Part Number Hot Search : 
BP5062A C847B M6720 E101M BNP10SHG CY7C13 BUW133A KBPC1
Product Description
Full Text Search
 

To Download MAX2683 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  general description the MAX2683/max2684 are super-high-performance, low-cost downconverter mixers intended for wireless local loop (wll) and digital microwave radio (dmr) applications in the 3.4ghz to 3.8ghz frequency band. the MAX2683 is optimized for downconversion to if frequencies between 100mhz and 400mhz, and allows both high-side and low-side local oscillator (lo) injec- tion. the max2684 is optimized for if frequencies between 800mhz and 1000mhz, and allows low-side lo injection. a logic-level control enables an internal frequency doubler on both devices, allowing the exter- nal lo source to run at full or half frequency. an internal lo filter reduces lo harmonics and spurious mixing. the MAX2683/max2684 feature an externally adjustable bias control, set with a single resistor, that lets the user trade supply current for linearity to optimize system per- formance. these devices use a double-balanced gilbert-cell architecture with single-ended rf and lo inputs and differential open-collector if output ports. differential if ports provide a wideband, flexible inter- face for either single-ended or differential applications. the MAX2683/max2684 operate from a single +2.7v to +5.5v supply. the devices are packaged in an ultra- small 16-pin tssop-ep package with an exposed pad- dle for optimum performance at 3.5ghz. ________________________applications wireless local loop (wll) digital microwave radio (dmr) wireless broadband access features 3.4ghz to 3.8ghz rf frequency range 100mhz to 400mhz if frequency range (MAX2683) 800mhz to 1000mhz if frequency range (max2684) logic-enabled lo frequency doubler conversion gain +6.7db (MAX2683) +1db (max2684) programmable iip3 +7dbm to +11dbm (MAX2683) +8dbm to +12dbm (max2684) +2.7v to +5.5v single-supply operation ultra-small 16-pin tssop-ep package MAX2683/max2684 3.5ghz downconverter mixers with selectable lo doubler ________________________________________________________________ maxim integrated products 1 16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8 v cc bias gnd ifout+ gnd gnd ifout- gnd gnd top view MAX2683 max2684 gnd gnd enx2 rfin gnd lox2 lox1 tssop-ep pin configuration 19-1620; rev 2; 9/03 evaluation kit available ordering information typical operating circuit appears at end of data sheet. 16 tssop-ep* pin-packagetemp range -40? to +85? MAX2683 eue part 16 tssop-ep* -40? to +85? max2684 eue * exposed pad rfin ifout+ ifout- v cc bias gnd lo buffer lo doubler lox1 lox2 enx2 MAX2683 max2684 bias x1 x2 functional diagram for pricing, delivery, and ordering information, please contact maxim/dallas direct! at 1-888-629-4642, or visit maxim? website at www.maxim-ic.com.
MAX2683/max2684 3.5ghz downconverter mixers with selectable lo doubler 2 _______________________________________________________________________________________ absolute maximum ratings dc electrical characteristics (v cc = +2.7v to +5.5v; r bias = 1.2k ? ; enx2 = gnd; rfin, lox1, and lox2 are terminated in 50 ? , no input signal applied; ifout+ = ifout- = v cc , t a = -40? to +85?, unless otherwise noted. typical values are at v cc = +5v, t a = +25?.) (note 1) ac electrical characteristics?ax2683 (MAX2683/max2684 ev kit, v cc = +5v, r bias = 1.2k ? , enx2 = gnd, f rf = 3.6ghz, p rf = -20dbm, f lox2 = 1650mhz, p lo = -5dbm, all input/output ports terminated in 50 ? , ifout+ and ifout- matched to single-ended 50 ? load, t a = +25?, unless otherwise noted.) stresses beyond those listed under ?bsolute maximum ratings?may cause permanent damage to the device. these are stress rating s only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specificatio ns is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. v cc to gnd ...........................................................