Part Number Hot Search : 
UNR32AA 22350 22350 22350 AM504 IPD80N04 DZ10B 13622
Product Description
Full Text Search
 

To Download MAX19985AETX Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  general description the max19985a high-linearity, dual-channel, downcon- version mixer is designed to provide approximately 8.7db gain, +25.5dbm of iip3, and 9.0db of noise fig- ure for 700mhz to 1000mhz diversity receiver applica- tions. with an optimized lo frequency range of 900mhz to 1300mhz, this mixer is ideal for high-side lo injection architectures in the cellular and new 700mhz bands. low-side lo injection is supported by the max19985, which is pin-pin and functionally com- patible with the max19985a. in addition to offering excellent linearity and noise per- formance, the max19985a also yields a high level of component integration. this device includes two double-balanced passive mixer cores, two lo buffers, a dual-input lo selectable switch, and a pair of differ- ential if output amplifiers. on-chip baluns are also inte- grated to allow for single-ended rf and lo inputs. the max19985a requires a nominal lo drive of 0dbm and a typical supply current of 330ma at v cc = +5.0v or 280ma at v cc = +3.3v. the max19985/max19985a are pin compatible with the max19995/max19995a series of 1700mhz to 2200mhz mixers and pin similar with the max19997a/ max19999 series of 1850mhz to 3800mhz mixers, making this entire family of downconverters ideal for applications where a common pcb layout is used across multiple frequency bands. the max19985a is available in a 6mm x 6mm, 36-pin thin qfn package with an exposed pad. electrical per- formance is guaranteed over the extended temperature range of t c = -40? to +85?. applications 850mhz wcdma and cdma2000 base stations 700mhz lte/wimax base stations gsm850/900 2g and 2.5g edge base stations iden base stations fixed broadband wireless access wireless local loop private mobile radios military systems features  700mhz to 1000mhz rf frequency range  900mhz to 1300mhz lo frequency range  50mhz to 500mhz if frequency range  8.7db typical conversion gain  9.0db typical noise figure  +25.5dbm typical input ip3  +12.6dbm typical input 1db compression point  76dbc typical 2lo-2rf spurious rejection at p rf = -10dbm  dual channels ideal for diversity receiver applications  48db typical channel-to-channel isolation  low -3dbm to +3dbm lo drive  integrated lo buffer  internal rf and lo baluns for single-ended inputs  built-in spdt lo switch with 46db lo1-to-lo2 isolation and 50ns switching time  pin compatible with the max19995/max19995a series of 1700mhz to 2200mhz mixers  pin similar to the max19997a/max19999 series of 1850mhz to 3800mhz mixers  single +5.0v or +3.3v supply  external current-setting resistors provide option for operating device in reduced-power/reduced- performance mode max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch ________________________________________________________________ maxim integrated products 1 19-4185; rev 0; 8/08 for pricing, delivery, and ordering information, please contact maxim direct at 1-888-629-4642, or visit maxim? website at www.maxim-ic.com. cdma2000 is a registered trademark of telecommunications industry association. wimax is a trademark of wimax forum. iden is a registered trademark of motorola, inc. typical application circuit and pin configuration appear at end of data sheet. + denotes a lead-free/rohs-compliant package. * ep = exposed pad. t = tape and reel. ordering information part temp range pin-package MAX19985AETX+ -40? to +85? 36 thin qfn-ep* MAX19985AETX+t -40? to +85? 36 thin qfn-ep*
max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch 2 _______________________________________________________________________________________ absolute maximum ratings +3.3v supply dc electrical characteristics ( typical application circuit , v cc = 3.0v to 3.6v, t c = -40? to +85?. typical values are at v cc = 3.3v, t c = +25?, all parameters are guaranteed by design and not production tested, unless otherwise noted.) stresses beyond those listed under ?bsolute maximum ratings?may cause permanent damage to the device. these are stress rating s only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specificatio ns is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. note 1: based on junction temperature t j = t c + ( jc x v cc x i cc ). this formula can be used when the temperature of the exposed pad is known while the device is soldered down to a pcb. see the applications information section for details. the junction temperature must not exceed +150?. note 2: junction temperature t j = t a + ( ja x v cc x i cc ). this formula can be used when the ambient temperature of the pcb is known. the junction temperature must not exceed +150?. note 3: package thermal resistances were obtained using the method described in jedec specification jesd51-7, using a four- layer board. for detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial . note 4: t c is the temperature on the exposed pad of the package. t a is the ambient temperature of the device and pcb. v cc to gnd ...........................................................-0.3v to +5.5v lo1, lo2 to gnd ...............................................................?.3v any other pins to gnd...............................-0.3v to (v cc + 0.3v) rfmain, rfdiv, and lo_ input power ..........................+15dbm rfmain, rfdiv current (rf is dc shorted to gnd through balun)....................................................50ma continuous power dissipation (note 1) ..............................8.8w ja (notes 2, 3)..............................................................+38?/w jc (note 3).....................................................................7.4?/w operating temperature range (note 4) .....t c = -40? to +85? junction temperature ......................................................+150? storage temperature range .............................-65? to +150? lead temperature (soldering, 10s) .................................+300? parameter symbol conditions min typ max units supply voltage v cc r2 = r5 = 600 3.0 3.3 3.6 v supply current i cc total supply current, v cc = 3.3v 280 ma losel input high voltage v ih 2v losel input low voltage v il 0.8 v +5.0v supply dc electrical characteristics ( typical application circuit , v cc = 4.75v to 5.25v, t c = -40? to +85?. typical values are at v cc = 5.0v, t c = +25?, all parame- ters are production tested, unless otherwise noted.) parameter symbol conditions min typ max units supply voltage v cc 4.75 5 5.25 v supply current i cc 330 380 ma losel input high voltage v ih 2v losel input low voltage v il 0.8 v losel input current i ih , i il -10 +10 ?
