Part Number Hot Search : 
74HC163 MX18P 16000 2SJ643 MMBZ5V6A MC3458 T3010 MX877R
Product Description
Full Text Search
 

To Download XCM520 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1/43 XCM520 series 600ma synchronous step-down dc/dc converter + dual ldo regulator  general description ? the XCM520 series is a multi chip module which comprises of a 600ma driver transistor built-in synchronous step?down dc/dc converter and a dual cmos ldo regulator. the device is housed in small usp-12b01 package which is ideally suited for space conscious applications. the XCM520 can replace this dual dc/dc to elim inate one inductor and reduce output noise. the dc/dc converter with a built-in 0.42 
p-channel mos and a 0.52 
n-channel mos provides a high efficiency, stable power supply up to 600ma to using only a coil and two ceramic capacitors connected externally. the highly accurate, low noise, dual cmos ldo regulator incl udes a reference voltage source, error amplifiers, driver transistors, current limiters and phase compensation circuits inte rnally. the series is also fully compatible with low esr ceramic capacitors. this high level of output stability is maintained even during fr equent load fluctuations, due to the excellent transient respon se performance and high psrr achieved across a broad range of fr equencies. the en function allows the output of each regulator to be turned off independently, result ing in greatly reduced power consumption.  a pplications ? ? mobile phones, smart phones ? bluetooth headsets ? wlan pc cards ? portable hdds, ssds ? pdas, pnds, umpcs ? mp3 players, media players ? portable game consoles ? cordless phones, radio communication equipment  features driver transistor : 0.42 ? p-channel mos built-in switching transistor : 0.52 ? n-channel mos built-in input voltage range : 2.7v ? 6.0v output voltage range : 0.8v ? 4.0v high efficiency : 92% (typ.) * output current : 600ma oscillation frequency : 1.2mhz,3.0mhz (15%) soft-start : built-in soft-start current limiter circuit : constant current & latching control : fixed pwm, auto pwm/pfm *performance depends on external components and wiring on pcb wiring. maximum output current : 150ma (limiter 300ma typ.) dropout voltage : 100mv @ 100ma operating voltage range : 1.5v~6.0v output voltage range : 0.8v~5.0v (0.05v increments) high accuracy : 2% (v out >1.5v) 30mv (v out ? 1.5v) low power consumption : 25  a (typ.) stand-by current : less than 0.1  a(typ.) high ripple rejection : 70db @1khz low output noise operating temperature range : -40 ? ~+85 ? low esr capacitor : ceramic capacitor compatible package : usp-12b01 standard voltage combinations : v out1 v out2 v out3 XCM520xx01d 1.8v 1.2v 2.3v XCM520xx02d 1.8v 1.3v 2.3v XCM520xx03d 1.8v 1.2v 2.2v XCM520xx04d 1.8v 1.2v 2.8v XCM520xx05d 1.0v 1.2v 1.8v XCM520xx06d 0.8v 1.5v 1.8v *other combinations are ava ilable as semi-custom products. environmentally friendly : eu rohs compliant, pb free  typical application circuit ? * the dashed lines denote the c onnection using through-holes at the backside of the pc board. * the above circuit uses XCM520aa01 series. * the dc/dc block v out3 is connected to the dual ldo regulator v in1 in this connection. * also, it is possible to operate two v in independently. etr2427-002a 7 8 9 1 0 3 4 5 6 e n 2 1 1 1 2 2 1 e n 1 pgnd agnd en3 c l2 1f c l1 1f c in1 1f c l3 10f l 1.5h c in2 4.7f v in 3.3v v out1 1.8v v out2 1.2v v out1 v ss v out3 l x v in2 v in1 v out2 v out3 2.3v
2/43 XCM520 series ??????????????????????????????????????????????????????????????? ??? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? pin no XCM520 xc6401 xc9235/xc9236 1 v out2 v out2 ? 2 en2 en2 ? 3 v in1 v in ? 4 v in2 ? v in 5 pgnd ? pgnd 6 lx ? lx 7 v out3 ? v out 8 agnd ? agnd 9 en3 ? ce 10 en1 en1 ? 11 v ss v ss ? 12 v out1 v out1 ? pin no XCM520 functions 1 v out2 voltage regulator output2 2 en2 voltage regulator on/off control 2 3 v in1 voltage regulator power input 4 v in2 dc/dc power input 5 pgnd dc/dc power ground 6 lx dc/dc inductor pin 7 v out3 dc/dc output voltage 8 agnd dc/dc analog ground 9 en3 dc/dc on/off control 10 en1 voltage regulator on/off control 1 11 v ss voltage regulator ground 12 v out1 voltage regulator output voltage 1  pin configuratioin note: * the two heat-sink pads on the back side ar e electrically isolated in the package. ? *1: the pad of the regulator should be v ss level. *2: the pad of the dc/dc should be v ss level. * the dc/dc ground pin (no. 5 and 8) should be connected for use. * the two pads are recommended to open on the board, but care must be taken for voltage level of each heat-sink pad when they are electrically connected. 1 2 3 4 9 10 11 12 5 6 8 7 *1 *2 v o u t 2 e n 2 v i n 1 v i n 2 v s s d l x v o u t 1 v s s e n 1 e n 3 / m o d e v s s a v o u t 3 ( top view )  pin assignment ( top view ) 1 2 3 4 5 6 12 11 10 9 8 7 vout2 en2 vin1 vin2 vout1 vss en1 en3 agnd vout3 vout1 vss en1 en/mode vin vin en2 vout2 xc6401 xc9235/9236 vout3 lx agnd pgnd pgnd lx
3/43 x cm520 series ? ? ? ? ordering information XCM520 ?????? - ? (*1) designator description symbol description ?? options  see the chart below ?? output voltage combination  see the chart below ?? - ? packages taping type (*2) dr-g usp-12b01 ? designator ?? combination of xc6401 series and xc9235/xc9236 series  ?? combination of each ic description aa xc6401ff**  xc9235a**d fixed pwm, f osc =3.0mhz ab xc6401ff**  xc9235a**c fixed pwm, f osc =1.2mhz ac xc6401ff**  xc9236a**d auto pwm/pfm , f osc =3.0mhz ad xc6401ff**  xc9236a**c auto pwm/pfm , f osc =1.2mhz ae xc6401ff**  xc9235b**d fixed pwm, f osc =3.0mhz, v out3 c l discharge af xc6401ff**  xc9235b**c fixed pwm, f osc =1.2mhz, v out3 c l discharge ag xc6401ff**  xc9236b**d auto pwm/pfm , f osc =3.0mhz, v out3 c l discharge ah xc6401ff**  xc9236b**c auto pwm/pfm , f osc =1.2mhz, v out3 c l discharge ? designator ?? output voltage  ? v out1 (vr_1ch) v out2 (vr_2ch) v out3 (dc/dc) 01 1.8 1.2 2.3 02 1.8 1.3 2.3 03 1.8 1.2 2.2 04 1.8 1.2 2.8 05 1.0 1.2 1.8 06 0.8 1.5 1.8 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  product classification (*1) the XCM520 series is halogen and antimony free as well as being fully rohs compliant. (*2) the device orientation is fixed in its embossed tape pocket. *this series are semi-custom products. for other combinations of output voltages pleas e consult with your torex sales contact.
4/43 XCM520 series ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? parameter symbol ratings units v in1 voltage v in1 6.5 v v out current i out1 +i out2 * 1 700 *2 ma v out voltage v out1 / v out2 v ss -0.3 v in1 +0.3 v en1 , en2 voltage v en1 / v en2 v ss -0.3 6.5 v v in2 voltage v in2 -0.3 6.5 v lx voltage v lx -0.3 v in2 +0.3 Q 6.5 v v out3 voltage v out3 -0.3 6.5 v en3 voltage v en3 -0.3 6.5 v lx current i lx 1500 ma usp12-b01 150 800 (1ch operate) power dissipation usp12-b01 *3 (pcb mounted) pd 600 (both 2ch operate) mw operating temperature range topr -40 +85 storage temperature range tstg -55 +125 xc6401ff  block diagrams  maximum absolute ratings xc9235a/xc9236a xc9235b/xc9236b available with c l discharge, high speed soft-start *1. rating is defined as a total of vr1 and vr2 in the vr bloc. *2. pd > { (v in1 - v out1 )i out1 +(v in1 - v out2 )i out2 } *3. the power dissipation figure shown is pcb mounted. please refer to page 41 for details. also, the power dissipation value above is for each channel. * xc9235 control scheme is a fixed pwm because that the ?ce/mode control logic? outputs a low level signal to the ?pwm/pfm sele ctor?. * xc9236 control scheme is an auto pwm/pfm sw itching because the ?ce/mode control logic? outputs a high level signal to the ?pw m/pfm selector?. *diodes inside the circuit are an esd protection diode and a parasitic diode.