-0.3v to +6.0v ifout+, ifout-, enx2 , bias to gnd .......-0.3v to (v cc + 0.3v) rfin input power (50 ? source) .....................................+10dbm lo input power (50 ? source) ........................................+10dbm r bias .............................................................................820 ? min continuous power dissipation (t a = +70?) 16-pin tssop-ep (derate 21.3mw/? above +70?).............................................................1702mw operating temperature range ...........................-40? to +85? junction temperature ......................................................+150? storage temperature range ..............................-65? to+150? lead temperature (soldering, 10s) .................................+300? parameter min typ max units gain variation over temperature ?.5 ?.2 db conversion gain 4.8 6.7 8.0 db input 1db compression point +0.8 dbm input third-order intercept point +8.8 dbm input second-order intercept point +33 dbm noise figure 12 db if frequency range rf frequency range 3.4 3.8 ghz 100 400 mhz lox1 frequency range 3.0 3.9 ghz rfin input return loss -18 db lox2 leakage at rfin -42 dbm -38 -49 lox1 leakage at rfin -39 dbm conditions (note 8) t a = -40? to +85? (note 2) f rfin = 3 f lo (notes 1, 4) (note 5) (note 6) (note 7) (notes 2, 3) (notes 2, 3) enx2 = v cc (notes 2, 3) f rfin = 2 f lo f rfin = 1 f lo enx2 = gnd lox2 frequency range 1.5 1.95 ghz enx2 = gnd (notes 2, 3) enx2 = v cc ,f rfin = 1 f lo, f lox1 = 3.3ghz parameter min typ max units input logic bias current -20 10 ? input logic voltage low 0.6 v supply current reduction when lo doubler is disabled supply current 55 66 ma 15 ma input logic voltage high 2.0 v conditions enx2 = v cc caution! esd sensitive device
MAX2683/max2684 3.5ghz downconverter mixers with selectable lo doubler _______________________________________________________________________________________ 3 ac electrical characteristics?ax2683 (continued) (MAX2683/max2684 ev kit, v cc = +5v, r bias = 1.2k ? , enx2 = gnd, f rf = 3.6ghz, p rf = -20dbm, f lox2 = 1650mhz, p lo = -5dbm, all input/output ports terminated in 50 ? , ifout+ and ifout- matched to single-ended 50 ? load, t a = +25?, unless otherwise noted.) ac electrical characteristics?ax2684 (MAX2683/max2684 ev kit, v cc = +5v, r bias = 1.2k ? , enx2 = gnd, f rf = 3.6ghz, p rf = -20dbm, f lox2 = 1350mhz, p lo = -5dbm, all input/output ports terminated in 50 ? , ifout+ and ifout- matched to single-ended 50 ? load, t a = +25?, unless otherwise noted.) note 1: limits over temperature are guaranteed by production test at +25 c and via correlation to worst-case temperature testing. note 2: minimum and maximum limits are guaranteed by design and characterization, but are not production tested. note 3: the device has been characterized over the specified frequency range. operation outside of this range is possible but not guaranteed. parameter lox2 leakage at ifout+, ifout- -39 dbm -39 -64 lox1 leakage at ifout+, ifout- -39 dbm lox1, lox2 input