1 t j = 25 c 1 a 1.5 a 2 a figure 5. collector?emitter saturation voltage 100 1 0.01 10 0.1 0.01 0.001 i c , collector current (amps) figure 6. collector?emitter saturation voltage 10 1 0.01 10 0.1 0.01 0.001 i c , collector current (amps) t j = 125 c t j = 25 c t j = ?20 c v ce , voltage (volts) v ce , voltage (volts) 1 i c /i b = 8 t j = 125 c t j = 25 c t j = ?20 c i c /i b = 10 0.4 a t j = 125 c t j = 25 c t j = ?20 c 1 0.1 0.1 1 0.1 10
bud42d http://onsemi.com 4 typical static characteristics figure 7. base?emitter saturation region 10 1 0.1 10 0.1 0.01 0.001 i c , collector current (amps) figure 8. base?emitter saturation region 10 1 0.1 10 0.1 0.01 0.001 i c , collector current (amps) v be , voltage (volts) v be , voltage (volts) 1 t j = 125 c t j = 25 c t j = ?20 c 1 i c /i b = 5 figure 9. base?emitter saturation region 10 1 0.1 10 0.1 0.01 0.001 i c , collector current (amps) figure 10. forward diode voltage 10 1 0.1 10 0.1 0.01 reverse emitter?collector current v be , voltage (volts) forward diode voltage (volts) 1 i c /i b = 10 t j = 25 c t j = 125 c t j = ?20 c t j = 125 c t j = 25 c t j = ?20 c i c /i b = 8 1 v ec(v) = ?20 c v ec(v) = 125 c v ec(v) = 25 c
bud42d http://onsemi.com 5 typical switching characteristics figure 11. capacitance 1000 10 1 100 10 1 v r , reverse voltage (volts) figure 12. b vcer = f(r be ) 900 500 300 10000 100 10 r be (  ) c, capacitance (pf) 1000 b 800 600 400 100 c ib c ob t j = 25 c f (test) = 1 mhz figure 13. resistive switching, t on 800 300 0 2 1 0 i c , collector current (amps) figure 14. resistive switching, t off 9 3 0 2 0.5 0 i c , collector current (amps) 1.5 6 400 t, time (ns) t, time (ns) 500 200 100 t j = 125 c t j = 25 c h fe = 5 i bon = i boff v cc = 300 v p w = 40  s 1 t j = 125 c t j = 25 c i bon = i boff v cc = 300 v p w = 40  s figure 15. inductive storage time, t si @ h fe = 5 4 0 0 i c , collector current (amps) figure 16. inductive storage time, t si @ h fe = 10 4 2 2 1 0.5 i c , collector current (amps) 1.5 3 1 3 2 t, time ( s) 1 i bon = i boff v ce = 15 v v z = 300 v l c = 200  h 700 600 700 t c = 25 c (volts) vcer 0.5 1.5 h fe = 10 0.5 1 1.5 2 t j = 25 c t j = 125 c i bon = i boff v ce = 15 v v z = 300 v l c = 200  h t j = 25 c t j = 125 c i cer = 10 ma i cer = 100 ma l c = 25 mh h fe = 5 h fe = 10 t, time ( s)
bud42d http://onsemi.com 6 typical switching characteristics figure 17. inductive fall and cross over time, t fi and t c @ h fe = 5 100 2 1 0 i c , collector current (amps) figure 18. inductive fall time, t fi @ h fe = 10 100 2 1 0.5 i c , collector current (amps) 1.5 250 200 150 figure 19. inductive cross over time, t c @ h fe = 10 figure 20. inductive storage time, t si 5 1 12 4 3 h fe , forced gain 4 3 2 t, time (ns) t, time ( s) 5 figure 21. inductive fall time, t f 300 100 10 6 3 h fe , forced gain figure 22. inductive cross over time, t c 300 200 100 10 4 2 h fe , forced gain 8 200 t 6 48 t, time (ns) t, time (ns) 400 300 200 0.5 1.5 t j = 125 c t j = 25 c i bon = i boff v ce = 15 v v z = 300 v l c = 200  h t j = 125 c t j = 25 c i bon = i boff v cc = 15 v v z = 300 v l c = 200  h cross?over time (ns) i bon = i boff v cc = 15 v v z = 300 v l c = 200  h t fi t c t j = 125 c t j = 25 c 200 2 1 0.5 i c , collector current (amps) 1.5 500 400 300 i bon = i boff v cc = 15 v v z = 300 v l c = 200  h t j = 125 c t j = 25 c  7 6810 911 i c = 1 a i c = 0.3 a , fall time (ns) fi 7 59 i bon = i boff v cc = 15 v v z = 300 v l c = 200  h t j = 125 c t j = 25 c i c = 1 a i c = 0.3 a i bon = i boff v cc = 15 v v z = 300 v l c = 200  h t j = 125 c t j = 25 c i c = 1 a i c = 0.3 a