5/43 x cm520 series ? ? XCM520ab, ad (dc/dc block) v out3 = 1.8v, f osc =1.2mhz, ta = 25 test conditions: unless otherwise stated, v in2 = 5.0v, v out3 (e) = nominal voltage note: *1: including hysteresis width of operating voltage. *2: effi = { ( output voltage  output current ) ?? ( input voltage  input current) }  100 *3: on resistance ( 
)= (v in2 - lx pin measurement voltage) ?? 100ma *4: design value *5: when temperature is high, a current of approximately 10  a (maximum) may leak. *6: time until it short-circuits v out3 with gnd via 1 
of resistor from an operational state and is set to lx=0v from current limit pulse generating. *7: v out3(e) +1.2v<2.7v, v in2 =2.7v. *8: when the difference between the input and the output is small, some cycles may be skipped completely before current maximiz es. if current is further pulled from this state, output vo ltage will decrease because of p-ch driver on resistance. *9: current limit denotes the level of detection at peak of coil current. *10: "h" 1 v in2 ? v in2 - 1.2v, "l" 1 + 0.1v ? - 0.1v *11: XCM520a/b series exclude i pfm and dty limit_pfm because those are only for t he pfm control?s functions. *the electrical characterist ics above are when the voltage regulator block is in stop. ? ? ? ? ? parameter symbol conditions min. typ. max. units circuit output voltage v out3 when connected to external components, v in2 = v en3 =5.0v, i out3 =30ma 1.764 1.800 1.836 v ? operating voltage range v in2 2.7 - 6.0 v ? maximum output current i out3max when connected to external components, v in2 =v out(e) +2.0v, v en3 =1.0v (*8) 600 - - ma ? uvlo voltage v uvlo v en3 =v in2 , v out3 =0v, voltage which lx pin holding ?l? level (*1, *10) 1.00 1.40 1.78 v ? XCM520ab - 22 50 supply current i dd v in2 =v en3 =5.0v, v out3 =v out3(e)  1.1v XCM520ad 15 33  a ? stand-by current i stb v in2 = 5.0v, v en3 = 0v, v out3 = v out3(e)  1.1v - 0 1.0  a ? oscillation frequency f osc when connected to external components, v in2 = v out3(e) + 2.0v, v en3 = 1.0v, i out3 = 100ma 1020 1200 1380 khz ? pfm switching current i pfm when connected to external components, v in2 = v out3(e) + 2.0v, v en3 = v in2 , i out3 = 1ma (*11) 120 160 200 ma ? pfm duty limit ? dty limit_pfm v en3 = v in2 = (c-1) i out3 = 1ma (*11) 200 300 % ? maximum duty ratio d max v in2 = v en3 = 5.0v, v out3 = v out3 (e)  0.9v 100 - - % ? minimum duty ratio d min v in2 = v en3 = 5.0v, v out3 = v out3 (e)  1.1v - - 0 % ? efficiency (*2) effi when connected to external components, v en3 =v in2 =v out3(e) +1.2v,i out3 = 100ma (*7) - 92 - % ? lx sw "h" on resistance 1 r l g h v in2 = v en3 = 5.0v, v out3 = 0v, i lx = 100ma (*3) - 0.35 0.55 
? lx sw "h" on resistance 2 r l g h v in2 = v en3 = 3.6v, v out3 = 0v, i lx = 100ma (*3) - 0.42 0.67 
? lx sw "l" on resistance 1 r l g l v in2 = v en3 = 0v (*4) - 0.45 0.66 
 lx sw "l" on resistance 2 r l g l v in2 = v en3 = 3.6v (*4) - 0.52 0.77 
 lx sw "h" leak current (*5) i leakh v in2 = v out3 = 5.0v, v en3 = 0v, l x = 0v - 0.01 1.0  a ? lx sw "l" leak current (*5) i leakl v in2 = v out3 = 5.0v, v en3 = 0v, l x = 5.0v - 0.01 1.0  a ? current limit (*9) i lim v in2 = v en3 = 5.0v, v out3 = v out3 (e)  0.9v 900 1050 1350 ma ? output voltage temperature characteristics  v out3 / (v out3 ~ topr) v out3 = 30ma -40 ? ? topr ? 85 ? - ? 100 - ppm/ ? ? ce "h" level voltage v en3h v out3 = 0v, applied voltage to v en3, voltage changes lx to ?h? level (*10) 0.65 - 6.0 v ? ce "l" level voltage v en3l v out3 =30v, applied voltage to v en3, voltage changes lx to ?l? level (*10) v ss - 0.25 v ? ce "h" current i en3h v in2 = v en3 = 5.0v, v out3 = 0v - 0.1 0.1  a ? ce "l" current i en3l v in2 = 5.0v, v en3 = 0v, v out3 = 0v - 0.1 - 0.1  a ? soft start time t ss when connected to external components, v en3 = 0v  v in2 , v out3 = 1ma 0.5 1.0 2.5 ms ? integral latch time t lat v in2 = v en3 = 5.0v, v out3 = 0.8  v out3 (e) short lx at 1 ? resistance (*6) 1.0 - 20.0 ms ? short protection threshold voltage v short sweeping v out3 , v in2 = v en3 = 5.0v, short lx at 1 ? resistance, v out3 voltage which lx becomes ?l? level within 1ms 0.675 0.900 1.125 v ?  electrical characteristics
6/43 XCM520 series ? ? XCM520aa/ac (dc/dc block) v out3 = 1.8v, f osc = 3.0mhz, ta=25 test conditions: unless otherwise stated, v in2 = 5.0v, v out3 (e) = nominal voltage note: *1: including hysteresis width of operating voltage. *2: effi = { ( output voltage  output current ) ?? ( input voltage  input current) }  100 *3: on resistance ( 
)= (v in - lx pin measurement voltage) ?? 100ma *4: design value *5: when temperature is high, a current of approximately 10  a (maximum) may leak. *6: time until it short-circuits v out3 with gnd via 1 
of resistor from an operational state and is set to lx=0v from current limit pulse generating. *7: v out3 (e) +1.2v<2.7v, v in2 =2.7v. *8: when the difference between the input and the output is sma ll, some cycles may be skipped completely before current maximi zes. if current is further pulled from this state, output vo ltage will decrease because of p-ch driver on resistance. *9: current limit denotes the level of detection at peak of coil current. *10: "h" 1 v in2 ? v in2 - 1.2v, "l" 1 + 0.1v ? - 0.1v *11: XCM520aa series exclude i pfm and dty limit_pfm because those are only for t he pfm control?s functions. *the electrical characterist ics above are when the voltage regulator block is in stop. ? ? ? ? parameter symbol conditions min. typ. max. units circuit output voltage v out3 when connected to external components, v in2 = v en3 = 5.0v, i out3 = 30ma 1.764 1.800 1.836 v ? operating voltage range v in2 2.7 - 6.0 v ? maximum output current i out3max when connected to external components, v in2 =v out3(e) +2.0v, v en3 =1.0v (*8) 600 - - ma ? uvlo voltage v uvlo v en3 = v in2 , v out3 = 0v , voltage which lx pin holding ?l? level (*1, *10) 1.00 1.40 1.78 v ? XCM520aa - 46 65 supply current i dd v in2 =v en3 =5.0v, v out3 =v out3(e)  1.1v XCM520ac 21 35  a ? stand-by current i stb v in2 = 5.0v, v en = 0v, v out3 = v out3(e)  1.1v - 0 1.0  a ? oscillation frequency f osc when connected to external components, v in2 = v out3(e) + 2.0v , v en3 =1.0v, v out3 = 100ma 2550 3000 3450 khz ? pfm switching current i pfm when connected to external components, v in2 = v out3(e) + 2.0v, v en3 = v in2 , i out3 = 1ma (*11) 170 220 270 ma ? pfm duty limit dty limit_pfm v en3 = v in2 = (c-1) i out3 = 1ma (*11) 200 300 % ? maximum duty ratio d max v in2 = v en3 = 5.0v, v out3 = v out3 (e)  0.9v 100 - - % ? minimum duty ratio d min v in2 = v en3 = 5.0v, v out3 = v out3 (e)  1.1v - - 0 % ? efficiency (*2) effi when connected to external components, v en3 = v in2 1 v out3 (e) + 1.2v, v out3 = 100ma (*7) - 86 - % ? lx sw "h" on resistance 1 r l g h v in2 = v en3 = 5.0v, v out3 = 0v, il x = 100ma (*3) - 0.35 0.55 
? lx sw "h" on resistance 2 r l g h v in2 = v en3 = 3.6v, v out3 = 0v, il x = 100ma (*3) - 0.42 0.67 
? lx sw "l" on resistance 1 r l g l v in2 = v en3 =5.0v (*4) - 0.45 0.66 
 lx sw "l" on resistance 2 r l g l v in2 = v en3 = 3.6v (*4) - 0.52 0.77 
 lx sw "h" leak current (*5) i leakh v in2 = v out3 = 5.0v, v en3 = 0v, l x = 0v - 0.01 1.0  a ? lx sw "l" leak current (*5) i leakl v in2 = v out3 = 5.0v, v en3 = 0v, l x = 5.0v - 0.01 1.0  a ? current limit (*9) i lim v in2 = v en3 = 5.0v, v out3 = v out3 (e)  0.9v 900 1050 1350 ma ? output voltage temperature characteristics  v out3 / (v out3 ~ topr) v out3 = 30ma -40 ? ? topr ? 85 ? - ? 100 - ppm/ ? ? en "h" level voltage v enh v out3 =0v, applied voltage to v en3, voltage changes lx to ?h? level (*10) 0.65 - 6.0 v ? en "l" level voltage v en3l v out3 =0v, applied voltage to v en3, voltage changes lx to ?l? level (*10) v ss - 0.25 v ? en "h" current i en3h v in2 = v en3 =5.0v, v out3 = 0v - 0.1 0.1  a ? en "l" current i en3l v in2 =5.0v, v en3 = 0v, v out3 = 0v - 0.1 - 0.1  a ? soft start time t ss when connected to external components, v en3 = 0v  v in2 , v out3 = 1ma 0.5 0.9 2.5 ms ? integral latch time t lat v in2 = v en3 = 5.0v, v out3 = 0.8  v out3 (e) short lx at 1 ? resistance (*6) 1.0 - 20.0 ms ? short protection threshold voltage v short sweeping v out3 , v in2 = v en3 = 5.0v, short lx at 1 ? resistance, v out3 voltage which lx becomes ?l? level within 1ms 0.675 0.900 1.125 v ?  electrical characteristics (continued)
7/43 x cm520 series ? ? ? XCM520af,ah (dc/dc block) v out3 =1.8v, f osc =1.2mhz, ta=25 ? test conditions: unless otherwise stated, v in2 = 5.0v, v out3 (e) = nominal voltage note: *1: including hysteresis width of operating voltage. *2: effi = { ( output voltage  output current ) ?? ( input voltage  input current) }  100 *3: on resistance ( 
)= (v in2 - lx pin measurement voltage) ?? 100ma *4: design value *5: when temperature is high, a current of approximately 10  a (maximum) may leak. *6: time until it short-circuits v out3 with gnd via 1 
of resistor from an operational state and is set to lx=0v from current limit pulse generating. *7: v out3 (e) +1.2v<2.7v, v in2 =2.7v. *8: when the difference between the input and the output is small, some cycles may be skipped completely before current maximiz es. if current is further pulled from this state, output vo ltage will decrease because of p-ch driver on resistance. *9: current limit denotes the level of detection at peak of coil current. *10: "h" 1 v in2 ? v in2 - 1.2v, "l" 1 + 0.1v ? - 0.1v *11: XCM520af series exclude i pfm and d limit_pfm because those are only for the pfm control?s functions. *the electrical characterist ics above are when the voltage regulator block is in stop. ? ? parameter symbol conditions min. typ. max. units circuit output voltage v out3 when connected to external components, v in2 = v en3 = 5.0v, i out3 = 30ma 1.764 1.800 1.836 v ? operating voltage range v in2 2.7 - 6.0 v ? maximum output current i out3max when connected to external components, v in2 = v out3(e) +2.0v, v en3 =1.0v (*8) 600 - - ma ? uvlo voltage v uvlo v en3 = v in2 , v out3 = 0v, voltage which lx pin holding ?l? level (*1, *10) 1.00 1.40 1.78 v ? XCM520af - 22 50 supply current i dd v in2 =v en3 = 5.0v, v out3 = v out3(e)  1.1v XCM520ah 15 33  a ? stand-by current i stb v in2 = 5.0v, v en3 = 0v, v out3 = v out3(e)  1.1v - 0 1.0  a ? oscillation frequency f osc when connected to external components, v in2 = v out3(e) + 2.0v, v en3 =1.0v, v out3 =100ma 1020 1200 1380 khz ? pfm switching current i pfm when connected to external components, v in2 = v out3(e) + 2.0v, v en3 = v in2 , v out3 = 1ma (*11) 120 160 200 ma ? pfm duty limit dty limit_pfm v en3 = v in2 = (c-1) v out3 = 1ma (*11) 200 300 % ? maximum duty ratio d max v in2 = v en3 = 5.0v, v out3 = v out3 (e)  0.9v 100 - - % ? minimum duty ratio d min v in2 = v en3 = 5.0v, v out3 = v out3 (e)  1.1v - - 0 % ? efficiency (*2) effi when connected to external components, v en3 = v in2 = v out3 (e) + 1.2v, v out3 = 100ma (*7) - 92 - % ? lx sw "h" on resistance 1 r l g h v in2 = v en3 = 5.0v, v out3 = 0v, i lx = 100ma (*3) - 0.35 0.55 