return loss -20 db f ifout = 3 f lo f ifout = 2 f lo enx2 = gnd (note 9) f ifout = 1 f lo f rfin = 3 f lox2 f rfin = 2 f lox2 f rfin = 1 f lox2 f rfin = 3 f lox2 f rfin = 2 f lox2 f rfin = 1 f lox2 lox1 leakage at ifout+, ifout- -15 dbm lox1, lox2 input return loss -20 db (note 9) lox2 leakage at ifout+, ifout- -37 dbm enx2 = gnd -20 -41 -49 lox1 leakage at rfin -45 dbm noise figure 13.6 db rfin input return loss -18 db (note 8) (note 7) lox2 leakage at rfin -47 dbm -43 enx2 = gnd input third-order intercept point +9.5 dbm input second-order intercept point +37 dbm (note 11) (note 10) parameter min typ max units conversion gain -0.8 +1 +2.3 db lox1 frequency range 2.4 2.9 ghz gain variation over temperature and frequency ?.5 ?.2 db if frequency range rf frequency range 3.4 3.8 ghz 800 1000 mhz lox2 frequency range 1.2 1.45 ghz input 1db compression point 0 dbm conditions (notes 1, 4) lox2 = v cc (notes 2, 3) t a = -40? to +85? (notes 2, 3) (notes 2, 3) lox2 = gnd (notes 2, 3) enx2 = v cc , f ifout = 1 f lo, f lox1 = 3.3ghz enx2 = v cc , f rfin = 1 f lox1, f lox1 = 2.7ghz enx2 = v cc , f ifout = 1 f lox1, f lox1 = 2.7ghz min typ max units conditions
MAX2683/max2684 3.5ghz downconverter mixers with selectable lo doubler 4 _______________________________________________________________________________________ typical operating characteristics (MAX2683/max2684 ev kit, v cc = +5v, r bias = 1.2k ? , enx2 = gnd, f rf = 3.6ghz, p rf = -20dbm, f lox2 = 1650mhz for MAX2683 or f lox2 = 1350mhz for max2684, p lo = -5dbm, all input/output ports terminated in 50 ? , ifout+ and ifout- matched to single-ended 50 ? load, t a = +25?, unless otherwise noted.) 0 30 20 10 40 50 60 70 80 90 100 2.5 3.5 3.0 4.0 4.5 5.0 5.5 supply current vs. supply voltage (enx2 = gnd) MAX2683/4 toc01 supply voltage (v) supply current (ma) t a = -40? r bias = 820 ? r bias = 1.2k ? r bias = 2.0k ? t a = +25? t a = +85? 0 30 20 10 40 50 60 70 80 90 100 2.5 3.5 3.0 4.0 4.5 5.0 5.5 supply current vs. supply voltage (enx2 = v cc ) MAX2683/4 toc02 supply voltage (v) supply current (ma) t a = +85 c t a = +25 c r bias = 820 ? r bias = 1.2k ? r bias = 2.0k ? t a = -40 c 20 35 30 25 40 45 50 55 60 65 70 800 1200 1000 1400 1600 1800 2000 supply current vs. r bias MAX2683/4 toc03 r bias ( ?) supply current (ma) v cc = +5v v cc = +5v v cc = +3.3v v cc = +3.3v enx2 = v cc enx2 = gnd 5.0 5.5 6.5 6.0 7.0 7.5 800 1200 1000 1400 1600 1800 2000 conversion gain vs. r bias MAX2683 toc04 r bias ( ?) conversion gain (db) v cc = +5v v cc = +3.3v 5 7 6 9 8 10 11 800 1200 1400 1000 1600 1800 2000 input ip3 vs. r bias MAX2683/4 toc05 r bias ( ? ) input ip3 (dbm) v cc = +5v v cc = +3.3v -3 -1 -2 1 0 2 3 800 1200 1400 1000 1600 1800 2000 input p1db vs. r bias MAX2683 toc06 r bias ( ? ) input p1db (dbm) v cc = +5v v cc = +3.3v MAX2683 note 4: conversion gain does not include output balun losses, typically 0.3db at 300mhz on the MAX2683 ev kit and 0.8db at 900mhz on the max2684 ev kit. note 5: iip3 measured with two tones at 3605mhz and 3610mhz, -20dbm per tone, f if = 300mhz. note 6: iip2 measured with f rfin = 3450mhz, p rfin = -20dbm, f if = 300mhz. note 7: input match optimized for best return loss at f rf = 3600mhz. note 8: over specified rf input frequency range with matching network. note 9: over specified lo input frequency range. note 10: iip3 measured with two tones at 3605mhz and 3610mhz, -20dbm per tone, f if = 900mhz. note 11: iip2 measured with f rfin = 3150mhz, p rfin = -20dbm, f if = 900mhz.