bud42d http://onsemi.com 7 t fi typical switching characteristics figure 23. inductive storage time, t si 1 2 1 0 i c , collector current (amps) figure 24. forward recovery time, t fr 300 2 0.5 0 i f , forward current (amps) 1.5 440 340 320 figure 25. dynamic saturation voltage measurements figure 26. inductive switching measurements 10 0 4 0 time 8 4 2 t, time ( s) t 3 2 1.5 0.5 1.5 i bon = i boff v cc = 15 v v z = 300 v l c = 200  h time 68  2.5 i b 1 & 2 = 200 ma 500 ma 50 ma 100 ma 1 360 400 380 420 , forward recovery time (ns) fr di/dt = 10 a/  s, t c = 25 c 0 v 90% i b v ce i b 1  s 3  s dyn 1  s dyn 3  s 2 6 10% v clamp i b i c 90% i b1 10% i c v clamp t c t si 90% i c
bud42d http://onsemi.com 8 typical switching characteristics table 1. inductive load switching drive circuit v (br)ceo(sus) l = 10 mh r b2 = v cc = 20 volts i c(pk) = 100 ma inductive switching l = 200  h r b2 = 0 v cc = 15 volts r b1 selected for desired i b1 rbsoa l = 500  h r b2 = 0 v cc = 15 volts r b1 selected for desired i b1 +15 v 1  f 150  3 w 100  3 w mpf930 +10 v 50  common ?v off 500  f mpf930 mtp8p10 mur105 mje210 mtp12n10 mtp8p10 150  3 w 100  f i out a r b1 r b2 1  f i c peak v ce peak v ce i b i b1 i b2 figure 27. t fr measurement i 10% i f v frm 0.1 v f t fr v fr (1.1 v f ) unless otherwise specified f v f
bud42d http://onsemi.com 9 figure 28. forward bias safe operating area 10 0.01 1000 100 10 v ce , collector?emitter voltage (volts) figure 29. reverse bias safe operating area 5 3 0 700 500 400 300 v ce , collector?emitter voltage (volts) t j = 125 c gain 4 l c = 500  h i 600 1 0.1 4 2 1 , collector current (amps) c 10  s 1  s 1 ms 5 ms dc i , collector current (amps) c v be = 0 v v be(off) = ?1.5 v v be(off) = ?5 v extended soa maximum ratings figure 30. power derating 1 0 160 40 20 t c , case temperature ( c) 0.6 0.2 power derating factor 60 80 100 120 140 0.4 0.8 second breakdown derating thermal derating there are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. safe operating area curves indicate i c ?v ce limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. the data of figure 28 is based on t c = 25 c; t j(pk) is variable depending on power level. second breakdown pulse limits are valid for duty cycles to 10% but must be derated when t c > 25 c. second breakdown limitations do not derate like thermal limitations. allowable current at the voltages shown on figure 28 may be found at any c ase temperature by using the appropriate curve on figure 30. t j(pk) may be calculated from the data in figure 31. at any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. for inductive loads, high voltage and current must be sustained simultaneously during turn?off with the base to emitter junction reverse biased. the safe level is specified as reverse biased safe operating area (figure 29). this rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.
bud42d http://onsemi.com 10 figure 31. thermal response 1 0.01 1000 100 0.01 t, time (ms) 0.1 r(t) transient thermal 10 1 0.1 resistance (normalized) r  jc (t) = r(t) r  jc r  jc = 5 c/w max d curves apply for power pulse train shown read time at t 1 t j(pk) ? t c = p (pk) r  jc (t) p (pk) t 1 t 2 duty cycle, d = t 1 /t 2 d = 0.5 0.2 0.1 0.05 0.02 0.01 single pulse ordering information device package shipping ? bud42d dpak 75 units / rail BUD42DG dpak (pb?free) 75 units / rail bud42d?1 dpak straight lead 75 units / rail bud42d?1g dpak straight lead (pb?free) 75 units / rail bud42dt4 dpak 2500 units / tape & reel bud42dt4g dpak (pb?free) 2500 units / tape & reel ?for information on tape and reel specifications, including part orientation and tape sizes, please refer to our tape and reel packaging specifications brochure, brd8011/d.