? lx sw "h" on resistance 2 r l g h v in2 = v en3 = 3.6v, v out3 = 0v, i lx = 100ma (*3) - 0.42 0.67 
? lx sw "l" on resistance 1 r l g l v in2 = v en3 = 0v (*4) - 0.45 0.66 
? lx sw "l" on resistance 2 r l g l v in2 = v en3 = 3.6v (*4) - 0.52 0.77 
? lx sw "h" leak current (*5) i leakh v in2 = v out3 = 5.0v, v en3 = 0v, l x = 0v - 0.01 1.0  a ? current limit (*9) i lim v in2 = v en3 = 5.0v, v out3 = v out3 (e)  0.9v 900 1050 1350 ma ? output voltage temperature characteristics  v out3 / (v out3 ~ topr) i out3 = 30ma -40 ? ? topr ? 85 ? - ? 100 - ppm/ ? ? en "h" level voltage v enh v out3 =0v, applied voltage to v en3, voltage changes lx to ?h? level (*10) 0.65 - 6.0 v ? en "l" level voltage v en3l v out3 =0v, applied voltage to v en3, voltage changes lx to ?l? level (*10) v ss - 0.25 v ? en "h" current i en3h v in2 = v en3 =5.0v, v out3 = 0v - 0.1 0.1  a ? en "l" current i en3l v in2 = 5.0v, v en3 = 0v, v out3 = 0v - 0.1 - 0.1  a ? soft start time t ss when connected to external components, v en3 = 0v  v in2 , v out3 = 1ma - 0.25 0.4 ms ? integral latch time t lat v in2 = v en3 = 5.0v, v out3 = 0.8  v out3 (e) short lx at 1 ? resistance (*6) 1.0 - 20.0 ms ? short protection threshold voltage v short sweeping v out3 , v in2 = v en3 = 5.0v, short lx at 1 ? resistance, v out3 voltage which lx becomes ?l? level within 1ms 0.675 0.900 1.150 v ? c l discharge r dchg v in2 = 5.0v l x = 5.0v v en3 = 0v v out3 = open 200 300 450 
?  electrical characteristics (continued)
8/43 XCM520 series ? ? ? ? XCM520ae,ag (dc/dc block) v out3 =1.8v, f osc =3.0mhz, ta=25 test conditions: unless otherwise stated, v in2 = 5.0v, v out3 (e) = nominal voltage note: *1: including hysteresis width of operating voltage. *2: effi = { ( output voltage  output current ) ?? ( input voltage  input current) }  100 *3: on resistance ( 
)= (v in - lx pin measurement voltage) ?? 100ma *4: design value *5: when temperature is high, a current of approximately 10  a (maximum) may leak. *6: time until it short-circuits v out3 with gnd via 1 
of resistor from an operational state and is set to lx=0v from current limit pulse generating. *7: v out3 (e) +1.2v<2.7v, v in2 =2.7v. *8: when the difference between the input and the output is small, some cycles may be skipped completely before current maximiz es. if current is further pulled from this state, output vo ltage will decrease because of p-ch driver on resistance. *9: current limit denotes the level of detection at peak of coil current. *10: "h" 1 v in2 ? v in2 - 1.2v, "l" 1 + 0.1v ? - 0.1v *11: XCM520ae series exclude i pfm and dty limit_pfm because those are only for t he pfm control?s functions. *the electrical characterist ics above are when the voltage regulator block is in stop. ? ? ? parameter symbol conditions min. typ. max. units circuit output voltage v out3 when connected to external components, v in2 = v en3 = 5.0v, i out3 = 30ma 1.764 1.800 1.836 v ? operating voltage range v in2 2.7 - 6.0 v ? maximum output current v out3max when connected to external components, v in2 =v out3(e) +2.0v,v en3 =1.0v (*8) 600 - - ma ? uvlo voltage v uvlo v en3 = v in2 , v out3 = 0v, voltage which lx pin holding ?l? level (*1, *10) 1.00 1.40 1.78 v ? XCM520ae - 46 65 supply current i dd v in2 =v en3 =5.0v, v out3 = v out3(e)  1.1v XCM520ag 21 35  a ? stand-by current i stb v in2 = 5.0v, v en3 = 0v, v out3 = v out3(e)  1.1v - 0 1.0  a ? oscillation frequency f osc when connected to external components, v in2 = v out3(e) + 2.0v, v en3 =1.0v, v out3 = 100ma 2550 3000 3450 khz ? pfm switching current i pfm when connected to external components, v in2 = v out3(e) + 2.0v, v en3 = v in2 , v out3 = 1ma (*11) 170 220 270 ma ? pfm duty limit dty limit_pfm v en3 = v in2 = (c-1) v out3 = 1ma (*11) - 200 300 % ? maximum duty ratio d max v in2 = v en3 = 5.0v, v out3 = v out3 (e)  0.9v 100 - - % ? minimum duty ratio d min v in2 = v en3 = 5.0v, v out3 = v out3 (e)  1.1v - - 0 % ? efficiency (*2) effi when connected to external components, v en3 = v in2 1 v out3 (e) +1.2v, v out3 =100ma - 86 - % ? lx sw "h" on resistance 1 r l g h v in2 = v en3 = 5.0v, v out3 = 0v, i lx = 100ma (*3) - 0.35 0.55 
? lx sw "h" on resistance 2 r l g h v in2 = v en3 = 3.6v, v out3 = 0v, i lx = 100ma (*3) - 0.42 0.67 
? lx sw "l" on resistance 1 r l g l v in2 = v en3 = 0v (*4) - 0.45 0.66 
? lx sw "l" on resistance 2 r l g l v in2 = v en3 = 3.6v (*4) - 0.52 0.77 
? lx sw "h" leak current (*5) i leakh v in2 = v out3 = 5.0v, v en3 = 0v, l x = 0v - 0.01 1.0  a ? current limit (*9) i lim v in2 = v en3 = 5.0v, v out3 = v out3 (e)  0.9v (*7) 900 1050 1350 ma ? output voltage temperature characteristics  v out3 / (v out3 ~ topr) i out3 = 30ma -40 ? ? topr ? 85 ? - ? 100 - ppm/ ? ? en "h" level voltage v en3h v out3 = 0v, applied voltage to v en3, voltage changes lx to ?h? level (*10) 0.65 - 6.0 v ? en "l" level voltage v en3l v out3 = 0v, applied voltage to v en3, voltage changes lx to ?l? level (*10) v ss - 0.25 v ? en "h" current i en3h v in2 = v en3 = 5.0v, v out3 = 0v - 0.1 0.1  a ? en "l" current i enl v in2 = 5.0v, v en3 = 0v, v out3 = 0v - 0.1 - 0.1  a ? soft start time t ss when connected to external components, v en3 = 0v  v in2 , v out3 =1ma - 0.32 0.5 ms ? integral latch time t lat v in2 = v en3 = 5.0v, v out3 = 0.8  v out3 (e) short lx at 1 ? resistance (*6) 1.0 - 20.0 ms ? short protection threshold voltage v short sweeping v out3 , v in2 = v en3 = 5.0v, short lx at 1 ? resistance, v out3 voltage which lx becomes ?l? level within 1ms 0.675 0.900 1.150 v ? c l discharge r dchg v in2 = 5.0v l x = 5.0v v en3 = 0v v out3 = open 200 300 450 
?  electrical characteristics (continued)
9/43 x cm520 series ? ? ? ? pfm switching current (i pfm ) by oscillation frequency and output voltage ? 1.2mhz (ma) setting voltage min. typ. max. v out3(e) Q 1.2 140 180 240 1.2v v out3(e) Q 1.75 130 170 220 1.8v Q v out3(e) 120 160 200 3.0mhz (ma) setting voltage min. typ. max. v out3(e) Q 1.2 190 260 350 1.2v v out3(e) Q 1.75 180 240 300 1.8v Q v out3(e) 170 220 270 ? ? measuring pfm duty limit, v in2 voltage f osc 1.2mhz 3.0mhz (c-1) v out3(e) +0.5v v out3(e) +1.0v minimum operating voltage is 2.7v ex.) although when v out3(e) = 1.2v, f osc = 1.2mhz, (c-1) = 1.7v the (c-1) becomes 2.7v because of the minimum operating voltage 2.7v. ? ? soft-start time chart (XCM520ae/XCM520af/XCM520ag/XCM520ah series only) product series f osc output voltage min. typ. max. units 1200khz 0.8 ? v out3(e) <1.5 - 0.25 0.4 1200khz 1.5 ? v out3(e) <1.8 - 0.32 0.5 1200khz 1.8 ? v out3(e) <2.5 - 0.25 0.4 XCM520af 1200khz 2.5 ? v out3(e) <4.0 - 0.32 0.5 1200khz 0.8 ? v out3(e) <2.5 - 0.25 0.4 XCM520ah 1200khz 2.5 ? v out3(e) <4.0 - 0.32 0.5 3000khz 0.8 ? v out3(e) <1.8 - 0.25 0.4 XCM520ae/ag 3000khz 1.8 ? v out3(e) <4.0 - 0.32 0.5 ms ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  electrical characteristics (continued)
10/43 XCM520 series ? ? ? XCM520 series vr block (vr1/vr2: en_ ac tive high, without pull-down resistors) ?? ta=25 parameter symbol conditions min. typ. max. units circuit v out(t) R 1.5v x0.98 (*3) x1.02 (*3) output voltage v out(e) (*2) i out =30ma v out(t) <1.5v -0.03 (*3) v out (t) (*4) +0.03 (*3) v maximum output current i outmax v in1 =v out (t) + 1.0v 150 - - ma load regulation  v out 1ma ? i out ? 100ma - 15 60 mv vdif1 i out =30ma e-1 mv dropout voltage (*5) vdif2 i out =100ma e-2 mv supply current i ss v in1 =v en =v out (t) + 1.0v, i out =0ma - 25 45  a ? stand-by current i stb v in1 =v out (t) + 1.0v, v en =v ss - 0.01 0.10  a ?  v out / v out(t) +1.0v ? v in1 ? 6.0v input regulation (*8) (  v in1 ~ v out ) v en =v in1 , i out =30ma - 0.01 0.20 % / v input voltage v in1 1.5 - 6.0 v -  v out / i out =30ma output voltage temperature characteristics (  topr k v out ) -40 ?? topr ? 85 ? - 100 - ppm/ ? ripple rejection (*9) psrr v in1 =[v out(t) +1.0]vdc+0.5vp-pac i out =30ma, f=1khz - 70 - db ? limit current i lim v in1 =v out (t) + 1.0v, v en =v in1 - 300 - ma short current i short v in1 =v out (t) + 1.0v, v en =v in1 - 30 - ma en "h" level voltage v enh 1.30 - 6 v ? en "l" level voltage v enl - - 0.25 v ? en "h" level current i enh v in1 =v en =v out (t) + 1.0v -0.10 - 0.10  a ? en "l" level current i enl v in1 = v out (t) + 1.0v, v en =v ss -0.10 - 0.10  a ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  electrical characteristics (continued) note: *1 : unless otherwise stated, v in1 =v out(t) +1.0v *2 : v out(e) : effective output voltage (i.e. the output voltage when "v out(t)  1.0v" is provided at the v in pin while maintaining a certain i out value). *3 : please see the voltage chart for each voltage of v out(e) . if v out (t) Q 1.45v, min v out (t) - 30mv, max v out (t) + 30mv *4 : v out(t) : nominal output voltage *5 : vdif={v ina (*7) -v outa (*6) } *6 : v out1 =a voltage equal to 98% of the output voltage whenever an amply stabilized i out {v out(t)+ 1.0v} is input. *7 : v in1 =the input voltage when v out1 appears as input voltage is gradually decreased. *8 : when v out(t) R 4.5v, 5.5v Q v in1 Q 6.0v *9 : when v out(t) ? 4.8v, v in1 =5.75v dc +0.5vp-pac *the electrical characte ristics above are when the dc/dc block is in stop.