MAX2683/max2684 3.5ghz downconverter mixers with selectable lo doubler _______________________________________________________________________________________ 5 -10 -4 -6 -8 -2 0 2 4 6 8 10 -20 -15 -10 -5 0 conversion gain vs. lo power (enx2 = gnd) MAX2683 toc07 lo power (dbm) conversion gain (db) t a = -40 c t a = +25 c t a = +85 c -10 -4 -6 -8 -2 0 2 4 6 8 10 -20 -15 -10 -5 0 conversion gain vs. lo power (enx2 = v cc ) MAX2683 toc08 lo power (dbm) conversion gain (db) t a = -40 c t a = +25 c t a = +85 c 0 5 10 15 20 25 30 -16 -12 -14 -10 -8 -6 -4 -2 0 noise figure vs. lo power MAX2683 toc09 lo power (dbm) nosie figure (db) 0 3 2 1 4 5 6 7 8 9 10 2.5 3.5 3.0 4.0 4.5 5.0 5.5 conversion gain vs. supply voltage (r bias = 820 ? ) MAX2683 toc10 supply voltage (v) conversion gain (db) t a = -40 c t a = +85 c t a = +25 c 0 3 2 1 4 5 6 7 8 9 10 2.5 3.5 3.0 4.0 4.5 5.0 5.5 conversion gain vs. supply voltage (r bias = 1.2k ? ) MAX2683 toc11 supply voltage (v) conversion gain (db) enx2 = v cc enx2 = gnd t a = -40 c t a = +85 c t a = +25 c 0 3 2 1 4 5 6 7 8 9 10 2.5 3.5 3.0 4.0 4.5 5.0 5.5 conversion gain vs. supply voltage (r bias = 2k ? ) MAX2683 toc12 supply voltage (v) conversion gain (db) t a = +85 c t a = +25 c t a = -40 c 0 3 9 6 12 15 2.5 3.5 3.0 4.0 4.5 5.0 5.5 input ip3 vs. supply voltage (r bias = 820 ? ) MAX2683 toc13 supply voltage (v) input ip3 (dbm) t a = -40 c t a = +25 c t a = +85 c 5 6 8 7 9 10 2.5 3.5 3.0 4.0 4.5 5.0 5.5 input ip3 vs. supply voltage (r bias = 1.2k ? ) MAX2683 toc14 supply voltage (v) input ip3 (dbm) t a = -40 c t a = +85 c t a = +25 c 5 6 8 7 9 10 2.5 3.5 3.0 4.0 4.5 5.0 5.5 input ip3 vs. supply voltage (r bias = 2k ? ) MAX2683 toc15 supply voltage (v) input ip3 (dbm) t a = +25 c t a = +85 c t a = -40 c typical operating characteristics (continued) (MAX2683/max2684 ev kit, v cc = +5v, r bias = 1.2k ? , enx2 = gnd, f rf = 3.6ghz, p rf = -20dbm, f lox2 = 1650mhz for MAX2683 or f lox2 = 1350mhz for max2684, p lo = -5dbm, all input/output ports terminated in 50 ? , ifout+ and ifout- matched to single-ended 50 ? load, t a = +25?, unless otherwise noted.) MAX2683
MAX2683/max2684 3.5ghz downconverter mixers with selectable lo doubler 6 _______________________________________________________________________________________ -10 -6 2 -2 6 10 2.5 3.5 3.0 4.0 4.5 5.0 5.5 input p1db vs. supply voltage (r bias = 820 ? ) MAX2683 toc16 supply voltage (v) input p1db (dbm) t a = +85 c t a = -40 c t a = +25 c -2 -1 1 0 2 3 2.5 3.5 3.0 4.0 4.5 5.0 5.5 input p1db vs. supply voltage (r bias = 1.2k ? ) MAX2683 toc17 supply voltage (v) input p1db (dbm) t a = +25 c t a = +85 c t a = -40 c -5 -4 -2 -3 -1 0 2.5 3.5 3.0 4.0 4.5 5.0 5.5 input p1db vs. supply voltage (r bias = 2k ? ) MAX2683 toc18 supply voltage (v) input p1db (dbm) t a = +25 c t a = +85 c t a = -40 c 0 2 1 4 3 6 5 7 9 8 10 3400 3500 3550 3450 3600 3650 3700 3750 3800 conversion gain vs. rf frequency (r bias = 1.2k ? ) MAX2683 toc19 rf frequency (mhz) conversion gain (db) enx2 = v cc enx2 = gnd t