max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch _______________________________________________________________________________________ 3 recommended ac operating conditions parameter symbol conditions min typ max units rf frequency f rf (note 5) 700 1000 mhz lo frequency f lo (note 5) 900 1300 mhz u si ng m i ni - c i r cui ts tc 4- 1w- 17 4:1 tr ansfor m er as defined in the typical application circuit , if matching components affect the if frequency range (note 5) 100 500 if frequency f if using alternative mini-circuits tc4-1w-7a 4:1 transformer, if matching components affect the if frequency range (note 5) 50 250 mhz lo drive level p lo (note 5) -3 +3 dbm +5.0v supply ac electrical characteristics ( typical application circuit , v cc = +4.75v to +5.25v, rf and lo ports are driven from 50 sources, p lo = -3dbm to +3dbm, p rf = -5dbm, f rf = 700mhz to 1000mhz, f lo = 900mhz to 1200mhz, f if = 200mhz, f rf < f lo , t c = -40? to +85?. typical values are at v cc = +5.0v, p rf = -5dbm, p lo = 0dbm, f rf =900mhz, f lo = 1100mhz, f if = 200mhz, t c =+25?, all parameters are guaran- teed by design and characterization, unless otherwise noted.) (note 6) parameter symbol conditions min typ max units f if = 200mhz, f rf = 824mhz to 915mhz, t c = -40? to +85? 7.0 8.7 10.2 conversion power gain g c f if = 200mhz, f rf = 824mhz to 915mhz, t c = +25? (note 9) 7.7 8.7 9.7 db conversion power gain variation vs. frequency g c flatness over any one of three frequency bands: f rf = 824mhz to 849mhz, f rf = 869mhz to 894mhz, f rf = 880mhz to 915mhz (note 9) 0.15 0.3 db g ai n v ar i ati on over tem p er atur etc g t c = -40? to +85? -0.012 db/? t c = -40? to +85? 9.2 11.5 noise figure nf f rf = 850mhz, f if = 200mhz, p lo = 0d bm , t c = + 25c , v c c = + 5.0v 9.0 10.3 db noise figure temperature coefficient tc nf t c = -40? to +85? 0.018 db/? noise figure under blocking condition n fb +8dbm blocker tone applied to rf port, f rf = 900mhz, f lo = 1090mhz, p lo = -3dbm, f blocker = 800mhz, v cc = +5.0v (note 7) 18.8 22 db t c = -40? to +85? 10.0 12.6 input 1db compression point ip 1db t c = +25? (note 9) 11.0 12.6 dbm f rf = 824mhz to 915mhz, f rf1 - f rf2 = 1mhz, f if = 200mhz, p rf = -5dbm/tone, t c = -40? to +85? 22.5 25.5 third-order input intercept point iip3 f rf = 824mhz to 915mhz, f rf1 - f rf2 = 1mhz, f if = 200mhz, p rf = -5dbm/tone, t c = +25? (note 9) 23.5 25.5 dbm
max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch 4 _______________________________________________________________________________________ parameter symbol conditions min typ max units p rf = -10dbm -63 -76 2lo-2rf spur rejection 2 x 2 f rf = 800mhz, f lo = 1000mhz, f spur = 900mhz p rf = -5dbm (note 9) -58 -71 dbc p rf = -10dbm -65 -78 3lo-3rf spur rejection 3 x 3 f rf = 800mhz, f lo = 1000mhz, f spur = 933.3mhz p rf = -5dbm (note 9) -60 -73 dbc lo leakage at rf port f lo = 900mhz to 1300mhz, p lo = +3dbm (note 10) -40 -20 dbm f lo = 900mhz to 1200mhz, p lo = +3dbm (note 10) -38 -25 2lo leakage at rf port f l o = 1200m h z to 1300m h z, p l o = + 3d bm (note 10) -35 -22 dbm 3lo leakage at rf port f lo = 900mhz to 1300mhz, p lo = +3dbm (note 10) -50 -28 dbm 4lo leakage at rf port f lo = 900mhz to 1300mhz, p lo = +3dbm (note 9) -25 -15 dbm lo leakage at if port f lo = 900mhz to 1300mhz, p lo = +3dbm (note 10) -35 -23 dbm rf-to-if isolation f rf = 824mhz to 915mhz (note 10) 30 38 db lo-to-lo isolation p lo1 = +3dbm, p lo2 = +3dbm, f lo1 = 900mhz, f lo2 = 901mhz, p rf = -5dbm (notes 8, 10) 40 46 db channel-to-channel isolation rfm ain ( rfd iv ) conver ted p ow er m easur ed at ifd iv ( ifm ain ) , r el ati ve to ifm ain ( ifd iv ) , al l unused p or ts ter m i nated to 50 ( n ote 9) 40 48 db lo switching time 50% of los e l to if settl ed w i thi n 2 d eg r ees 50 1000 ns rf input impedance z rf 50 rf input return loss lo on and if terminated into matched impedance 20 db lo input impedance z lo 50 rf and if terminated into matched impedance, lo port selected 20 lo input return loss rf and if terminated into matched impedance, lo port unselected 20 db if terminal output impedance z if nominal differential impedance at the ic? if output 200 if return loss rf terminated in 50 ; transformed to 50 using external components shown in the typical application circuit 18 db +5.0v supply ac electrical characteristics (continued) ( typical application circuit , v cc = +4.75v to +5.25v, rf and lo ports are driven from 50 sources, p lo = -3dbm to +3dbm, p rf = -5dbm, f rf = 700mhz to 1000mhz, f lo = 900mhz to 1200mhz, f if = 200mhz, f rf < f lo , t c = -40? to +85?. typical values are at v cc = +5.0v, p rf = -5dbm, p lo = 0dbm, f rf =900mhz, f lo = 1100mhz, f if = 200mhz, t c =+25?, all parameters are guaran- teed by design and characterization, unless otherwise noted.) (note 6)
max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch _______________________________________________________________________________________ 5 +3.3v supply ac electrical characteristics ( typical application circuit , rf and lo ports are driven from 50 sources. typical values are at v cc = +3.3v, p rf = -5dbm, p lo = 0dbm, f rf = 900mhz, f lo = 1100mhz, f if = 200mhz, t c =+25?, unless otherwise noted.) (note 6) parameter symbol conditions min typ max units conversion power gain g c 8.7 db conversion power gain variation vs. frequency g c flatness over any one of three frequency bands: f rf = 824mhz to 849mhz, f rf = 869mhz to 894mhz, f rf = 880mhz to 915mhz 0.15 db g ai n v ar i ati on over tem p er atur etc g t c = -40? to +85? -0.012 db/? noise figure nf 9.0 db noise figure temperature coefficient tc nf t c = -40? to +85? 