11/43 x cm520 series ? ? ? ? e-1 e-2 nominal output voltage output voltage (v) dropout voltage 1 (mv) dropout voltage 2 (mv) (v) v out vdif1 vdif2 v out(t) min. max. typ. max. typ. max. 0.80 0.770 0.830 0.85 0.820 0.880 300 700 400 800 0.90 0.870 0.930 0.95 0.920 0.980 200 600 350 700 1.00 0.970 1.030 1.05 1.020 1.080 100 500 270 600 1.10 1.070 1.130 1.15 1.120 1.180 80 400 240 500 1.20 1.170 1.230 1.25 1.220 1.280 65 300 200 400 1.30 1.270 1.330 1.35 1.320 1.380 60 200 180 300 1.40 1.370 1.430 1.45 1.420 1.480 55 100 165 250 1.50 1.470 1.530 1.55 1.519 1.581 1.60 1.568 1.632 1.65 1.617 1.683 1.70 1.666 1.734 1.75 1.715 1.785 50 75 150 200 1.80 1.764 1.836 1.85 1.813 1.887 1.90 1.862 1.938 1.95 1.911 1.989 45 65 140 180 2.00 1.960 2.040 2.05 2.009 2.091 2.10 2.058 2.142 2.15 2.107 2.193 2.20 2.156 2.244 2.25 2.205 2.295 2.30 2.254 2.346 2.35 2.303 2.397 2.40 2.352 2.448 2.45 2.401 2.499 40 60 120 170 2.50 2.450 2.550 2.55 2.499 2.601 2.60 2.548 2.652 2.65 2.597 2.703 2.70 2.646 2.754 2.75 2.695 2.805 2.80 2.744 2.856 2.85 2.793 2.907 2.90 2.842 2.958 2.95 2.891 3.009 35 55 110 160 ? ? ? ? ?  output voltage chart ? voltage chart 1
12/43 XCM520 series ? ? ? ? e-1 e-2 nominal output voltage output voltage (v) dropout voltage 1 (mv) dropout voltage 2 (mv) (v) v out vdif1 vdif2 v out(t) min. max. typ. max. typ. max. 3.00 2.940 3.060 3.05 2.989 3.111 3.10 3.038 3.162 3.15 3.087 3.213 3.20 3.136 3.264 3.25 3.185 3.315 3.30 3.234 3.366 3.35 3.283 3.417 3.40 3.332 3.468 3.45 3.381 3.519 3.50 3.430 3.570 3.55 3.479 3.621 3.60 3.528 3.672 3.65 3.577 3.723 3.70 3.626 3.774 3.75 3.675 3.825 3.80 3.724 3.876 3.85 3.773 3.927 3.90 3.822 3.978 3.95 3.871 4.029 4.00 3.920 4.080 4.05 3.969 4.131 4.10 4.018 4.182 4.15 4.067 4.233 4.20 4.116 4.284 4.25 4.165 4.335 4.30 4.214 4.386 4.35 4.263 4.437 4.40 4.312 4.488 4.45 4.361 4.539 4.50 4.410 4.590 4.55 4.459 4.641 4.60 4.508 4.692 4.65 4.557 4.743 4.70 4.606 4.794 4.75 4.655 4.845 4.80 4.704 4.896 4.85 4.753 4.947 4.90 4.802 4.998 4.95 4.851 5.049 5.00 4.900 5.100 30 45 100 150 ? ? ? ? ? ? ? ? ?  dropout voltage chart (continued) ? voltage chart 2
13/43 x cm520 series ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? dc/dc block ? the dc/dc block of the XCM520 series cons ists of a reference voltage source, ramp wave circuit, error amplifier, pwm comparator, phase compensation circuit, output voltage adjustment resistor s, p-channel mosfet driv er transistor, n-channel mosfet switching transistor for the synchronous switch, curr ent limiter circuit, uvlo circ uit and others. (see the block diagram above.) ? by using the error amplifier, the voltage of the internal voltage reference source is compared with the feedback voltage from t he v out3 pin through split resistors, r1 and r2. phase compensation is performed on the resulting erro r amplifier output, to input a signal to the pwm comparator to determine the turn-on time during pwm operation. the pwm co mparator compares, in terms of voltage level, the signal from the erro r amplifier with the ramp wave from the ra mp wave circuit, and delivers the resulting output to the buffer driver circuit to cause the lx pin to output a switching duty cycle. this process is continuously perform ed to ensure stable output voltage. the current feedback circuit monitors the p- channel mos driver transistor current for each switching operation, and modulates the error amplifier output signal to pr ovide multiple feedback signals. this enables a stable feedback loop even when a low esr capacitor such as a ceramic capacitor is used ensuring stable output voltage. ? the reference voltage source provides the reference voltage to ensure stable output voltage of the dc/dc converter. ? ? the ramp wave circuit determines switching frequency. the frequenc y is fixed internally and can be selected from 1.2mhz or 3.0mhz. clock pulses generated in this circuit are used to produce ramp waveforms needed for pwm operation, and to synchronize all the internal circuits. ? the error amplifier is designed to monitor output voltage. t he amplifier compares the reference voltage with the feedback voltage divided by the internal split resistors, r1 and r2. when a voltage is lower than the re ference voltage is fed back, th e output voltage of the error amplifier increa ses. the gain and frequency characteristi cs of the error amplifier output are fixe d internally to deli ver an optimized signal to the mixer.  typical application circuit vin cl1 cin1 cin2 cl3 l 7 8 9 1 0 3 4 5 6 l x v i n 2 e n 2 v o u t 2 1 1 1 2 2 1 v o u t 3 e n 1 v s s v o u t 1 v i n 1 cl2 pgnd agnd en3/mode ? ? dc/dc block ? f osc =3.0mhz c in1 : 1  f (ceramic) c l1 : 1  f (ceramic) c l2 : 1  f (ceramic) l : 1.5  h (nr3015 taiiyo yuden) c in2 : 4.7  f (ceramic) c l2 : 10  f (ceramic) ? ? dc/dc block ? f osc =1.2mhz c in1 : 1  f (ceramic) c l1 : 1  f (ceramic) c l2 : 1  f (ceramic) l : 4.7  h (nr4018 taiiyo yuden) c in2 : 4.7  f (ceramic) c l2 : 10  f (ceramic)  operational explanation
14/43 XCM520 series ? ? ? the current limiter circuit of the XCM520 series monitors th e current flowing through the p-channel mos driver transistor connected to the lx pin, and features a combination of the current limit mode and the operation suspension mode. ? ?? when the driver current is greater than a specific le vel, the current limit f unction operates to turn off the pulses from the l x pin at any given timing. ?? when the p-channel mos driver transistor is turned off, the limiter circuit is then released from the curr ent limit detection s tate. ?? at the next pulse, the p-channel mos driver transistor is tu rned on. however, the p-chan nel mos driver transistor is immediately turned off in the ca se of an over current state. ?? when the over current state is eliminated, the ic resumes its normal operation. the ic waits for the over current state to end by repeating the steps ?? through ? . if an over current state continues for a few milliseconds and the above three steps are repeatedly perf ormed, the ic performs the function of latching the off state of the p-channel mos driver transistor, and goes into operation suspension mode. once th e ic is in suspension mode, operations can be resumed by either turning the ic off via the en3 pin, or by restoring power to the v in2 pin. the sus pension mode does not mean a complete shutdown, but a state in which pulse output is suspended; theref ore, the internal circuitry remains in operation. the current limit of the XCM520 series can be set at 1050ma at typical. besides, care must be taken when laying out the pc board, in order to prevent mi ss-operation of the current limit mode. depending on the stat e of the pc board, latch time may become longer and latch operation may not work. in order to avoid the effect of noise, the board should be laid out s o that input capacitors are placed as close to the ic as possible. ? the short-circuit protection circuit monitors the internal r1 and r2 divider voltage from the v out3 pin. in case where output is accidentally shorted to the ground an d when the fb point voltage decreases less t han half of the reference voltage (vref) and a current more than the i lim flows to the driver transistor, the short-circ uit protection quickly operates to turn off and to latch the driver transistor. in latch st ate, the operation can be resum ed by either turning the ic off and on via the en3 pin, or by restoring power supply to the v in2 pin. when sharp load transient happe ns, a voltage drop at the v out3 pin is propagated to fb point through c fb , as a result, short circuit protection may operate in the voltage higher than 1/2 v out3 voltage. ? ? when the v in2 pin voltage becomes 1.4v or lower, the p-channel mos driver transistor is forced off to prevent false pulse output caused by unstable operation of the internal circuitry. when the v in2 pin voltage becomes 1.8v or higher, switching operation takes place. by releasing the uv lo function, the ic performs the soft star t function to initiate output startup oper ation. the soft start function operates even when the v in pin voltage falls momentarily below t he uvlo operating voltage. the uvlo circuit does not cause a complete shutdown of the ic, but caus es pulse output to be suspended; t herefore, the internal circuitr y remains in operation. ? ? ? ? ? ?  operational explanation (continued) v in1 v en3 lx v out3 i lx current limit level limitms limit ? a few milliseconds limit < a few milliseconds
15/43 x cm520 series ? ? ? in the pfm control operatio n, until coil current reaches to a specified level (i pfm ), the ic keeps the p- channel mosfet on. in this case, on-time (t on ) that the p-channel mosfet is kept on can be given by the following formula. t on = l  i pfm (v in2  v out3 )  i pfm ? ? in the pfm control operation, the pfm duty limit (d limt_pfm ) is set to 200% (typ.). therefore, under the condition that the duty increases (e.g. the condition that the step- down ratio is small), it?s possible for p-channel mos driver transistor to be turne d off even when coil current doesn?t reach to i pfm . ? i pfm ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? < c l high speed discharge > XCM520ae/ xcm5af/XCM520ag/XCM520ah series can quickly disch arge the electric charge at the output capacitor (c l ) when a low signal to the ce pin which enables a whole ic circui t put into off state, is inputt ed via the n-channel transistor located between the l x pin and the v ss pin. when the ic is disabled, electr ic charge at the output capacitor (c l ) is quickly discharged so that it may avoid application malfunction. discharge time of the output capacitor (c l ) is set by the c l auto-discharge resistance (r ) and the output capacitor (c l ). by setting time constant of a c l auto-discharge resistance value [r] and an output capacitor value (c l ) as  (  =c x r), discharge time of the output volt age after discharge via the n-channel transistor is calculated by the following formula. v =v out3(e)  e -t /  or t =  ln (v out3(e) / v) where; v : output voltage after discharge v out3(e) : output voltage t: discharge time  : c  r c= capacitance of output capacitor (c l ) ? r= c l auto-discharge resistance ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  operational explanation (continued) l x f osc i lx i pfm 0ma pfm?`? i pfm ?? i pfm ?? ton l x i lx i pfm 0ma pfm duty limit 0 10 20 30 40 50 60 70 80 90 100 0 102030405060708090100 cl=10uf cl=20uf cl=50uf
16/43 XCM520 series ? ? ? voltage regulator block ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  operational explanation (continued) the voltage divided by resistors r1 and r2 is compared with the internal reference voltage by the error amplifier. the p-channel mosfets, which are connected to the v out pin, are then driven by the su bsequent output signal. the output voltages at the v out pin is controlled and stabilized by a system of negative feedback. the current limit circuit and short protect circuit operate in relation to the level of out put current. further, the ic's internal circuitry can be shutdown via the en pin's signal. < low esr capacitors > with the XCM520 series, a stable output voltage is achiev able even if used with low esr capacitors as a phase compensation circuit is built-in. in order to ensure the effe ctiveness of the phase compensat ion, we suggest that output capacitor (c l ) is connected as close as possible to the output pins (v out ) and the v ss pin. please use an output capacitor with a capacitance value of at least 1  f. also, please connect an input capacitor (c in1 ) of 1  f between the v in1 pin and the v ss pin in order to ensure a stable power input. < current limiter, short-circuit protection > the XCM520 series includes a combination of a fixed current lim iter circuit and a fold-back circuit which aid the operations of the current limiter and circuit protection. when the load current reaches the current lim it level, the fixe d current limiter ci rcuit operates and output voltage drops. as a result of this drop in output voltage, the fold-back circuit start to operate, output voltage drops further and output current decreases. when the output pin is shorted, a curr ent of about 30ma flows. < en pins > the ic's internal circuitry can be shutdown via the signal from the en pin with the XCM520 series . in shutdown state, output at the v out pin will be pulled down to the v ss level via r1 and r2. the operational logic of the ic's en pin is selectable (please refer to the selection guide). no te that as the standard type' s regulator 1 and 2 are both ' high active/no pull down', operations will become unstable with the en pin open. althou gh the en pin is equal to an inverter input with cmos hysteresis, with either the pull-up or pull- down options, the en pin input current will increase when the ic is in operation. we suggest that you use this ic with either a v in1 voltage or a v ss voltage input at the en pin. if this ic is used with the correct specifications for the en pin, the operational logic is fixed and the ic will operate normally. however, supply current may increase as a result of through current in the ic 's internal circuitry.