a = -40 c t a = +85 c t a = +25 c 0 3 2 1 4 5 6 7 8 9 10 250 290 270 310 330 350 conversion gain vs. frequency (enx2 = gnd) MAX2683 toc20 if frequency (mhz) conversion gain (db) t a = -40 c t a = +85 c t a = +25 c if port narrowband match at 300mhz 0 3 2 1 4 5 6 7 8 9 10 250 290 270 310 330 350 conversion gain vs. if frequency (enx2 = v cc ) MAX2683 toc21 if frequency (mhz) conversion gain (db) t a = -40 c t a = +85 c t a = +25 c if port narrowband match at 300mhz -100 -80 -40 -60 -20 0 1500 1700 1600 1800 1900 2000 lox2 port return loss vs. lo frequency (enx2 = gnd) MAX2683 toc22 lo frequency (mhz) return loss (db) -50 -40 -20 -30 -10 0 3000 3360 3180 3540 3720 3900 lox1 port return loss vs. lo frequency (enx2 = v cc ) MAX2683 toc23 lo frequency (mhz) return loss (db) typical operating characteristics (continued) (MAX2683/max2684 ev kit, v cc = +5v, r bias = 1.2k ? , enx2 = gnd, f rf = 3.6ghz, p rf = -20dbm, f lox2 = 1650mhz for MAX2683 or f lox2 = 1350mhz for max2684, p lo = -5dbm, all input/output ports terminated in 50 ? , ifout+ and ifout- matched to single-ended 50 ? load, t a = +25?, unless otherwise noted.) MAX2683
MAX2683/max2684 3.5ghz downconverter mixers with selectable lo doubler _______________________________________________________________________________________ 7 MAX2683 lox2 s11 vs. r bias (enx2 = gnd) 1.2k ? , 2k ? , 820 ? MAX2683 if port s11 vs. r bias 1.2k ? , 2k ? , 820k ? MAX2683 rfin s11 vs. r bias 2k ? , 1.2k ? , 820k ? l o x1 s 11 vs. r bias (enx2 = v cc ) 820 ? 1.2k ? 2k ? typical operating characteristics (continued) (MAX2683/max2684 ev kit, v cc = +5v, r bias = 1.2k ? , enx2 = gnd, f rf = 3.6ghz, p rf = -20dbm, f lox2 = 1650mhz for MAX2683 or f lox2 = 1350mhz for max2684, p lo = -5dbm, all input/output ports terminated in 50 ? , ifout+ and ifout- matched to single-ended 50 ? load, t a = +25?, unless otherwise noted.)
MAX2683/max2684 3.5ghz downconverter mixers with selectable lo doubler 8 _______________________________________________________________________________________ -5 -2 -3 -4 -1 0 1 2 3 4 5 -20 -15 -10 -5 0 conversion gain vs. lo power (enx2 = gnd) MAX2683 toc34 lo power (dbm) conversion gain (db) t a = -40 c t a = +25 c t a = +85 c -5 -2 -3 -4 -1 0 1 2 3 4 5 -20 -15 -10 -5 0 conversion gain vs. lo power (enx2 = v cc ) MAX2683 toc35 lo power (dbm) conversion gain (db) t a = -40 c t a = +25 c t a = +85 c 10 12 11 14 13 16 15 17 19 18 20 -16 -12 -10 -14 -8 -6 -4 -2 0 noise figure vs. lo power MAX2683 toc36 lo power (dbm) noise figure (db) typical operating characteristics (continued) (MAX2683/max2684 ev kit, v cc = +5v, r bias = 1.2k ? , enx2 = gnd, f rf = 3.6ghz, p rf = -20dbm, f lox2 = 1650mhz for MAX2683 or f lox2 = 1350mhz for max2684, p lo = -5dbm, all input/output ports terminated in 50 ? , ifout+ and ifout- matched to single-ended 50 ? load, t a = +25?, unless otherwise noted.) 