0.018 db/? input 1db compression point ip 1db 10.6 dbm third-order input intercept point iip3 f rf1 = 900mhz, f rf2 = 901mhz, f if = 200mhz, p rf = -5dbm/tone 24.7 dbm p rf = -10dbm -74.9 2lo-2rf spur rejection 2 x 2 f rf = 800mhz, f lo = 1000mhz, f spur = 900mhz p rf = -5dbm -69.9 dbc p rf = -10dbm -78 3lo-3rf spur rejection 3 x 3 f rf = 800mhz, f lo = 1000mhz, f spur = 933.333mhz p rf = -5dbm -73 dbc maximum lo leakage at rf port f lo = 900mhz to 1300mhz, p lo = +3dbm -40 dbm m axi m um 2lo leakag e at rf p or t f lo = 900mhz to 1300mhz, p lo = +3dbm -42 dbm maximum lo leakage at if port f lo = 900mhz to 1300mhz, p lo = +3dbm -34 dbm minimum rf-to-if isolation f rf = 824mhz to 915mhz 38 db lo-to-lo isolation p lo1 = +3dbm, p lo2 = +3dbm, f lo1 = 900mhz, f lo2 = 901mhz (note 8) 45 db channel-to-channel isolation rfm ain ( rfd iv ) conver ted p ow er m easur ed at ifd iv ( ifm ain ) , r el ati ve to ifm ain ( ifd iv ) , al l unused p or ts ter m i nated to 50 48 db lo switching time 50% of los e l to if settl ed w i thi n 2 d eg r ees 50 ns rf input impedance z rf 50 rf input return loss lo on and if terminated into matched impedance 21 db lo input impedance z lo 50 rf and if terminated into matched impedance, lo port selected 31 lo input return loss rf and if terminated into matched impedance, lo port unselected 24 db
max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch 6 _______________________________________________________________________________________ note 5: not production tested. operation outside this range is possible, but with degraded performance of some parameters. see the typical operating characteristics . performance is optimized for rf frequencies of 824mhz to 915mhz. note 6: all limits reflect losses of external components. output measurements taken at if outputs of typical application circuit . note 7: measured with external lo source noise filtered so the noise floor is -174dbm/hz. this specification reflects the effects of all snr degradations in the mixer including the lo noise, as defined in the application note 2021: specifications and measurement of local oscillator noise in integrated circuit base station mixers . note 8: measured at if port at if frequency. losel may be in any logic state. note 9: limited production testing. note 10: guaranteed by production testing. +3.3v supply ac electrical characteristics (continued) ( typical application circuit , rf and lo ports are driven from 50 sources. typical values are at v cc = +3.3v, p rf = -5dbm, p lo = 0dbm, f rf = 900mhz, f lo = 1100mhz, f if = 200mhz, t c =+25?, unless otherwise noted.) (note 6) parameter symbol conditions min typ max units if terminal output impedance z if nominal differential impedance at the ic? if output 200 if output return loss rf terminated in 50 ; transformed to 50 using external components shown in the typical application circuit 17 db
max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch _______________________________________________________________________________________ 7 typical operating characteristics ( typical application circuit , v cc = +5.0v , p lo = 0dbm, p rf = -5dbm, lo is high-side injected for a 200mhz if, t c =+25?, unless otherwise noted.) conversion gain vs. rf frequency max19985a toc01 rf frequency (mhz) conversion gain (db) 900 800 7 8 9 10 11 6 700 1000 t c = +85 c t c = +25 c t c = -30 c conversion gain vs. rf frequency max19985a toc02 rf frequency (mhz) conversion gain (db) 900 800 7 8 9 10 11 6 700 1000 p lo = -3dbm, 0dbm, +3dbm conversion gain vs. rf frequency max19985a toc03 rf frequency (mhz) conversion gain (db) 900 800 7 8 9 10 11 6 700 1000 v cc = 4.75v, 5.0v, 5.25v input ip3 vs. rf frequency m ax19985a toc04 rf frequency ( m hz) input ip3 (dbm) 900 800 23 24 25 26 27 22 700 1000 t c = +85c t c = +25c t c = -30c p rf = -5dbm/tone input ip3 vs. rf frequency m ax19985a toc05 rf frequency ( m hz) input ip3 (dbm) 900 800 23 24 25 26 27 22 700 1000 p lo = +3dbm, 0dbm p lo = -3dbm p rf = -5dbm/tone input ip3 vs. rf frequency m ax19985a toc06 rf frequency ( m hz) input ip3 (dbm) 900 800 23 24 25 26 27 22 700 1000 v cc = 5.0v v cc = 5.25v v cc = 4.75v p rf = -5dbm/tone noise figure vs. rf frequency max19985a toc07 rf frequency (mhz) noise figure (db) 900 800 7 6 8 9 10 11 12 5 700 1000 t c = +85 c t c = +25 c t c = -30 c noise figure vs. rf frequency max19985a toc08 rf frequency (mhz) noise figure (db) 900 800 7 6 8 9 10 11 12 5 700 1000 p lo = -3dbm, 0dbm, +3dbm noise figure vs. rf frequency max19985a toc09 rf frequency (mhz) noise figure (db) 900 800 7 6 8 9 10 11 12 5 700 1000 v cc = 4.75v, 5.0v, 5.25v
max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch 8 _______________________________________________________________________________________ 2lo-2rf response vs. rf frequency max19985a toc10 rf frequency (mhz) 2lo-2rf response (dbc) 900 800 55 60 65 70 75 80 50 700 1000 t c = +85 c p rf = -5dbm t c = +25 c t c = -30 c 2lo-2rf response vs. rf frequency max19985a toc11 rf frequency (mhz) 2lo-2rf response (dbc) 900 800 55 60 65 70 75 80 50 700 1000 p lo = 0dbm p lo = +3dbm p lo = -3dbm p rf = -5dbm 2lo-2rf response vs. rf frequency max19985a toc12 rf frequency (mhz) 2lo-2rf response (dbc) 900 800 55 60 65 70 75 80 50 700 1000 p rf = -5dbm v cc = 4.75v, 5.0v, 5.25v 3lo-3rf response vs. rf frequency max19985a toc13 rf frequency (mhz) 3lo-3rf response (dbc) 900 800 65 75 85 95 55 700 1000 p rf = -5dbm t c = +85 c t c = +25 c t c = -30 c 3lo-3rf response vs. rf frequency max19985a toc14 rf frequency (mhz) 3lo-3rf response (dbc) 900 800 65 75 85 95 55 700 1000 p rf = -5dbm p lo = -3dbm, 0dbm, +3dbm 3lo-3rf response vs. rf frequency max19985a toc15 rf frequency (mhz) 3lo-3rf response (dbc) 900 800 65 75 85 95 55 700 1000 p rf = -5dbm v cc = 4.75v, 5.0v, 5.25v input p 1db vs. rf frequency max19985a toc16 rf frequency (mhz) input p 1db (dbm) 900 800 11 13 12 14 15 10 700 1000 t c = +85 c t c = +25 c t c = -30 c input p 1db vs. rf frequency max19985a toc17 rf frequency (mhz) input p 1db (dbm) 900 800 11 13 12 14 15 10 700 1000 p lo = -3dbm, 0dbm, +3dbm input p 1db vs. rf frequency max19985a toc18 rf frequency (mhz) input p 1db (dbm) 900 800 11 13 12 14 15 10 700 1000 v cc = 5.0v v cc = 5.25v v cc = 4.75v typical operating characteristics (continued) ( typical application circuit , v cc = +5.0v , p lo = 0dbm, p rf = -5dbm, lo is high-side injected for a 200mhz if, t c =+25?, unless otherwise noted.)