bud42d http://onsemi.com 11 package dimensions dpak case 369c?01 issue o d a k b r v s f l g 2 pl m 0.13 (0.005) t e c u j h ?t? seating plane z dim min max min max millimeters inches a 0.235 0.245 5.97 6.22 b 0.250 0.265 6.35 6.73 c 0.086 0.094 2.19 2.38 d 0.027 0.035 0.69 0.88 e 0.018 0.023 0.46 0.58 f 0.037 0.045 0.94 1.14 g 0.180 bsc 4.58 bsc h 0.034 0.040 0.87 1.01 j 0.018 0.023 0.46 0.58 k 0.102 0.114 2.60 2.89 l 0.090 bsc 2.29 bsc r 0.180 0.215 4.57 5.45 s 0.025 0.040 0.63 1.01 u 0.020 ??? 0.51 ??? v 0.035 0.050 0.89 1.27 z 0.155 ??? 3.93 ??? 123 4 style 1: pin 1. base 2. collector 3. emitter 4. collector 5.80 0.228 2.58 0.101 1.6 0.063 6.20 0.244 3.0 0.118 6.172 0.243  mm inches  scale 3:1 *for additional information on our pb?free strategy and soldering details, please download the on semiconductor soldering and mounting techniques reference manual, solderrm/d. soldering footprint*
bud42d http://onsemi.com 12 package dimensions dpak straight lead case 369d?01 issue b style 1: pin 1. base 2. collector 3. emitter 4. collector 123 4 v s a k ?t? seating plane r b f g d 3 pl m 0.13 (0.005) t c e j h dim min max min max millimeters inches a 0.235 0.245 5.97 6.35 b 0.250 0.265 6.35 6.73 c 0.086 0.094 2.19 2.38 d 0.027 0.035 0.69 0.88 e 0.018 0.023 0.46 0.58 f 0.037 0.045 0.94 1.14 g 0.090 bsc 2.29 bsc h 0.034 0.040 0.87 1.01 j 0.018 0.023 0.46 0.58 k 0.350 0.380 8.89 9.65 r 0.180 0.215 4.45 5.45 s 0.025 0.040 0.63 1.01 v 0.035 0.050 0.89 1.27 notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. z z 0.155 ??? 3.93 ??? on semiconductor and are registered trademarks of semiconductor components industries, llc (scillc). scillc reserves the right to mak e changes without further notice to any products herein. scillc makes no warranty, representation or guarantee regarding the suitability of its products for an y particular purpose, nor does scillc assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including wi thout limitation special, consequential or incidental damages. ?typical? parameters which may be provided in scillc data sheets and/or specifications can and do vary in different application s and actual performance may vary over time. all operating parameters, including ?typicals? must be validated for each customer application by customer?s technical experts. scillc does not convey any license under its patent rights nor the rights of others. scillc products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the scillc product could create a sit uation where personal injury or death may occur. should buyer purchase or use scillc products for any such unintended or unauthorized application, buyer shall indemnify and hold scillc and its of ficers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, direct ly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that scillc was negligent regarding the design or manufacture of the part. scillc is an equal opportunity/affirmative action employer. this literature is subject to all applicable copyright laws and is not for resale in any manner. publication ordering information n. american technical support : 800?282?9855 toll free usa/canada japan : on semiconductor, japan customer focus center 2?9?1 kamimeguro, meguro?ku, tokyo, japan 153?0051 phone : 81?3?5773?3850 bud42d/d literature fulfillment : literature distribution center for on semiconductor p.o. box 61312, phoenix, arizona 85082?1312 usa phone : 480?829?7710 or 800?344?3860 toll free usa/canada fax : 480?829?7709 or 800?344?3867 toll free usa/canada email : orderlit@onsemi.com on semiconductor website : http://onsemi.com order literature : http://www.onsemi.com/litorder for additional information, please contact your local sales representative.


▲Up To Search▲   

 
Price & Availability of BUD42DG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X