17/43 x cm520 series 1. the XCM520 series is designed for use with ceramic output capacitors. if, howeve r, the potential difference is too large between the input voltage and the output volt age, a ceramic capacitor may fail to abs orb the resulting high switching energy and oscillation could occur on the output. if the input-output potent ial difference is large, connect an electrolytic capacito r in parallel to compensate for insufficient capacitance. 2. spike noise and ripple voltage arise in a switching regulato r as with a dc/dc converter. these are greatly influenced by external component selection, such as the coil inductance, capacitance values, and board layout of external components. once the design has been completed, verification with actual components should be done. 3. as a result of input-output voltage and load conditions, oscillation frequency goes to 1/2, 1/3, and continues, then a rippl e may increase. 4. when input-output voltage differential is large and light load conditions, a small duty cycle comes out. after that, 0%duty cycle may continue in several periods. 5. when input-output voltage differentia l is small and heavy load conditions, a large duty cycle comes out and may continues100% duty cycle in several periods. 6. with the ic, the peak current of the coil is controlled by the current limit circ uit. since the peak current increases whe n dropout voltage or load current is high, current limit starts operation, and this c an lead to instability. when peak current becomes high, please adjust the coil inductance value and fu lly check the circuit operation. in addition, please calculate the peak current according to the following formula: ipk = (v in2 -v out3 ) onduty /(2lf osc ) + i out l: coil inductance value f osc : oscillation frequency 7. when the peak current which exceeds lim it current flows within the specified time, the built-in p-channel mos driver transistor turns off. during the time until it detects limit current and before the built-in p-channel mos driver transistor c an be turned off, the current for limit current fl ows; therefore, care must be taken when selecting the rating for the external components such as a coil. 8. ? depending on the state of the pc board, latch time may become longer and la tch operation may not work. in order to avoid the effect of noise, the board should be laid out so that input capacitors are placed as close to the ic as possible. ? 9. ? use of the ic at voltages below the recomm ended voltage range may lead to instability. ? 10. this ic should be used within the stated absolute maxi mum ratings in order to prevent damage to the device. 11. when the ic is used in high temperatur e, output voltage may increase up to inpu t voltage level at no load because of the leak current of the p-chan nel mos driver transistor. ? 12. ? the current limit is set to 1350ma (max.) at typical. however, the current of 1350ma or more may flow. ? in case that the current limit functions while the v out3 pin is shorted to the gnd pin, wh en p-channel mos driver transistor is on, the potential difference for input voltage will occur at both ends of a coil. for this, the time rate of coil current beco mes large. by contrast, when n-channel mos driver transistor is on, there is almost no potential difference at both ends of the coil since the v out3 pin is shorted to the gnd pin. consequently, th e time rate of coil current becomes quite small. according to the repetition of this operation, and the delay ti me of the circuit, coil current will be converged on a certain current value, exceeding the am ount of current, which is suppos ed to be limited originally. even in this case, however, after the over current state continues for several ms, the circuit will be latched. a coil should be used within the stated absolute maximum rating in order to prevent damage to the device. ? ? ? current flows into p-channel mos driver transistor to reach the current limit (i lim ). ? ? the current of i lim or more flows since the delay time of the circuit occu rs during from the detectio n of the current limit to off of p-channel mos driver transistor. ? ? because of no potential difference at both ends of the coil, the time rate of coil current becomes quite small. ? ? lx oscillates very narrow pulses by the current limit for several ms. ? the circuit is latched, stopping its operation. ?  notes on use # ms
18/43 XCM520 series 13. ? in order to stabilize v in2 voltage level and oscillation frequency, we recommend that a by-pass capacitor (c in ) be connected as close as possible to the v in2 and v ss pins. ? 14. ? high step-down ratio and very light load may lead an intermittent oscillation. ? 15. ? during pwm / pfm automatic switching mode, operating may become unstable at transition to continuous mode. please verify with actual design. ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 16. ? please note the inductance value of the coil. the ic may enter unstable operation if t he combination of ambient temperature, output voltage, oscillation frequency, and l value are not adequate. in the operation range close to the maximum duty cycle, the ic may happen to enter unstable output voltage operation even if using the l values listed below. ? ? ? ? ? ? ? ? the range of l value ? f osc v out l value ? 3.0mhz 0.8v ? v out3 ? 4.0v 1.0  h ? 2.2  h ? v out3 ? 2.5v 3.3  h ? 6.8  h ? 1.2mhz 2.5v ? v out3 4.7  h ? 6.8  h ? *when a coil less value of 4.7 h is used at f osc =1.2mhz or when a coil less value of 1.5 h is used at f osc =3.0mhz, peak coil current more easily reach the current limit i lmi . in this case, it may happen that the ic can not provide 600ma output current. ?  note on use (continued) v out3 =3.3v, f osc =1.2mhz v in2 =3.7v, i out3 =100ma ch1:lx 5v/div ch2:v out3 20mv/div l : 4.7  f(nr4018) c in2 : 4.7  f(ceramic) c l3 : 10  f(ceramic) ch1:lx 2.0v/div ch2:v out3 20mv/div l : 1.5  f(nr3015) c in2 : 4.7  f(ceramic) c l3 : 10  f(ceramic) v out3 =3.3v, f osc =1.2mhz v in2 =4.0v,i out3 =180ma
19/43 x cm520 series ? note on use of pattern layouts ? 1. please use this ic within the stated absolute maximum rati ngs. the ic is liable to malfunction should the ratings be exceeded. 2. the capacitor (c in ) should be connected as close as possible to the v in and v ss pins. when wiring impedance is high, noise propagation by output current or phase discrepancy occur which results in unstable operating. in this case, please reinforce v in and v ss rails. if the operation is still unstable, please increase input capacitance c in . 3. with comparison to the separate pr oduct usage, the two chips are placed in ad jacent in the package so heat generation is influenced each other. please evaluate and verify in the actual design. ? ? instructions of pattern layouts ? 1. ? in order to stabilize v in1 ~ v in2 ~ v out1 ~ v out2 ~ v out3 , we recommend that a by-pass capacitor (c in1 ~ c in2 ~ c l1 ~ c l2 ~ c l3 ) be connected as close as possible to the v in1 ~ v in2 ~ v out1 ~ v out2 ~ v out3 and v ss pin. 2. please mount each external component as close to the ic as possible. 3. wire external components as close to the ic as possible and use thick, short connecting traces to reduce the circuit impedance. 4. v ss  agnd ~ pgnd ~ v ss  ground wiring is recommended to get large area. the ic may goes into unstable operation as a result of v ss voltage level fluctuation during the switching. 5. heat is generated bec ause of the output current (i out ) and on resistance of driver transistors. ? ? ? reference pattern layout ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  note on use (continued) 3 2 4 95 # 1 front back ??? ceramic capacitor inductor t o e x a g nd vout 3 l x c m 5 20 v er . . 1 o usp 12b lx cl3 en 3 m o d e en1 gn d vo u t 1 cl1 p g nd cl n 2 vln2 cln1 vln1 gnd1 v ou t 2 en2 c l2 ic
20/43 XCM520 series ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  test circuits * external components l : 1.5 h (nr3015) 3.0mhz 4.7 h (nr4018) 1.2mhz c in2 : 4.7 f (ceramic) c l3 : 10 f (ceramic)  circuit no.1 ?  circuit no.2 ?  circuit no.3   circuit no.5   circuit no.6   circuit no.7   circuit no.8   circuit no.9  1f vout3 lx en3 vin2 a i enh i enl a i leakh i leakl agnd pgnd vin1 vout1 vss en1 en2 vout2 1f a vout3 lx en3 vin2 vin1 vout1 vss en1 en2 vout2 agnd pgnd wave form measure point rpulldown 200 1f vout3 lx en3 vin2 agnd pgnd vin1 vout1 vss en1 en2 vout2 100ma v 1f vout3 lx en3 vin2 agnd pgnd vin1 vout1 vss en1 en2 vout2 v i lim 1f vout3 lx en3 vin2 wave form measure point agnd pgnd vin1 vout1 vss en1 en2 vout2 rpulldown 1 i lat 1f vout3 lx en3 vin2 wave form measure point agnd pgnd vin1 vout1 vss en1 en2 vout2 1f vout3 lx en3 vin2 a i lx agnd pgnd vin1 vout1 vss en1 en2 vout2  circuit no.4 
21/43 x cm520 series ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? en1/en2 en1?h? level current en1=v in1 level en2?h? level current en2=v in1 level en1?l? level current en1= v ss en2?l? level current en2=v ss * the en which is not measured is in operation sop mode. active high: v ss active low: measuring v in1 level  test circuits (continued)  circuit no10 ?  circuit no11 ?  circuit no12 ?  circuit no13 ?  circuit no14 ? en1/en2 active high (pull-down, without resistance) vr1 supply current, en1=on, en2=off vr2 supply current, en1= off, en2=on active high: on=v in1 , off=v ss active low: on=v ss, off=v in1 v in1 =[v out (t)+1.0]vdc+0.5vp-pac c in1 : 1  f (ceramic) c l1 , c l2 : 1  f (ceramic) c in1 , c l1, c l2 : 1  f (ceramic) en1/en2 a ctive high en = v in1 a ctive low en = v ss en1/en2 a ctive high en = v ss a ctive low en = v in1 vout3 lx agnd pgnd en3 vin2 vin1 vout1 vss en1 en2 vout2 a vout3 lx agnd pgnd en3 vin2 vin1 vout1 vss en1 en2 vout2 a vout3 lx agnd pgnd en3 vin2 vin1 vout1 vss en1 en2 vout2 i out2 cl2 cl1 i out1 v v v a a i out =30ma i out =30ma en1/en2 vr1 psrr en1=on, en2=off vr2 psrr en1=off, en2=on active high: on=v in1 , off=v ss active low: on=v ss , off=v in1
22/43 XCM520 series ? ? dc/dc block (1) efficiency vs. output current v out3 =1.8v, f osc =1.2mhz ????? v out3 =1.8v, f osc =3.0mhz l=4.7  h(nr4018), c in2 =4.7  f, c l3 =10  f l=1.5  h(nr3015), c in2 =4.7  f, c l3 =10  f ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (2) output voltage vs. output current v out3 =1.8v, f osc =1.2mhz ???? ? v out3 =1.8v, f osc =3.0mhz l=4.7  h(nr4018), c in2 =4.7  f, c l3 =10  f ? ? ? ? l=1.5  h(nr3015), c in2 =4.7  f, c l3 =10  f ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (3) ripple voltage vs. output current v out3 =1.8v, f osc =1.2mhz ? v out3 =1.8v, f osc =3.0mhz l=4.7  h(nr4018), c in2 =4.7  f, c l3 =10  f ??????? l=1.5  h(nr3015), c in2 =4.7  f, c l3 =10  f ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  typical performance characteristics 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000 output current:i out3 (ma) efficency:effi(%) pwm/ pfm a u t o ma t ic sw it c h in g pwm control v in2 = 4.2v v in2 = 4.2v 3.6v 3.6v 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000 output current:i out3 (ma) efficency:effi(%) pwm/pfm automatic switching control v in2 = 4.2v 3.6v 3.6v v in2 = 4.2v pwm control 1.5 1.6 1.7 1.8 1.9 2 2.1 0.1 1 10 100 1000 output current:i out3 (ma) output voltage:v out3 (v) pwm/pfm automatic switching control pwm control v in2 4.2v,3.6v 0 20 40 60 80 100 0.1 1 10 100 1000 output current:i out 3 (m a) ripple voltage:vr(mv) pwm/pfm automatic switching control pwm control v in2 4.2v,3.6v v in2 4.2v 3.6v 0 20 40 60 80 100 0.1 1 10 100 1000 output current:i out3 (ma) ripple voltage:vr(mv) pwm/pfm automatic switching control v in2 4.2v 3.6v pwm control v in2 4.2v,3.6v 1.5 1.6 1.7 1.8 1.9 2 2.1 0.1 1 10 100 1000 output current:i out3 (ma) output voltage:v out3 (v) pwm/pfm automatic switching control pwm control v in 2 4.2v,3.6v