max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch _______________________________________________________________________________________ 9 channel isolation vs. rf frequency max19985a toc19 rf frequency (mhz) channel isolation (db) 900 800 40 35 50 45 55 60 30 700 1000 t c = -30 c, +25 c, +85 c channel isolation vs. rf frequency max19985a toc20 rf frequency (mhz) channel isolation (db) 900 800 40 35 50 45 55 60 30 700 1000 p lo = -3dbm, 0dbm, +3dbm channel isolation vs. rf frequency max19985a toc21 rf frequency (mhz) channel isolation (db) 900 800 40 35 50 45 55 60 30 700 1000 v cc = 4.75v, 5.0v, 5.25v lo leakage at if port vs. lo frequency max19985a toc22 lo frequency (mhz) lo leakage at if port (dbm) 1100 1150 1000 1050 950 -40 -45 -30 -35 -25 -20 -50 900 1200 t c = -30 c t c = +25 c, +85 c lo leakage at if port vs. lo frequency max19985a toc23 lo frequency (mhz) lo leakage at if port (dbm) 1150 1100 1050 1000 950 -45 -40 -35 -30 -25 -20 -50 900 1200 p lo = +3dbm p lo = 0dbm p lo = -3dbm lo leakage at if port vs. lo frequency max19985a toc24 lo frequency (mhz) lo leakage at if port (dbm) 1150 1100 1050 1000 950 -45 -40 -35 -30 -25 -20 -50 900 1200 v cc = 4.75v, 5.0v, 5.25v rf-to-if isolation vs. rf frequency max19985a toc25 rf frequency (mhz) rf-to-if isolation (db) 800 900 45 40 35 50 30 700 1000 t c = +85 c t c = -30 c t c = +25 c rf-to-if isolation vs. rf frequency max19985a toc26 rf frequency (mhz) rf-to-if isolation (db) 800 900 45 40 35 50 30 700 1000 p lo = -3dbm, 0dbm, +3dbm rf-to-if isolation vs. rf frequency max19985a toc27 rf frequency (mhz) rf-to-if isolation (db) 800 900 45 40 35 50 30 700 1000 v cc = 4.75v, 5.0v, 5.25v typical operating characteristics (continued) ( typical application circuit , v cc = +5.0v , p lo = 0dbm, p rf = -5dbm, lo is high-side injected for a 200mhz if, t c =+25?, unless otherwise noted.)
max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch 10 ______________________________________________________________________________________ lo leakage at rf port vs. lo frequency max19985a toc28 lo frequency (mhz) lo leakage at rf port (dbm) 800 900 1100 1000 -60 -50 -40 -30 -20 -70 700 1200 t c = -30 c t c = +85 c t c = +25 c lo leakage at rf port vs. lo frequency max19985a toc29 lo frequency (mhz) lo leakage at rf port (dbm) 800 900 1100 1000 -60 -50 -40 -30 -20 -70 700 1200 p lo = -3dbm, 0dbm, +3dbm lo leakage at rf port vs. lo frequency max19985a toc30 lo frequency (mhz) lo leakage at rf port (dbm) 800 900 1100 1000 -60 -50 -40 -30 -20 -70 700 1200 v cc = 4.75v, 5.0v, 5.25v 2lo leakage at rf port vs. lo frequency max19985a toc31 lo frequency (mhz) 2lo leakage at rf port (dbm) 800 900 1100 1000 -50 -40 -30 -20 -10 -60 700 1200 t c = -30 c, +25 c, +85 c 2lo leakage at rf port vs. lo frequency max19985a toc32 lo frequency (mhz) 2lo leakage at rf port (dbm) 800 900 1100 1000 -50 -40 -30 -20 -10 -60 700 1200 p lo = -3dbm, 0dbm, +3dbm 2lo leakage at rf port vs. lo frequency max19985a toc33 lo frequency (mhz) 2lo leakage at rf port (dbm) 800 900 1100 1000 -50 -40 -30 -20 -10 -60 700 1200 v cc = 4.75v, 5.0v, 5.25v lo switch isolation vs. lo frequency max19985a toc34 lo frequency (mhz) lo switch isolation (db) 1100 1300 45 40 35 50 30 900 1500 1000 1200 1400 t c = +85 c t c = -30 c t c = +25 c lo switch isolation vs. lo frequency max19985a toc35 lo frequency (mhz) lo switch isolation (db) 1100 1300 45 40 35 50 30 900 1500 1000 1200 1400 p lo = +3dbm p lo = -3dbm, 0dbm lo switch isolation vs. lo frequency max19985a toc36 lo frequency (mhz) lo switch isolation (db) 1100 1300 45 40 35 50 30 900 1500 1000 1200 1400 v cc = 4.75v, 5.0v, 5.25v typical operating characteristics (continued) ( typical application circuit , v cc = +5.0v , p lo = 0dbm, p rf = -5dbm, lo is high-side injected for a 200mhz if, t c =+25?, unless otherwise noted.)
3lo-3rf response vs. rf frequency (various lo and if bias) max19985a toc45 rf frequency (mhz) 3lo-3rf response (dbc) 900 800 60 65 55 75 50 70 80 85 45 700 1000 see table 1 for resistor and i cc values 1, 2, 3, 4 p rf = -5dbm 5 7 6 2lo-2rf response vs. rf frequency (various lo and if bias) max19985a toc44 rf frequency (mhz) 2lo-2rf response (dbc) 900 800 60 65 55 70 75 80 50 700 1000 see table 1 for resistor and i cc values 2, 3, 4 1 p rf = -5dbm 5 7 6 lo selected return loss vs. lo frequency max19985a toc39 lo frequency (mhz) lo selected return loss (db) 1100 1000 850 40 30 20 10 0 50 700 1300 p lo = +3dbm p lo = 0dbm p lo = -3dbm max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch ______________________________________________________________________________________ 11 rf port return loss vs. rf frequency max19985a toc37 rf frequency (mhz) rf port return loss (db) 900 950 800 750 850 25 20 15 10 5 0 30 700 1000 p lo = -3dbm, 0dbm, +3dbm if = 200mhz if port return loss vs. if frequency max19985a toc38 if frequency (mhz) if port return loss (db) 140 230 320 410 25 20 15 10 5 0 30 50 500 lo = 900mhz v cc = 4.75v, 5.0v, 5.25v if return loss depends on external if components lo unselected return loss vs. lo frequency max19985a toc40 lo frequency (mhz) lo unselected return loss (db) 1100 1000 850 40 30 20 10 0 50 700 1300 p lo = -3dbm, 0dbm, +3dbm supply current vs. temperature (t c ) max19985a toc41 temperature ( c) supply current (ma) -15 25 45 565 290 310 330 350 370 270 -35 85 v cc = 5.25v v cc = 4.75v v cc = 5.0v conversion gain vs. rf frequency (various lo and if bias) max19985a toc42 rf frequency (mhz) conversion gain (db) 900 800 7 8 9 10 11 6 700 1000 see table 1 for resistor and i cc values 1, 2, 3, 4 7 5 6 input ip3 vs. rf frequency (various lo and if bias) max19985a toc43 rf frequency (mhz) input ip3 (dbm) 900 800 20 22 16 18 24 26 28 14 700 1000 see table 1 for resistor and i cc values 2, 3, 4 11 4 5 7 6 typical operating characteristics (continued) ( typical application circuit , v cc = +5.0v , p lo = 0dbm, p rf = -5dbm, lo is high-side injected for a 200mhz if, t c =+25?, unless otherwise noted.)