0 30 20 10 40 50 60 70 80 90 100 2.5 3.5 3.0 4.0 4.5 5.0 5.5 supply current vs. supply voltage (enx2 = gnd) MAX2683/4 toc28 supply voltage (v) supply current (ma) t a = -40 c r bias = 820 ? r bias = 1.2k ? r bias = 2.0k ? t a = +85 c t a = +25 c 0 30 20 10 40 50 60 70 80 90 100 2.5 3.5 3.0 4.0 4.5 5.0 5.5 supply current vs. supply voltage (enx2 = v cc ) MAX2683/4 toc29 supply voltage (v) supply current (ma) t a = +85 c t a = +25 c r bias = 820 ? r bias = 1.2k ? r bias = 2.0k ? t a = -40 c 20 35 30 25 40 45 50 55 60 65 70 800 1200 1000 1400 1600 1800 2000 supply current vs. r bias MAX2683/4 toc30 r bias ( ?) supply current (ma) v cc = +5v v cc = +5v v cc = +3.3v v cc = +3.3v enx2 = v cc enx2 = gnd -0.2 0.6 0.4 0.2 0 1.0 0.8 1.2 1.4 800 1200 1400 1000 1600 1800 2000 conversion gain vs. r bias MAX2683/4 toc31 r bias ( ? ) conversion gain (db) v cc = +3.3v v cc = +5v 6 8 7 10 9 12 11 13 800 1200 1400 1000 1600 1800 2000 input ip3 vs. r bias MAX2683/4 toc32 r bias ( ? ) input ip3 (dbm) v cc = +5v v cc = +3.3v -4 -2 -3 0 -1 2 1 3 800 1200 1400 1000 1600 1800 2000 input p1db vs. r bias MAX2683/4 toc33 r bias ( ? ) input p1db (dbm) v cc = +5v v cc = +3.3v max2684
MAX2683/max2684 3.5ghz downconverter mixers with selectable lo doubler _______________________________________________________________________________________ 9 -5 -2 -3 -4 -1 0 1 2 3 4 5 2.5 3.5 3.0 4.0 4.5 5.0 5.5 conversion gain vs. supply voltage (r bias = 820 ? ) MAX2683 toc37 supply voltage (v) conversion gain (db) t a = -40 c t a = +25 c t a = +85 c -3 -1 -2 0 1 2 3 2.5 3.5 3.0 4.0 4.5 5.0 5.5 conversion gain vs supply voltage (r bias = 1.2k ? ) MAX2683 toc38 supply voltage (v) conversion gain (db) t a = +85 c t a = +25 c t a = -40 c enx2 = v cc enx2 = gnd -5 -2 -3 -4 -1 0 1 2 3 4 5 2.5 3.5 3.0 4.0 4.5 5.0 5.5 conversion gain vs. supply voltage (r bias = 2k ? ) MAX2683 toc39 supply voltage (v) conversion gain (db) t a = +85 c t a = +25 c t a = -40 c 0 3 9 6 12 15 2.5 3.5 3.0 4.0 4.5 5.0 5.5 input ip3 vs. supply voltage (r bias = 820 ? ) MAX2683 toc40 supply voltage (v) input ip3 (dbm) t a = -40 c t a = +85 c t a = +25 c 5 8 7 6 9 10 11 12 13 14 15 2.5 3.5 3.0 4.0 4.5 5.0 5.5 input ip3 vs. supply voltage (r bias = 1.2k ? ) MAX2683 toc41 supply voltage (v) input ip3 (dbm) t a = +85 c t a = -40 c t a = +25 c 0 3 2 1 4 5 6 7 8 9 10 2.5 3.5 3.0 4.0 4.5 5.0 5.5 input ip3 vs. supply voltage (r bias = 2k ? ) MAX2683 toc42 supply voltage (v) input ip3 (dbm) t a = -+85 c t a = -40 c t a = +25 c max2684 typical operating characteristics (continued) (MAX2683/max2684 ev kit, v cc = +5v, r bias = 1.2k ? , enx2 = gnd, f rf = 3.6ghz, p rf = -20dbm, f lox2 = 1650mhz for MAX2683 or f lox2 = 1350mhz for max2684, p lo = -5dbm, all input/output ports terminated in 50 ? , ifout+ and ifout- matched to single-ended 50 ? load, t a = +25?, unless otherwise noted.) -10 -6 2 -2 6 10 2.5 3.5 3.0 4.0 4.5 5.0 5.5 input p1db vs. supply voltage (r bias = 820 ? ) MAX2683 toc43 supply voltage (v) input p1db (dbm) t a = +85 c t a = -40 c t a = +25 c -5 -2 -3 -4 -1 0 1 2 3 4 5 2.5 3.5 3.0 4.0 4.5 5.0 5.5 input p1db vs. supply voltage (r bias = 1.2k ? ) MAX2683 toc44 supply voltage (v) input p1db (dbm) t a = +85 c t a = -40 c t a = +25 c -10 -7 -8 -9 -6 -5 -4 -3 -2 -1 0 2.5 3.5 3.0 4.0 4.5 5.0 5.5 input p1db vs. supply voltage (r bias = 2k ? ) MAX2683 toc45 supply voltage (v) input p1db (dbm) t a = +85 c t a = +25 c t a = -40 c