23/43 x cm520 series ? ? ? dcdc block (continued) (4) oscillation frequency vs. ambient temperature v out3 =1.8v, f osc =1.2mhz ? ?? ?? v out3 =1.8v, f osc =3.0mhz l=4.7  h(nr4018), c in2 =4.7  f, c l3 =10  f l=1.5  h(nr3015), c in2 =4.7  f, c l3 =10  f ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (5) supply current vs. ambient temperature v out3 =1.8v, f osc =1.2mhz v out3 =1.8v, f osc =3.0mhz ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (6) output voltage vs. ambient temperature (7) uvlo voltage vs. ambient temperature v out3 =1.8v, f osc =3.0mhz ?? ? v out3 =1.8v, f osc =3.0mhz ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  typical performance characteristics (continued) 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 -50-25 0 255075100 ambient temperature : ta ( ) oscillation frequency : osc (mhz) v in 2 =3.6v 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 -50 -25 0 25 50 75 100 ambient temperature : ta ( ) oscillation frequency : osc (mhz) vin=3.6v 0 5 10 15 20 25 30 35 40 -50 -25 0 25 50 75 100 ambient temper atur e : ta ( ) supply current : i dd ( a) v in 2 =6.0v v in 2 =4.0v 0 5 10 15 20 25 30 35 40 -50 -25 0 25 50 75 100 ambient temper ature : ta ( ) supply current : i dd ( a) v in 2 =6.0v v in 2 =4.0v 1.5 1.6 1.7 1.8 1.9 2 2.1 -50 -25 0 25 50 75 100 ambient temperature : ta ( ) output voltage : v out3 (v) v in 2 =3.6v 0 0.3 0.6 0.9 1.2 1.5 1.8 -50 -25 0 25 50 75 100 ambient temperatur e : ta ( ) uvlo voltage : v uvlo (v) en3=v in 2
24/43 XCM520 series ? ? ? dcdc block (continued) (8) en "h" voltage vs. ambient temperature (9) en" l" voltage vs. ambient temperature v out3 =1.8v, f osc =3.0mhz ???? v out3 =1.8v, f osc =3.0mhz ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (10) soft start time vs. ambient temperature v out3 =1.8v, f osc =3.0mhz ? v out3 =1.8v, f osc =3.0mhz l=4.7  h(nr4018), c in2 =4.7  f, c l3 =10  f ?? ? l=1.5  h(nr3015), c in2 =4.7  f, c l3 =10  f ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (11) "pch / nch" driver on resistance vs. input voltage v out3 =1.8v, f osc =3.0mhz ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  typical performance characteristics (continued) 0 1 2 3 4 5 -50 -25 0 25 50 75 100 ambient temperature : ta ( ) soft start time : t ss (ms) v in 2 =3.6v 0 1 2 3 4 5 -50-25 0 25 50 75100 ambient temperature : ta ( ) soft start time : t ss (ms) v in 2 =3.6v 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -50 -25 0 25 50 75 100 ambient temperature: ta ( ) en "l" voltage: v enl (v) v in2 =5.0v v in2 =3.6v 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -50 -25 0 25 50 75 100 ambient temperature: ta ( ) en "h" voltage: v enh (v) v in2 =5.0v v in2 =3.6v 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0123456 input voltage: v in2 (v) pch on resistance nch on resistance lx sw on resistance: r lxh ,r lxl ( ? )
25/43 x cm520 series ? ? ? ? dcdc block (continued) (12) XCM520ae/ XCM520af/ XCM520ag/ XCM520ah series, rise wave form v out3 =1.2v, f osc =1.2mhz ??????? v out3 =3.3v, f osc =3.0mhz ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (13) XCM520ae/ XCM520af/ XCM520ag/ XCM520ah series, soft-start time vs. ambient temperature v out3 =1.2v, f osc =1.2mhz ???? v out3 =3.3v, f osc =3.0mhz l=4.7  h(nr4018), c in2 =4.7  f, c l3 =10  f ???????? l=1.5  h(nr3015), c in2 =4.7  f, c l3 =10  f ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (14) XCM520ae/ XCM520af/ XCM520ag/ XCM520ah series , cl discharge resistance vs. ambient temperature v out3 =3.3v, f osc =3.0mhz ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  typical performance characteristics (continued) l=4.7  h (nr4018), c in2 =4.7  f, c l3 =10  f l=1.5  h (nr3015), c in2 =4.7  f, c l3 =10  f v in2 =5.0v i out3 =1.0ma v out3  0.5v/div en3  0.0v e 1.0v 100  s/div v in2 =5.0v i out3 =1.0ma v out3  1.0v/div en3  0.0v e 1.0v 100  s/div c l3 aoto - discharge resistance : r dchg ( ? ) 100 200 300 400 500 600 -50 -25 0 25 50 75 100 ambient temperature: ta ( ) v in2 =6.0v v in2 =4.0v 0 100 200 300 400 500 -50 -25 0 25 50 75 100 ambient temperature: ta ( ) v in2 =5.0v i out 3 =1.0ma soft start time : t ss ( s) 0 100 200 300 400 500 -50-25 0 25 50 75100 ambient temperature: ta ( ) v in2 =5.0v i out 3 =1.0ma soft start time : t ss ( s)
26/43 XCM520 series ? ? ? ? dcdc block (continued) (15) load transient response v out3 =1.2v, f osc =1.2mhz(pwm/pfm automati c switching control) l=4.7  h(nr4018), c in2 =4.7  f(ceramic), c l3 =10  f(ceramic), topr=25 ? v in2 =3.6v, en3=v in2 ? ? i out3 =1ma  100ma i out3 =1ma  300ma 1ch: i out3 1ch: i out3 2ch 2ch v out3 : 50mv/div v out3 : 50mv/div 50  s/div 50  s/div i out3 =100ma  1ma i out3 =300ma  1ma 1ch: i out3 1ch: i out3 2ch 2ch v out3 : 50mv/div v out3 : 50mv/div 200  s/div 200  s/div ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  typical performance characteristics (continued)
27/43 x cm520 series ? ? ? ? dcdc block (continued) (15) load transient response (continued) v out3 =1.2v, f osc =1.2mhz(pwm control) l=4.7  h(nr4018), c in2 =4.7  f(ceramic), c l3 =10  f(ceramic), topr=25 ? v in2 =3.6v, en3=v in2 i out3 =1ma  100ma i out3 =1ma  300ma 1ch: i out3 1ch: i out3 2ch 2ch v out 3 : 50mv/div v out3 : 50mv/div 50  s/div 50  s/div i out3 =100ma  1ma i out3 =300ma  1ma 1ch: i out3 1ch: i out3 2ch 2ch v out3 : 50mv/div v out3 : 50mv/div 200  s/div 200  s/div ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  typical performance characteristics (continued)
28/43 XCM520 series ? ? ? ? dcdc block (continued) (15) load transient response (continued) v out3 =1.8v, f osc =3.0mhz (pwm/pfm automa tic switching control) l=1.5  h(nr3015), c in2 =4.7  f(ceramic), c l3 =10  f(ceramic),topr=25 ? v in2 =3.6v, en=v in2 i out3 =1ma  100ma i out3 =1ma  300ma 1ch: i out3 1ch: i out3 2ch ???? 2ch v out3 : 50mv/div v out3 : 50mv/div 50  s/div 50  s/div i out3 =100ma  1ma i out3 =300ma  1ma 1ch: i out3 1ch: i out3 2ch ???? 2ch v out3 : 50mv/div v out3 : 50mv/div 200  s/div 200  s/div ? ? ? ? ? ? ? ? ? ? ? ? ? ?  typical performance characteristics (continued)
29/43 x cm520 series ? ? ? ? dcdc block (continued) (15) load transient response (continued) v out3 =1.8v, f osc =3.0mhz(pwm control) l=1.5  h(nr3015), c in2 =4.7  f(ceramic), c l3 =10  f(ceramic), topr=25 ? v in2 =3.6v, en1=v in2 i out3 =1ma  100ma i out3 =1ma  300ma 1ch: i out3 1ch: i out3 2ch ???? 2ch v out3 : 50mv/div v out3 : 50mv/div 50  s/div 50  s/div i out3 =100ma  1ma i out3 =300ma  1ma 1ch: i out3 1ch: i out3 2ch 2ch v out3 : 50mv/div v out3 : 50mv/div 200  s/div 200  s/div ? ? ? ? ? ? ? ? ? ? ? ? ? ?  typical performance characteristics (continued)
30/43 XCM520 series ? ? ? ? regulator block (1) output voltage vs. output current ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 50 100 150 200 250 300 350 <;7<; ?
< 99, 5 ;?  ?4  e  < ;7 < ;? 6 3 ;( . , ?  ? e v in1 = 6.0v = 4.0v = 3.3v 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 50 100 150 200 250 300 350  < ;7 < ;?
< 99, 5 ;?  ?4  e  <;7<;?63 ;(.,?  ? e v in1 = 6.0v = 4.0v =3.15v 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 50 100 150 200 250 300 350  < ;7 < ;?
< 99, 5 ;?  ?4  e  < ;7 < ;? 6 3 ;( . , ?  ? e topr= 85 = 25 =-40 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 50 100 150 200 250 300 350  < ;7 < ;?
< 99, 5 ;?  ?4  e  < ;7 < ;? 6 3 ;( . , ?  ? e topr= 85 = 25 =-40 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200 250 300 350  < ;7 < ;?
< 99, 5 ;?  ?4  e  < ;7 < ;? 6 3 ;( . , ?  ? e topr= 85 = 25 =-40 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200 250 300 350  <;7<;?
<99,5;?  ?4  e  <;7<;? 63 ;( . , ?  ? e v in1 = 6.0v = 3.8v = 1.8v = 1.5v  typical performance characteristics (continued) ta = 2 5 ? , c in1 =1  f(ceramic), c l =1  f(ceramic) v out =0.8v v out =0.8v v in1 =1.8v, c in1 =1  f(ceramic), c l =1  f(ceramic) v out =2.85v ta = 2 5 ? , c in1 =1  f(ceramic), c l =1  f(ceramic) v out =2.85v v in1 =3.85v, c in1 =1  f(ceramic), c l =1  f(ceramic) v out =3.0v v in1 =4.0v, c in1 =1  f(ceramic), c l =1  f(ceramic) v out =3.0v ta = 2 5 ? , c in1 =1  f(ceramic), c l =1  f(ceramic) output current: i out (ma) output current: i out (ma) output voltage: v out (v) output voltage: v out (v) output current: i out (ma) output current: i out (ma) output voltage: v out (v) output voltage: v out (v) output current: i out (ma) output current: i out (ma) output voltage: v out (v) output voltage: v out (v)
31/43 x cm520 series ? ? ? ? regulator block (continued) (1) output voltage vs. output current (continued) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (2) output voltage vs. input voltage ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0.0 1.0 2.0 3.0 4.0 5.0 6.0 0 50 100 150 200 250 300 350  < ;7 < ;?
< 99, 5 ;?  ?4  e  <;7<;?63 ;(.,?  ? e v in1 = 6.0v = 5.3v 2.70 2.75 2.80 2.85 2.90 2.95 3.0 3.5 4.0 4.5 5.0 5.5 6.0 5 7 < ;? 6 3 ;( . , ?  ? ? e  < ;7 < ;? 6 3 ;( . , ?  ? e i out = 0ma = 30ma =100ma 2.05 2.25 2.45 2.65 2.85 3.05 2.35 2.85 3.35 57<;?63 ;(.,?  ? ? e  <;7<;?63 ;(.,?  ? e i out = 0ma = 30ma =100ma 0.65 0.70 0.75 0.80 0.85 0.90 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 57<;?63 ;(.,?  ? ? e  < ;7 < ;? 6 3 ;( . , ?  ? e i out = 0ma = 30ma =100ma 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 0.5 1.0 1.5 2.0 2.5 5 7 < ;? 6 3 ;( . , ?  ? ? e  <;7<;?63 ;( . , ?  ? e i out = 0ma = 30ma =100ma 0.0 1.0 2.0 3.0 4.0 5.0 6.0 0 50 100 150 200 250 300 350  < ;7 < ;?
< 99, 5 ;?  ?4  e  < ;7 < ;? 6 3 ;( . , ?  ? e topr= 85 = 25 =-40  typical performance characteristics (continued) v out =5.0v v in1 =4.0v, c in1 =1  f(ceramic), c l =1  f(ceramic) v out =5.0v ta = 2 5 ? , c in1 =1  f(ceramic), c l =1  f(ceramic) v out =0.8v ta = 2 5 ? , c in1 =1  f(ceramic), c l =1  f(ceramic) v out =0.8v ta = 2 5 ? , c in1 =1  f(ceramic), c l =1  f(ceramic) v out =2.85v ta = 2 5 ? , c in1 =1  f(ceramic), c l =1  f(ceramic) v out =2.85v ta = 2 5 ? , c in1 =1  f(ceramic), c l =1  f(ceramic) output current: i out (ma) output voltage: v out (v) output current: i out (ma) output voltage: v out (v) input voltage: v in1 (v) input voltage: v in1 (v) output voltage: v out (v) output voltage: v out (v) output voltage: v out (v) output voltage: v out (v) input voltage: v in1 (v) input voltage: v in1 (v)
32/43 XCM520 series ? ? ? ? regulator block (continued) (2) output voltage vs. input voltage (continued) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (3) dropout voltage vs. output current ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4.85 4.90 4.95 5.00 5.05 5.10 5.5 6.0 5 7 < ;? 6 3 ;( . , ?  ? ? e  < ;7 < ;? 6 3 ;( . , ?  ? e i out = 0ma = 30ma =100ma 4.2 4.4 4.6 4.8 5.0 5.2 4.5 5.0 5.5 57<;?63 ;(.,?  ? ? e <;7<;?63 ;(.,?  ? e i out = 0ma = 30ma =100ma 2.85 2.90 2.95 3.00 3.05 3.10 3.5 4.0 4.5 5.0 5.5 6.0 57<;?63 ;( . , ?  ? ? e  <;7<;?63 ;(.,?  ? e i out = 0ma = 30ma =100ma 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200  <;7<;?