max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch 12 ______________________________________________________________________________________ input p 1db vs. rf frequency (various lo and if bias) max19985a toc46 rf frequency (mhz) input p 1db (dbm) 900 800 10 8 14 6 12 16 4 700 1000 see table 1 for resistor and i cc values 1, 2, 3, 4 5 7 6 conversion gain vs. rf frequency (various values of l3 and l6) max19985a toc47 rf frequency (mhz) conversion gain (db) 900 l = l3 = l6 800 8 7 10 9 11 6 700 1000 l = 0 , 7.5nh, 15nh, 30nh input ip3 vs. rf frequency (various values of l3 and l6) max19985a toc48 rf frequency (mhz) input ip3 (dbm) 900 l = l3 = l6 800 24 23 26 25 27 22 700 1000 l = 0 , 7.5nh, 15nh l = 30nh 2lo-2rf response vs. rf frequency (various values of l3 and l6) max19985a toc49 rf frequency (mhz) 2lo-2rf response (dbc) 900 p rf = -5dbm l = l3 = l6 800 65 60 55 75 70 80 50 700 1000 l = 30nh l = 7.5nh l = 15nh l = 0 3lo-3rf response vs. rf frequency (various values of l3 and l6) max19985a toc50 rf frequency (mhz) 3lo-3rf response (dbc) 900 p rf = -5dbm l = l3 = l6 800 75 65 85 95 55 700 1000 l = 0 , 7.5nh, 15nh, 30nh lo leakage at if port vs. lo frequency (various values of l3 and l6) max19985a toc51 lo frequency (mhz) lo leakage at if port (dbm) 1100 1000 -20 -30 -10 -50 -60 -40 0 -70 900 1200 1050 950 1150 l = 0 l = 7.5nh l = 30nh l = 15nh l = l3 = l6 rf-to-if isolation vs. rf frequency (various values of l3 and l6) max19985a toc52 rf frequency (mhz) rf-to-if isolation (db) 900 800 40 20 10 30 50 0 700 1000 l = 0 l = 7.5nh l = 30nh l = 15nh l = l3 = l6 typical operating characteristics (continued) ( typical application circuit , v cc = +5.0v , p lo = 0dbm, p rf = -5dbm, lo is high-side injected for a 200mhz if, t c =+25?, unless otherwise noted.)
max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch ______________________________________________________________________________________ 13 typical operating characteristics (continued) ( typical application circuit , v cc = +3.3v , p lo = 0dbm, p rf = -5dbm, lo is high-side injected for a 200mhz if, t c =+25?, unless otherwise noted.) conversion gain vs. rf frequency max19985a toc53 rf frequency (mhz) conversion gain (db) 900 800 10 8 7 9 11 6 700 1000 t c = +85c t c = -30c t c = +25c v cc = 3.3v conversion gain vs. rf frequency m ax19985a toc54 rf frequency ( m hz) conversion gain (db) 800 900 7 8 9 10 11 6 700 1000 p lo = -3dbm, 0dbm, +3dbm v cc = 3.3v conversion gain vs. rf frequency max19985a toc55 rf frequency (mhz) conversion gain (db) 800 900 7 8 9 10 11 6 700 1000 v cc = 3.0v, 3.3v, 3.6v input ip3 vs. rf frequency max19985a toc56 rf frequency (mhz) input ip3 (dbm) 900 800 25 23 22 24 26 21 700 1000 t c = +85c t c = -30c t c = +25c v cc = 3.3v p rf = -5dbm/tone input ip3 vs. rf frequency max19985a toc57 rf frequency (mhz) input ip3 (dbm) 900 800 25 23 22 24 26 21 700 1000 p lo = +3dbm p lo = -3dbm p lo = 0dbm v cc = 3.3v p rf = -5dbm/tone input ip3 vs. rf frequency max19985a toc58 rf frequency (mhz) input ip3 (dbm) 900 800 25 23 22 24 26 21 700 1000 v cc = 3.6v v cc = 3.0v v cc = 3.3v p rf = -5dbm/tone noise figure vs. rf frequency max19985a toc59 rf frequency (mhz) noise figure (db) 900 800 11 8 7 10 6 9 12 5 700 1000 t c = +85c t c = -30c t c = +25c v cc = 3.3v noise figure vs. rf frequency max19985a toc60 rf frequency (mhz) noise figure (db) 900 800 11 8 7 10 6 9 12 5 700 1000 p lo = -3dbm, 0dbm, +3dbm v cc = 3.3v noise figure vs. rf frequency max19985a toc61 rf frequency (mhz) noise figure (db) 900 800 11 8 7 10 6 9 12 5 700 1000 v cc = 3.0v, 3.3v, 3.6v
max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch 14 ______________________________________________________________________________________ 2lo-2rf response vs. rf frequency max19985a toc62 rf frequency (mhz) 2lo-2rf response (dbc) 900 800 75 60 55 70 65 80 50 700 1000 t c = +85c p rf = -5dbm t c = -30c t c = +25c v cc = 3.3v 2lo-2rf response vs. rf frequency max19985a toc63 rf frequency (mhz) 2lo-2rf response (dbc) 900 800 75 60 55 70 65 80 50 700 1000 p rf = -5dbm p lo = +3dbm p lo = -3dbm p lo = 0dbm v cc = 3.3v 2lo-2rf response vs. rf frequency max19985a toc64 rf frequency (mhz) 2lo-2rf response (dbc) 900 800 75 60 55 70 65 80 50 700 1000 p rf = -5dbm v cc = 3.0v, 3.3v, 3.6v 3lo-3rf response vs. rf frequency max19985a toc65 rf frequency (mhz) 3lo-3rf response (dbc) 900 800 65 85 75 95 55 700 1000 t c = +85c p rf = -5dbm t c = -30c t c = +25c v cc = 3.3v 3lo-3rf response vs. rf frequency max19985a toc66 rf frequency (mhz) 3lo-3rf response (dbc) 900 800 65 85 75 95 55 700 1000 p rf = -5dbm p lo = -3dbm, 0dbm, +3dbm v cc = 3.3v 3lo-3rf response vs. rf frequency max19985a toc67 rf frequency (mhz) 3lo-3rf response (dbc) 900 800 65 85 75 95 55 700 1000 p rf = -5dbm v cc = 3.6v v cc = 3.0v v cc = 3.3v input p 1db vs. rf frequency max19985a toc68 rf frequency (mhz) input p 1db (dbm) 900 800 9 12 8 11 10 13 7 700 1000 t c = +85c t c = -30c t c = +25c v cc = 3.3v input p 1db vs. rf frequency max19985a toc69 rf frequency (mhz) input p 1db (dbm) 900 800 9 12 8 11 10 13 7 700 1000 p lo = -3dbm, 0dbm, +3dbm v cc = 3.3v input p 1db vs. rf frequency max19985a toc70 rf frequency (mhz) input p 1db (dbm) 900 800 9 12 8 11 10 13 7 700 1000 v cc = 3.6v v cc = 3.0v v cc = 3.3v typical operating characteristics (continued) ( typical application circuit , v cc = +3.3v , p lo = 0dbm, p rf = -5dbm, lo is high-side injected for a 200mhz if, t c =+25?, unless otherwise noted.)