MAX2683/max2684 3.5ghz downconverter mixers with selectable lo doubler 10 ______________________________________________________________________________________ lox1 s11 vs. r bias (enx2 = v cc ) 1.2k ? , 2k ? , 820 ? 1.2k ? , 2k ? , 820 ? lox2 s11 vs. r bias (enx2 = gnd) -5 -2 -3 -4 -1 0 1 2 3 4 5 860 900 880 920 940 960 MAX2683 toc49 if frequency (mhz) conversion gain (db) conversion gain vs. if frequency (enx2 = v cc ) t a = +25 c t a = +85 c t a = -40 c -50 -40 -20 -30 -10 0 1200 1300 1250 1350 1400 1450 lox2 port return loss vs. lo frequency MAX2683 toc50 lo frequency (mhz) return loss (db) -50 -40 -20 -30 -10 0 2400 2600 2500 2700 2800 2900 lox1 port return loss vs. lo frequency MAX2683 toc51 lo frequency (mhz) return loss (db) max2684 typical operating characteristics (continued) (MAX2683/max2684 ev kit, v cc = +5v, r bias = 1.2k ? , enx2 = gnd, f rf = 3.6ghz, p rf = -20dbm, f lox2 = 1650mhz for MAX2683 or f lox2 = 1350mhz for max2684, p lo = -5dbm, all input/output ports terminated in 50 ? , ifout+ and ifout- matched to single-ended 50 ? load, t a = +25?, unless otherwise noted.) -5 -2 -3 -4 -1 0 1 2 3 4 5 3400 3500 3450 3550 3600 3650 3700 3750 3800 MAX2683 toc46 rf frequency (mhz) conversion gain (db) conversion gain vs. rf frequency (enx2 = gnd) t a = +25 c t a = +85 c t a = -40 c -5 -2 -3 -4 -1 0 1 2 3 4 5 3400 3500 3450 3550 3600 3650 3700 3750 3800 MAX2683 toc47 rf frequency (mhz) conversion gain (db) conversion gain vs. rf frequency (enx2 = v cc ) t a = +25 c t a = +85 c t a = -40 c -5 -2 -3 -4 -1 0 1 2 3 4 5 860 900 880 920 940 960 MAX2683 toc48 if frequency (mhz) conversion gain (db) conversion gain vs. if frequency (enx2 = gnd) t a = +25 c t a = +85 c t a = -40 c
MAX2683/max2684 3.5ghz downconverter mixers with selectable lo doubler ______________________________________________________________________________________ 11 pin description if port s11 vs. r bias 1.2k ? , 2k ? , 820k ? max2684 name function 1 v cc supply voltage input. bypass with a 100pf capacitor as close to the pin as possible. 2, 3, 5, 9, 10, 12, 13, 15, ep gnd ground. connect to ground plane with a low-inductance connection. solder exposed paddle evenly to the board ground plane. pin 4 rfin rf input port to mixer. requires a matching network and a dc-blocking capacitor that may be part of this network. 6 enx2 lo frequency-doubler enable input. drive low to enable the lo doubler and run external lo at half frequency. drive high to disable the lo doubler and run external lo at full frequency. 16 bias bias-setting resistor connection. a resistor, r bias , placed from bias to gnd sets the linearity and supply current of the mixer. 11, 14 ifout-, ifout+ differential, open-collector if output ports of mixer. requires a matching network and pull-up inductors to v cc that can be part of this network. 