<99,5;?  ?4  e  9676<;?63 ;(.,?+0 -?4  e topr = 85 = 25 = -40 0.0 0.1 0.2 0.3 0.4 0.5 0 50 100 150 200  < ;7 < ;?
< 99, 5 ;?  ?4  e  9676<;?63 ;(.,?+0 -?4  e topr = 85 = 25 = -40 2.2 2.4 2.6 2.8 3.0 3.2 2.5 3.0 3.5 5 7 < ;? 6 3 ;( . , ?  ? ? e <;7<;?63 ;(.,?  ? e i out = 0ma = 30ma =100ma  typical performance characteristics (continued) v out =3.0v v out =3.0v ta = 2 5 ? , c in1 =1  f(ceramic), c l =1  f(ceramic) ta = 2 5 ? , c in1 =1  f(ceramic), c l =1  f(ceramic) v out =5.0v ta = 2 5 ? , c in1 =1  f(ceramic), c l =1  f(ceramic) v out =5.0v ta = 2 5 ? , c in1 =1  f(ceramic), c l =1  f(ceramic) v out =0.8v c in1 =1  f(ceramic), c l =1  f(ceramic) v out =2.85v c in1 =1  f(ceramic), c l =1  f(ceramic) output voltage: v out (v) input voltage: v in1 (v) output voltage: v out (v) input voltage: v in1 (v) input voltage: v in1 (v) input voltage: v in1 (v) output voltage: v out (v) output voltage: v out (v) output current: i out (ma) output current: i out (ma) dropout voltage: vdif (mv) dropout voltage: vdif (mv)
33/43 x cm520 series ? ? ? ? regulator block (continued) (3) ? dropout voltage vs. output current (continued) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (4) supply current vs. input voltage ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0.0 0.1 0.2 0.3 0.4 0.5 0 50 100 150 200  < ;7 < ;?
< 99, 5 ;?  ?4  e  9676<;?63 ;(.,?+0 -?4  e topr-40 25 85 0.0 0.1 0.2 0.3 0.4 0.5 0 50 100 150 200  < ;7 < ;?
< 99, 5 ;?  ?4  e  9676<;?63 ;(.,?+0 -?4  e topr-40 25 85  typical performance characteristics (continued) v out =3.0v v out =5.0v c in1 =1  f(ceramic), c l =1  f(ceramic) c in1 =1  f(ceramic), c l =1  f(ceramic) 0 20 40 60 80 100 0123456 57<;?63 ;(.,?  ? e <773 @?
<3 3 , 5 ;?  ? e topr= 85 = 25 =-40 v out =0.8v 0 20 40 60 80 100 0123456 57<;?63 ;(.,?  ? e <773 @?
<3 3 , 5 ;?  ? e topr= 85 = 25 =-40 v out =2.85v v out =3.0v 0 20 40 60 80 100 0123456 57<;?63 ;( . , ?  ? e <773 @?
<3 3 , 5 ;?  ? e topr= 85 = 25 =-40 0 20 40 60 80 100 0123456 57<;?63 ;( . , ?  ? e <773 @?
<3 3 , 5 ;?  ? e topr= 85 = 25 =-40 v out =5.0v output current: i out (ma) dropout voltage: vdif (mv) output current: i out (ma) dropout voltage: vdif (mv) supply current: i ss (  a) supply current: i ss (  a) supply current: i ss (  a) supply current: i ss (  a) input voltage: v in1 (v) input voltage: v in1 (v) input voltage: v in1 (v) input voltage: v in1 (v)
34/43 XCM520 series ? ? ? ? regulator block (continued) (5) ? output voltage vs. ambient temperature ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (6) ? supply current vs. ambient temperature ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2.90 2.95 3.00 3.05 3.10 -50 -25 0 25 50 75 100 4)0 ,5;?,4 7,9(;<9,?(??e  < ;7 < ;? 6 3 ;(.,?  ? e i out = 0ma = 10ma = 30ma =100ma  typical performance characteristics (continued) 0.76 0.78 0.80 0.82 0.84 -50 -25 0 25 50 75 100 4)0 , 5 ;? , 4 7 , 9( ;< 9, ? ( ?? e  < ;7 < ;? 6 3 ;( . , ?  ? e i out = 0ma = 10ma = 30ma =100ma v in1 =1.8v, c in1 =1  f(ceramic), c l =1  f(ceramic) v out =0.8v 2.75 2.80 2.85 2.90 2.95 -50 -25 0 25 50 75 100 4)0 ,5;?,4 7,9(;<9,?(??e  < ;7 < ;? 6 3 ;( . , ?  ? e i out = 0ma = 10ma = 30ma =100ma v out =2.85v v in1 =4.0v, c in1 =1  f(ceramic), c l =1  f(ceramic) v out =3.0v v in1 =4.0v, c in1 =1  f(ceramic), c l =1  f(ceramic) 4.80 4.90 5.00 5.10 5.20 -50 -25 0 25 50 75 100 4)0 ,5;?,4 7,9(;<9,?(??e  < ;7 < ;? 6 3 ;(.,?  ? e i out = 0ma = 10ma = 30ma = 100ma v out =5.0v v in1 =6.0v, c in1 =1  f(ceramic), c l =1  f(ceramic) 20 22 24 26 28 30 -50 -25 0 25 50 75 100 4)0 , 5 ;? , 4 7 , 9( ;< 9, ? ( ?? e <773 @?
<3 3 , 5 ;?  ? e v out =0.8v v in1 =1.8v 20 22 24 26 28 30 -50 -25 0 25 50 75 100 4)0 ,5;?,4 7,9(;<9,?(??e <773 @?
<3 3 , 5 ;?  ? e v in1 =3.85v v out =2.85v ambient temperature: ta ( ? ) output voltage: v out (v) output voltage: v out (v) ambient temperature: ta ( ? ) ambient temperature: ta ( ? ) ambient temperature: ta ( ? ) output voltage: v out (v) output voltage: v out (v) ambient temperature: ta ( ? ) ambient temperature: ta ( ? ) supply current: i ss (  a) supply current: i ss (  a)
35/43 x cm520 series ? ? ? ? regulator block (continued) (6) supply current vs. ambi ent temperature (continued) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (7) input transient response ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2.75 2.80 2.85 2.90 2.95 3.00 3.05  :?+0 =  < ;7 < ;? 6 3 ;( . , ?  ? e 0 1 2 3 4 5 6 input voltage: v in (v)  <;7<;?63 ;( . , 57<;?63 ;( . , 0.70 0.75 0.80 0.85 0.90 0.95 1.00 ? :?+0 = <;7<;?63 ;( . , ?  ? e -2 -1 0 1 2 3 4 5 7 < ;? 6 3 ;( . , ?  ? e  <;7<;?63 ;(., 57<;?63 ;(., 0.70 0.75 0.80 0.85 0.90 0.95 1.00 ? :?+0 =  < ;7 < ;? 6 3 ;( . , ?  ? e -2 -1 0 1 2 3 4 5 7 < ;? 6 3 ;( . , ?  ? e  <;7<;?63 ;(., 57<;?63 ;( . ,  typical performance characteristics (continued) 20 22 24 26 28 30 -50 -25 0 25 50 75 100 4)0 ,5;?,4 7,9(;<9,?(??e <773 @?
<3 3 , 5 ;?  ? e v out =3.0v v in1 =4.0v 20 22 24 26 28 30 -50 -25 0 25 50 75 100 4)0 , 5 ;? , 4 7 , 9( ;< 9, ? ( ?? e <773 @?
<3 3 , 5 ;?  ? e v out =5.0v v in1 =6.0v 0.70 0.75 0.80 0.85 0.90 0.95 1.00  :?+0 =  <;7<;?63 ;( . , ?  ? e -2 -1 0 1 2 3 4 5 7 < ;? 6 3 ;( . , ?  ? e  <;7<;?63 ;(., 57<;?63 ;(., v out =0.8v tr=tf=5  s, c l =1  f(ceramic), i out =100  a tr=tf=5  s, c l =1  f(ceramic), i out =30ma v out =0.8v v out =0.8v tr=tf=5  s, c l =1  f(ceramic), i out =100ma tr=tf=5  s, c l =1  f(ceramic), i out =100  a v out =2.85v supply current: i ss (  a) supply current: i ss (  a) ambient temperature: ta ( ? ) ambient temperature: ta ( ? ) output voltage: v out (v) input voltage: v in1 (v) output voltage: v out (v) input voltage: v in1 (v) input voltage input voltage output voltage output voltage input voltage output voltage input voltage output voltage time (200  s/div) time (40  s/div) time (40  s/div) time (200  s/div) input voltage: v in1 (v) output voltage: v out (v) output voltage: v out (v) input voltage: v in1 (v)
36/43 XCM520 series ? ? ? ? regulator block (continued) (7) ? input transient response (continued) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2.90 2.95 3.00 3.05 3.10 3.15 3.20 ? :?+0 =  < ;7 < ;? 6 3 ;( . , ?  ? e 0 1 2 3 4 5 6 5 7 < ;? 6 3 ;( . , ?  ? e  <;7<;?63 ;(., 5 7 < ;? 6 3 ;(., 4.90 4.95 5.00 5.05 5.10 5.15 5.20  :?+0 =  < ;7 < ;? 6 3 ;( . , ?  ? e 2 3 4 5 6 7 8 5 7 < ;? 6 3 ;(.,??e  <;7<;?63 ;(., 57<;?63 ;(., 2.75 2.80 2.85 2.90 2.95 3.00 3.05 ? :?+0 =  < ;7 < ;? 6 3 ;( . , ?  ? e 0 1 2 3 4 5 6 5 7 < ;? 6 3 ;( . , ?  ? e  <;7<;?63 ;( . , 57<;?63 ;(.,  typical performance characteristics (continued) tr=tf=5  s, c l =1  f(ceramic), i out =30ma v out =2.85v 2.75 2.80 2.85 2.90 2.95 3.00 3.05 ? :?+0 =  < ;7 < ;? 6 3 ;( . , ?  ? e 0 1 2 3 4 5 6 5 7 < ;? 6 3 ;( . , ?  ? e  <;7<;?63 ;(., 57<;?63 ;(., tr=tf=5  s, c l =1  f(ceramic), i out =100ma v out =2.85v 2.90 2.95 3.00 3.05 3.10 3.15 3.20  :?+0 =  < ;7 < ;? 6 3 ;( . , ?  ? e 0 1 2 3 4 5 6 5 7 < ;? 6 3 ;( . , ?  ? e  <;7<;?63 ;( . , 57<;?63 ;( . , v out =3.0v tr=tf=5  s, c l =1  f(ceramic), i out =100  a v out =3.0v tr=tf=5  s, c l =1  f(ceramic), i out =30ma 2.90 2.95 3.00 3.05 3.10 3.15 3.20 ? :?+0 =  < ;7 < ;? 6 3 ;( . , ?  ? e 0 1 2 3 4 5 6 5 7 < ;? 6 3 ;( . , ?  ? e  <;7<;?63 ;( . , 57<;?63 ;(., v out =3.0v tr=tf=5  s, c l =1  f(ceramic), i out =100ma tr=tf=5  s, c l =1  f(ceramic), i out =100  a v out =5.0v input voltage: v in1 (v) output voltage: v out (v) time (40  s/div) time (40  s/div) input voltage output voltage input voltage output voltage output voltage: v out (v) input voltage: v in1 (v) input voltage: v in1 (v) input voltage: v in1 (v) output voltage: v out (v) output voltage: v out (v) input voltage: v in1 (v) output voltage: v out (v) input voltage: v in1 (v) output voltage: v out (v) input voltage output voltage input voltage output voltage input voltage output voltage input voltage output voltage time (40  s/div) time (200  s/div) time (40  s/div) time (200  s/div)
37/43 x cm520 series ? ? ? ? regulator block (continued) (7) ? input transient response (continued) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (8) load transient response ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2.45 2.55 2.65 2.75 2.85 2.95 ? :?+0 =  < ;7 < ;? 6 3 ;( . , ?  ? e 0 50 100 150 200 250  < ;7 < ;?