max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch ______________________________________________________________________________________ 15 channel isolation vs. rf frequency max19985a toc71 rf frequency (mhz) channel isolation (db) 900 800 40 55 35 50 45 60 30 700 1000 t c = -30c, +25c, +85c v cc = 3.3v channel isolation vs. rf frequency max19985a toc72 rf frequency (mhz) channel isolation (db) 900 800 40 55 35 50 45 60 30 700 1000 p lo = -3dbm, 0dbm, +3dbm v cc = 3.3v channel isolation vs. rf frequency max19985a toc73 rf frequency (mhz) channel isolation (db) 900 800 40 55 35 50 45 60 30 700 1000 v cc = 3.0v, 3.3v, 3.6v lo leakage at if port vs. lo frequency max19985a toc74 lo frequency (mhz) lo leakage at if port (dbm) 1100 1000 -40 -25 -45 -30 -35 -20 -50 900 1200 1050 950 1150 t c = +85c t c = -30c t c = +25c v cc = 3.3v lo leakage at if port vs. lo frequency max19985a toc75 lo frequency (mhz) lo leakage at if port (dbm) 1100 1000 -40 -25 -45 -30 -35 -20 -50 900 1200 1050 950 1150 p lo = +3dbm p lo = -3dbm p lo = 0dbm v cc = 3.3v lo leakage at if port vs. lo frequency max19985a toc76 lo frequency (mhz) lo leakage at if port (dbm) 1100 1000 -40 -25 -45 -30 -35 -20 -50 900 1200 1050 950 1150 v cc = 3.6v v cc = 3.0v v cc = 3.3v rf-to-if isolation vs. rf frequency max19985a toc77 rf frequency (mhz) rf-to-if isolation (db) 900 800 45 35 40 50 30 700 1000 t c = +85c t c = -30c t c = +25c v cc = 3.3v rf-to-if isolation vs. rf frequency max19985a toc78 rf frequency (mhz) rf-to-if isolation (db) 900 800 45 35 40 50 30 700 1000 p lo = -3dbm, 0dbm, +3dbm v cc = 3.3v rf-to-if isolation vs. rf frequency max19985a toc79 rf frequency (mhz) rf-to-if isolation (db) 900 800 45 35 40 50 30 700 1000 v cc = 3.0v, 3.3v, 3.6v typical operating characteristics (continued) ( typical application circuit , v cc = +3.3v , p lo = 0dbm, p rf = -5dbm, lo is high-side injected for a 200mhz if, t c =+25?, unless otherwise noted.)
max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch 16 ______________________________________________________________________________________ lo leakage at rf port vs. lo frequency max19985a toc80 lo frequency (mhz) lo leakage at rf port (dbm) 800 1000 900 1100 -30 -50 -40 -20 -60 700 1200 t c = +85c t c = -30c t c = +25c v cc = 3.3v lo leakage at rf port vs. lo frequency max19985a toc81 lo frequency (mhz) lo leakage at rf port (dbm) 800 1000 900 1100 -30 -50 -40 -20 -60 700 1200 p lo = -3dbm, 0dbm, +3dbm v cc = 3.3v lo leakage at rf port vs. lo frequency max19985a toc82 lo frequency (mhz) lo leakage at rf port (dbm) 800 1000 900 1100 -30 -50 -40 -20 -60 700 1200 v cc = 3.6v v cc = 3.0v v cc = 3.3v 2lo leakage at rf port vs. lo frequency max19985a toc83 lo frequency (mhz) 2lo leakage at rf port (dbm) 800 1000 900 1100 -30 -20 -50 -40 -10 -60 700 1200 t c = -30c, +25c, +85c v cc = 3.3v 2lo leakage at rf port vs. lo frequency max19985a toc84 lo frequency (mhz) 2lo leakage at rf port (dbm) 800 1000 900 1100 -30 -20 -50 -40 -10 -60 700 1200 p lo = -3dbm, 0dbm, +3dbm v cc = 3.3v 2lo leakage at rf port vs. lo frequency max19985a toc85 lo frequency (mhz) 2lo leakage at rf port (dbm) 800 1000 900 1100 -30 -20 -50 -40 -10 -60 700 1200 v cc = 3.6v v cc = 3.0v v cc = 3.3v lo switch isolation vs. rf frequency max19985a toc86 lo frequency (mhz) lo switch isolation (db) 1300 1000 1200 1400 1100 45 35 40 50 30 900 1500 t c = -30c t c = +25c t c = +85c v cc = 3.3v lo switch isolation vs. rf frequency m ax19985a toc87 lo frequency ( m hz) lo switch isolation (db) 1300 1000 1200 1400 1100 45 35 40 50 30 900 1500 p lo = -3dbm, 0dbm p lo = +3dbm v cc = 3.3v lo switch isolation vs. lo frequency max19985a toc88 lo frequency (mhz) lo switch isolation (db) 1300 1000 1200 1400 1100 45 35 40 50 30 900 1500 v cc = 3.0v, 3.3v, 3.6v typical operating characteristics (continued) ( typical application circuit , v cc = +3.3v , p lo = 0dbm, p rf = -5dbm, lo is high-side injected for a 200mhz if, t c =+25?, unless otherwise noted.)
table 1. dc current vs. bias resistor settings max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch ______________________________________________________________________________________ 17 rf port return loss vs. rf frequency max19985a toc89 rf frequency (mhz) rf port return loss (db) 900 750 850 950 800 5 20 10 25 15 0 30 700 1000 p lo = -3dbm, 0dbm, +3dbm if = 200mhz v cc = 3.3v if port return loss vs. if frequency max19985a toc90 if frequency (mhz) if port return loss (db) 140 230 410 5 20 10 25 15 0 30 50 500 320 lo = 900mhz v cc = 3.0v, 3.3v, 3.6v if return loss depends on external components lo selected return loss vs. lo frequency max19985a toc91 lo frequency (mhz) lo selected return loss (db) 1150 30 40 10 20 0 50 700 1300 1000 850 p lo = +3dbm p lo = -3dbm p lo = 0dbm v cc = 3.3v lo unselected return loss vs. lo frequency max19985a toc92 lo frequency (mhz) lo unselected return loss (db) 1150 30 40 10 20 0 50 700 1300 1000 850 p lo = -3dbm, 0dbm, +3dbm v cc = 3.3v supply current vs. temperature (t c ) max19985a toc93 temperature ( c) supply current (ma) 45 5 320 280 260 240 220 300 340 200 -35 85 25 -15 65 v cc = 3.6v v cc = 3.0v v cc = 3.3v typical operating characteristics (continued) ( typical application circuit , v cc = +3.3v , p lo = 0dbm, p rf = -5dbm, lo is high-side injected for a 200mhz if, t c =+25?, unless otherwise noted.) bias condition d c cu r r en t ( m a ) r1 and r4 values ( ) r2 and r5 values ( ) 1 359.4 698 800 2 331.8 698 1100 3 322.8 698 1200 4 311.7 698 1400 5 268.2 1100 1200 6 244.4 1400 1200 7 223.7 1820 1200 note: see tocs 42?6 for performance trade-offs vs. dc bias condition.
max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch 18 ______________________________________________________________________________________ pin description pin name function 1 rfmain main channel rf input. internally matched to 50 . requires an input dc-blocking capacitor. 2 tapmain main channel balun center tap. bypass to gnd with 39pf and 0.033? capacitors as close as possible to the pin with the smaller value capacitor closer to the part. 3, 5, 7, 12, 20, 22, 24, 25, 26, 34 gnd ground 4, 6, 10, 16, 21, 30, 36 v cc power supply. bypass to gnd with 0.01? capacitors as close as possible to the pin. pins 4 and 6 do not require bypass capacitors. 8 tapdiv diversity channel balun center tap. bypass to gnd with 39pf and 0.033? capacitors as close as possible to the pin with the smaller value capacitor closer to the part. 9 rfdiv diversity channel rf input. internally matched to 50 . requires an input dc-blocking capacitor. 11 ifdbias if diversity amplifier bias control. connect a resistor from this pin to ground to set the bias current for the diversity if amplifier (see the typical operating characteristics for typical performance vs. resistor value). 13, 14 ifd+, ifd- diversity mixer differential if outputs. connect pullup inductors from each of these pins to v cc (see the typical application circuit ). 15 lextd diversity external inductor connection. connect a parallel combination of an inductor and a 500 resistor from this pin to ground to increase the rf-to-if and lo-to-if isolation (see the typical operating characteristics for typical performance vs. inductor value). 17 lodbias lo diversity amplifier bias control. connect a resistor from this pin to ground to set the bias current for the diversity lo amplifier (see the typical operating characteristics for typical performance vs. resistor value). 18, 28 n.c. no connection. not internally connected. 19 lo1 local oscillator 1 input. this input is internally matched to 50 . requires an input dc- blocking capacitor. 23 losel local oscillator select. set this pin to high to select lo1. set to low to select lo2. 27 lo2 local oscillator 2 input. this input is internally matched to 50 . requires an input dc- blocking capacitor. 29 lombias lo main amplifier bias control. connect a resistor from this pin to ground to set the bias current for the main lo amplifier (see the typical operating characteristics for typical performance vs. resistor value). 31 lextm main external inductor connection. connect a parallel combination of an inductor and a 500 resistor from this pin to ground to increase the rf-to-if and lo-to-if isolation (see typical operating characteristics for typical performance vs. inductor value). 32, 33 ifm-, ifm+ main mixer differential if outputs. connect pullup inductors from each of these pins to v cc (see the typical application circuit ). 35 ifmbias if main amplifier bias control. connect a resistor from this pin to ground to set the bias current for the main if amplifier (see the typical operating characteristics for typical performance vs. resistor value). ?p exposed pad. internally connected to gnd. connect to a large ground plane using multiple vias to maximize thermal and rf performance.
max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch ______________________________________________________________________________________ 19 detailed description the max19985a is a dual-channel downconverter designed to provide 8.7db of conversion gain, +25.5dbm of iip3, +12.6dbm typical input 1db com- pression point, and a 9.0db noise figure. in addition to its high-linearity performance, the max19985a achieves a high level of component inte- gration. the device integrates two double-balanced mixers for two-channel downconversion. both the main and diversity channels include a balun and matching circuitry to allow 50 single-ended interfaces to the rf ports and the two lo ports. an integrated single-pole/ double-throw (spdt) switch provides 50ns switching time between the two lo inputs with 46db of lo-to-lo isolation and -40dbm of lo leakage at the rf port. furthermore, the integrated lo buffers provide a high drive level to each mixer core, reducing the lo drive required at the max19985a? inputs to a range of -3dbm to +3dbm. the if ports for both channels incor- porate differential outputs for downconversion, which is ideal for providing enhanced 2lo-2rf performance. specifications are guaranteed over broad frequency ranges to allow for use in wcdma, gsm/edge, iden, cdma2000, and lte/wimax cellular and 700mhz band base stations. the max19985a is specified to operate over an rf input range of 700mhz to 1000mhz, an lo range of 900mhz to 1300mhz, and an if range of 50mhz to 500mhz. the external if components set the lower frequency range (see the typical operating characteristics for details). operation beyond these ranges is possible (see the typical operating characteristics for additional information). although this device is optimized for high-side lo injection applica- tions, it can operate in low-side lo injection modes as well. however, performance degrades as f lo continues to decrease. for increased low-side lo performance, refer to the max19985 data sheet. rf port and balun the rf input ports of both the main and diversity chan- nels are internally matched to 50 , requiring no exter- nal matching components. a dc-blocking capacitor is required as the input is internally dc shorted to ground through the on-chip balun. the rf port input return loss is typically 20db over the rf frequency range of 770mhz to 915mhz. lo inputs, buffer, and balun the max19985a is optimized for a 900mhz to 1300mhz lo frequency range. as an added feature, the max19985a includes an internal lo spdt switch for use in frequency-hopping applications. the switch selects one of the two single-ended lo ports, allowing the external oscillator to settle on a particular frequency before it is switched in. lo switching time is typically 50ns, which is more than adequate for typical gsm applications. if frequency hopping is not employed, simply set the switch to either of the lo inputs. the switch is controlled by a digital input (losel), where logic-high selects lo1 and logic-low selects lo2. lo1 and lo2 inputs are internally matched to 50 , requiring only an 82pf dc-blocking capacitor. to avoid damage to the part, voltage must be applied to v cc before digital logic is applied to losel. alternatively, a 1k resistor can be placed in series at the losel to limit the input current in applications where losel is applied before v cc . the main and diversity channels incorporate a two- stage lo buffer that allows for a wide-input power range for the lo drive. the on-chip low-loss baluns, along with lo buffers, drive the double-balanced mix- ers. all interfacing and matching components from the lo inputs to the if outputs are integrated on-chip. high-linearity mixer the core of the max19985a dual-channel downcon- verter consists of two double-balanced, high- performance passive mixers. exceptional linearity is provided by the large lo swing from the on-chip lo buffers. when combined with the integrated if ampli- fiers, the cascaded iip3, 2lo-2rf rejection, and noise figure performance are typically +25.5dbm, 76dbc, and 9.0db, respectively. differential if the max19985a has an if frequency range of 50mhz to 500mhz, where the low-end frequency depends on the frequency response of the external if components. note that these differential ports are ideal for providing enhanced iip2 performance. single-ended if applica- tions require a 4:1 (impedance ratio) balun to transform the 200 differential if impedance to a 50 single- ended system. after the balun, the return loss is typically 18db. the user can use a differential if ampli- fier on the mixer if ports, but a dc block is required on both ifd+/ifd- and ifm+/ifm- ports to keep external dc from entering the if ports of the mixer.