< 99, 5 ;?  ?4  e  <;7<;?63 ;(.,  <;7<;?
<99,5; 10ma 50ma 0.40 0.50 0.60 0.70 0.80 0.90 ? :?+0 =  < ;7 < ;? 6 3 ;( . , ?  ? e 0 50 100 150 200 250  < ;7 < ;?
< 99, 5 ;?  ?4  e  <;7<;?63 ;( . ,  <;7<;?
<99,5; 10ma 50ma 0.40 0.50 0.60 0.70 0.80 0.90 ? :?+0 =  < ;7 < ;? 6 3 ;( . , ?  ? e 0 50 100 150 200 250  < ;7 < ;?
< 99, 5 ;?  ?4  e out p ut volta g e output current 10ma 100ma 4.90 4.95 5.00 5.05 5.10 5.15 5.20 ? :?+0 =  < ;7 < ;? 6 3 ;( . , ?  ? e 2 3 4 5 6 7 8 5 7 < ;? 6 3 ;( . , ?  ? e  <;7<;?63 ;( . , 57<;?63 ;(., 4.90 4.95 5.00 5.05 5.10 5.15 5.20 ? :?+0 =  < ;7 < ;? 6 3 ;( . , ?  ? e 2 3 4 5 6 7 8 input voltage: v in (v)  <;7<;?63 ;(., 57<;?63 ;(., 2.45 2.55 2.65 2.75 2.85 2.95 ? :?+0 =  < ;7 < ;? 6 3 ;( . , ?  ? e 0 50 100 150 200 250 output current: i out (ma) out p ut volta g e output current 10ma 100ma  typical performance characteristics (continued) tr=tf=5  s, c l =1  f(ceramic), i out =30ma v out =5.0v tr=tf=5  s, c l =1  f(ceramic), i out =100ma v out =5.0v v out =0.8v v in1 =1.8v, tr=tf=5  s, c in1 =c l =1  f(ceramic) v in1 =1.8v, tr=tf=5  s, c in1 =c l =1  f(ceramic) v out =0.8v v out =2.85v v in1 =4.0v, tr=tf=5  s, c in1 =c l =1  f(ceramic) v out =2.85v v in1 =4.0v, tr=tf=5  s, c in1 =c l =1  f(ceramic) time (40  s/div) time (40  s/div) time (40  s/div) time (40  s/div) input voltage output voltage input voltage output voltage input voltage: v in1 (v) output voltage: v out (v) input voltage: v in1 (v) output voltage: v out (v) output voltage: v out (v) output current: i out (ma) output current: i out (ma) output voltage: v out (v) output voltage output voltage output current output current output voltage output current output voltage output current time (40  s/div) time (40  s/div) output current: i out (ma) output voltage: v out (v) output current: i out (ma) output voltage: v out (v)
38/43 XCM520 series ? ? ? ? regulator block (continued) (8) load transient response (continued) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (9) ripple rejection rate ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4.60 4.70 4.80 4.90 5.00 5.10 ? :?+0 =  < ;7 < ;? 6 3 ;( . , ?  ? e 0 50 100 150 200 250  < ;7 < ;?
< 99, 5 ;?  ?4  e  <;7<;?63 ;( . ,  <;7<;?
<99,5; 10ma 50ma 2.60 2.70 2.80 2.90 3.00 3.10 ? :?+0 =  < ;7 < ;? 6 3 ;( . , ?  ? e 0 50 100 150 200 250  < ;7 < ;?
< 99, 5 ;?  ?4  e  <;7<;?63 ;(.,  <;7<;?
<99,5; 10ma 50ma  typical performance characteristics (continued) v out =3.0v v in1 =4.0v, tr=tf=5  s, c in1 =c l =1  f(ceramic) 2.60 2.70 2.80 2.90 3.00 3.10 ? :?+0 =  <;7<;?63 ;( . , ?  ? e 0 50 100 150 200 250  < ;7 < ;?
< 99, 5 ;?  ?4  e  <;7<;?63 ;(.,  <;7<;?
<99,5; 10ma 100ma v out =3.0v v in1 =4.0v, tr=tf=5  s, c in1 =c l =1  f(ceramic) v out =5.0v v in1 =6.0v, tr=tf=5  s, c in1 =c l =1  f(ceramic) 4.60 4.70 4.80 4.90 5.00 5.10 ? :?+0 =  < ;7 < ;? 6 3 ;( . , ?  ? e 0 50 100 150 200 250  < ;7 < ;?
< 99, 5 ;?  ?4  e  <;7<;?63 ;( . ,  < ;7 < ;?
< 99, 5 ; 10ma 100ma v in1 =6.0v, tr=tf=5  s, c in1 =c l =1  f(ceramic) v out =5.0v 0 20 40 60 80 0.01 0.1 1 10 100 0 773 ,? 9,8<,5*@?-?2 ae 0 773 ,? ,1 ,*;0 65? (;0 6??+ e v out =0.8v v in1 =1.8vdc+0.5vp-pac, i out =30ma, c l =1  f(ceramic) 0 20 40 60 80 0.01 0.1 1 10 100 0 773 ,? 9,8<,5*@?-?2 ae 0 773 ,? ,1 ,*;0 65? (;0 6??+ e v out =2.85v v in1 =3.85vdc+0.5vp-pac, i out =30ma, c l =1  f(ceramic) output current: i out (ma) output voltage: v out (v) time (40  s/div) time (40  s/div) output voltage output current output voltage output current output current: i out (ma) output voltage: v out (v) time (40  s/div) time (40  s/div) output current: i out (ma) output current: i out (ma) output voltage: v out (v) output voltage: v out (v) output voltage output current output voltage output current ripple frequency: f(khz) ripple frequency: f(khz) ripple rejection ratio: psrr (db) ripple rejection ratio: psrr (db)
39/43 x cm520 series ? ? ? ? regulator block (continued) (9) ripple rejection rate (continued) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (10) cross talk ? v out1  3.0v & v out2  2.85v ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  typical performance characteristics (continued) v out =3.0v 0 20 40 60 80 0.01 0.1 1 10 100 0 773 ,? 9,8<,5*@?-?2 ae 0 773 ,? ,1 ,*;0 65? (;0 6??+ e v in1 =4.0vdc+0.5vp-pac, i out =30ma, c l =1  f(ceramic) 0 20 40 60 80 0.01 0.1 1 10 100 0 773 ,? 9,8<,5*@?-?2 ae 0 773 ,? ,1 ,*;0 65? (;0 6?  ?+ e v in1 =5.75vdc+0.5vp-pac, i out =30ma, c l =1  f(ceramic) v out =5.0v 2.6 2.7 2.8 2.9 3.0 3.1 ? :?+0 =  < ;7 < ;? 6 3 ;( . , ?  ? e 0 100 200 300 400 500  < ;7 < ;?
< 99, 5 ;?  ?4  e  ?? <;7<;?63 ;(.,??e  ?  <;7<;?
<99,5; 10ma 100ma   ? < ;7 < ;? 6 3 ;(.,???e v in1 =4.0v, c in1 =c l1 =c l2 =1  f(ceramic) ripple frequency: f(khz) ripple frequency: f(khz) ripple rejection ratio: psrr (db) ripple rejection ratio: psrr (db) output voltage: v out (v) time (40  s/div) vr1 output voltage (3.0v) vr2 output voltage (2.85v) vr1 output current output current: i out (ma)
40/43 XCM520 series ? ? ? ? ? usp-12b01 ? ? ? ? ? ? ? ? ? ? ? ? usp-12b01 reference pattern layout ?????????????? ? usp-12b01 reference metal mask design 1.20.1 1.20.1 0.70.05 0.70.05 123456 7 8 9 12 11 10 2.80.08 (0.4) (0.4) (0.4) (0.4) (0.4) (0.15) (0.25) 0.25 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.05  packaging information unit: mm 0.25 0.25 0.65 0.65 0.90 1.35 0.90 1.35 0.45 0.45 1.30 1.60 0.10 0.10 1.30 1.60 0.30 0 .025 0.025 0.25 0 .025 0.025 0.55 0.95 0.25 0.15 0.65 1.05 0.20 0.20 0.50 0.60 1.10 1.55 0.60 1.10 1.55 0.55 0.95 1.30 0.55 0.95 1.30 0.25 0.25 0.35 0.35 0.20 0.05 0.05 0.15 0.05 0.05 0.55 0.95 0.25 0.15 0.65 1.05 0.15 0.15 0.40
41/43 x cm520 series ? ? usp-12b01 power dissipation power dissipation data for the usp-12b01 is shown in this page. the value of power dissipation varies with the mount board conditions. please use this data as one of referenc e data taken in the described condition. 1. measurement condit ion (reference data) condition: mount on a board ambient: natural convection soldering: lead (pb) free board: dimensions 40 x 40 mm (1600 mm 2 in one side) 1 st layer: land and a wiring pattern 2 nd layer: connecting to approximate 50% of the 1 st heat sink 3 rd layer: connecting to approximate 50% of the 2 nd heat sink 4 th layer: noting material: glass epoxy (fr-4) thickness: 1.6 mm through-hole: 2 x 0.8 diameter (each tab needs one through-hole) 2. power dissipation vs. operating temperature ? only 1ch heating, board mount (tj max = 125 ? ) ? both 2ch heating same time, board mount (tj max = 125 ? ) ambient temperature power dissipation pd mw thermal resistance ( /w) 25 800 85 320 125.00 ambient temperature power dissipation pd mw thermal resistance ( /w) 25 600 85 240 166.67  packaging information (continued) evaluation board (unit: mm) pd-ta? 0 200 400 600 800 1000 25 45 65 85 105 125 ??ta S?p?pdmw pd vs. ta ambient temperature: ta ( ? ) power dissipation: pd (mw) pd-ta? 0 200 400 600 800 1000 25 45 65 85 105 125 ??ta S?p?pdmw pd vs. ta ambient temperature: ta ( ? ) power dissipation: pd (mw)
42/43 XCM520 series mark product series 1 XCM520 series mark product series a a xc6401ff** xc9235a**d a b xc6401ff** xc9235a**c a c xc6401ff** xc9236a**d a d xc6401ff** xc9236a**c a e xc6401ff** xc9235b**d a f xc6401ff** xc9235b**c a g xc6401ff** xc9236b**d a h xc6401ff** xc9236b**c mark product series 1 XCM520**01** 2 XCM520**02** 3 XCM520**03** 4 XCM520**04**  marking rule ? usp-12b01 1 2 3 4 5 6 12 11 10 9 8 7 ? represents product series ?? represents combination of ic ? represents combination of voltage for each ic (sequence no.) ? , ?? represents production lot number 01 ? 09 z 0a ? 0z z 11 kkk 9z z a1 ? a9 z aa kkk z9 z za ? zz repeated (g, i, j, o, q, w excluded) * no character inversion used. usp-12b01
43/43 x cm520 series 1. the products and product specifications cont ained herein are subject to change without notice to improve performance characteristic s. consult us, or our representatives before use, to confirm that the informat ion in this datasheet is up to date. 2. we assume no responsibility for any infri ngement of patents, pat ent rights, or other rights arising from the use of any information and circuitry in this datasheet. 3. please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet. 4. the products in this datasheet are not devel oped, designed, or approved for use with such equipment whose failure of malfuncti on can be reasonably expected to directly endanger the life of, or cause significant injury to, the user. (e.g. atomic energy; aerospace; transpor t; combustion and associated safety equipment thereof.) 5. please use the products listed in this datasheet within the specified ranges. should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives. 6. we assume no responsibility for damage or loss due to abnormal use. 7. all rights reserved. no part of this dat asheet may be copied or reproduced without the prior permission of torex semiconductor ltd.


▲Up To Search▲   

 
Price & Availability of XCM520

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X