max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch 20 ______________________________________________________________________________________ applications information input and output matching the rf and lo inputs are internally matched to 50 . no matching components are required. the rf port input return loss is typically 20db over the rf frequency range of 770mhz to 915mhz and return loss at the lo ports are typically 20db over the entire lo range. rf and lo inputs require only dc-blocking capacitors for interfacing. the if output impedance is 200 (differential). for evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance to a 50 single-ended output (see the typical application circuit ). externally adjustable bias each channel of the max19985a has two pins (lo_bias, if_bias) that allow external resistors to set the internal bias currents. nominal values for these resistors are given in table 2. larger-value resistors can be used to reduce power dissipation at the expense of some performance loss. see the typical operating characteristics to evaluate the power vs. performance tradeoff. if ?% resistors are not readily available, ?% resistors can be substituted. lext_ inductors for applications requiring optimum rf-to-if and lo-to- if isolation, connect a parallel combination of a low- esr inductor and a 500 resistor from lext_ (pins 15 and 31) to ground. when improved isolation is not required, connect lext_ to ground using a 0 resis- tance. see the typical operating characteristics to evaluate the isolation vs. inductor value tradeoff. layout considerations a properly designed pcb is an essential part of any rf/microwave circuit. keep rf signal lines as short as possible to reduce losses, radiation, and inductance. the load impedance presented to the mixer must be so that any capacitance from both if- and if+ to ground does not exceed several picofarads. for the best perfor- mance, route the ground pin traces directly to the exposed pad under the package. the pcb exposed pad must be connected to the ground plane of the pcb. it is suggested that multiple vias be used to con- nect this pad to the lower-level ground planes. this method provides a good rf/thermal-conduction path for the device. solder the exposed pad on the bottom of the table 2. component values component value description c1, c2, c7, c8 39pf microwave capacitors (0402) c3, c6 0.033? microwave capacitors (0603) c4, c5 not used c9, c13, c15, c17, c18 0.01? microwave capacitors (0402) c10, c11, c12, c19, c20, c21 150pf microwave capacitors (0603) c14, c16 82pf microwave capacitors (0402) l1, l2, l4, l5 330nh wire-wound high-q inductors (0805) l3, l6 30nh wire-wound high-q inductors (0603). smaller values can be used at the expense of some performance loss (see the typical operating characteristics ). r1, r4 698 ?% resistors (0402). larger values can be used to reduce power at the expense of some performance loss (see the typical operating characteristics ). 1.2k ?% resistors (0402). use for v cc = +5.0v applications. larger values can be used to reduce power at the expense of some performance loss (see the typical operating characteristics ). r2, r5 600 ?% resistors (0402). use for v cc = +3.3v applications. r3, r6 0 ?% resistors (1206) r7, r8 500 ?% resistors (0402) t1, t2 4:1 transformers (200:50) mini-circuits tc4-1w-7a u1 max19985a ic
max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch ______________________________________________________________________________________ 21 device package to the pcb. the max19985a evaluation kit can be used as a reference for board layout. gerber files are available upon request at www.maxim-ic.com . power-supply bypassing proper voltage-supply bypassing is essential for high- frequency circuit stability. bypass each v cc pin and tapmain/tapdiv with the capacitors shown in the typical application circuit (see table 2 for component values). place the tapmain/tapdiv bypass capacitors to ground within 100 mils of the pin. exposed pad rf/thermal considerations the exposed pad (ep) of the max19985a? 36-pin thin qfn-ep package provides a low thermal-resistance path to the die. it is important that the pcb on which the max19985a is mounted be designed to conduct heat from the ep. in addition, provide the ep with a low- inductance path to electrical ground. the ep must be soldered to a ground plane on the pcb, either directly or through an array of plated via holes.
max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch 22 ______________________________________________________________________________________ typical application circuit max19985a 5 6 4 3 23 22 24 ifdbias ifd+ ifd- lextd v cc 25 v cc ifmbias ifm+ ifm- v cc lextm lombias 10 11 v cc 13 14 15 16 35 36 34 32 31 30 gnd v cc gnd gnd losel gnd gnd gnd 12 33 7 21 gnd gnd c15 9 19 rfdiv lo1 v cc 8 20 tapdiv gnd 2 26 gnd r1 tapmain 1 27 lo2 lo1 lo2 + n.c. n.c. 18 28 v cc lodbias 17 29 rfmain l3 l2 l1 exposed pad c16 c20 c19 c21 lo select if main output if div output c14 v cc rf div input rf main input c1 c8 c3 c2 c4 v cc c5 v cc c6 c7 c18 v cc v cc c17 v cc r2 t1 4:1 r3 r4 l5 l4 c10 c11 c12 c9 v cc v cc c13 v cc r5 t2 4:1 r6 l6 r8 r7 u1
max19985a dual, sige, high-linearity, 700mhz to 1000mhz downconversion mixer with lo buffer/switch maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a maxim product. no circu it patent licenses are implied. maxim reserves the right to change the circuitry and specifications without notice at any time. maxim integrated products, 120 san gabriel drive, sunnyvale, ca 94086 408-737-7600 ____________________ 23 2008 maxim integrated products is a registered trademark of maxim integrated products, inc. pin configuration/functional diagram max19985a thin qfn-ep 6mm x 6mm top view (with exposed pad on the bottom of the package) 5 6 4 3 23 22 24 ifdbias ifd+ ifd- lextd v cc 25 v cc ifmbias ifm+ ifm- v cc lextm lombias 10 11 v cc 13 14 15 16 35 36 34 32 31 30 gnd v cc gnd gnd losel gnd gnd gnd 12 33 7 21 gnd gnd 9 19 rfdiv lo1 + v cc 8 20 tapdiv gnd 2 26 gnd tapmain 1 27 lo2 n.c. n.c. 18 28 v cc lodbias 17 29 rfmain exposed pad chip information process: sige bicmos package information for the latest package outline information and land patterns, go to www.maxim-ic.com/packages . package type package code document no. 36 thin qfn-ep t3666+2 21-0141


▲Up To Search▲   

 
Price & Availability of MAX19985AETX

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X