8 lox1 full-frequency local-oscillator input to downconverter mixer. requires a dc-blocking capacitor. leave unconnected if this pin is not used. 7 lox2 half-frequency local-oscillator input to lo frequency doubler, lo filter, and downconverter mixer. requires a dc-blocking capacitor. leave unconnected if this pin is not used. rfin s11 vs. r bias 2k ? , 1.2k ? , 820k ? typical operating characteristics (continued) (MAX2683/max2684 ev kit, v cc = +5v, r bias = 1.2k ? , enx2 = gnd, f rf = 3.6ghz, p rf = -20dbm, f lox2 = 1650mhz for MAX2683 or f lox2 = 1350mhz for max2684, p lo = -5dbm, all input/output ports terminated in 50 ? , ifout+ and ifout- matched to single-ended 50 ? load, t a = +25?, unless otherwise noted.)
MAX2683/max2684 3.5ghz downconverter mixers with selectable lo doubler 12 ______________________________________________________________________________________ detailed description the MAX2683/max2684 are double-balanced down- converter mixers optimized for the 3.4ghz to 3.8ghz frequency band. the MAX2683 is designed for down- conversion to if frequencies of 100mhz to 400mhz, while the max2684 is designed for if frequencies of 800mhz to 1000mhz. in addition, the devices include a logic-level lo frequency doubler, an integrated lo fil- ter, and externally programmable bias control circuitry. rf input rfin is a single-ended input that accepts frequencies in the 3.4ghz to 3.8ghz range. it requires a matching network and a dc-blocking capacitor that may be part of this network. see typical operation circuit for rec- ommended component values. see table 1 for rfin port s-parameters. lo inputs, lo frequency doubler, and lo filter the MAX2683/max2684 feature an internal lo frequen- cy doubler that allows the external lo to run at full or half frequency. running the lo at half frequency has the benefit of reducing unwanted lo leakage through the low-noise amplifier (lna) to the antenna, reducing injection pulling of the voltage-controlled oscillator r bias = 2k ? s11 phase (degrees) -126.0 -124.7 -123.5 -122.3 3600 r bias = 1.2k ? s11 mag s11 phase (degrees) s11 mag 0.570 -125.1 0.547 0.567 -123.7 0.544 0.564 -122.5 0.540 0.561 -121.3 0.536 r bias = 820 ? rf frequency (mhz) s11 mag s11 phase (degrees) 3550 0.594 -117.5 3500 0.590 -116.2 3450 0.586 -114.8 3400 0.582 -113.3 0.599 -118.7 0.574 -126.1 0.553 -127.0 3650 0.602 -120.0 0.576 -127.2 0.555 -128.1 3700 0.607 -121.2 0.580 -128.3 0.559 -129.1 3750 0.608 -122.3 0.583 -129.3 0.563 -130.1 3800 0.612 -123.5 0.587 -130.2 0.567 -131.0 3400 0.578 -117.5 0.537 -119.7 0.512 -121.3 3450 0.582 -119.0 0.542 -121.2 0.518 -122.7 3500 0.586 -120.5 0.545 -122.6 0.523 -124.1 3550 0.590 -121.8 0.545 -122.7 0.527 -125.5 3600 0.595 -123.1 0.555 -125.4 0.533 -126.8 3650 0.599 -124.5 0.558 -126.7 0.537 -128.0 3700 0.604 -125.7 0.564 -127.8 0.542 -129.1 3750 0.606 -126.7 0.568 -128.9 0.546 -130.2 3800 0.611 -127.9 0.572 -129.9 0.552 -13.1 MAX2683 max2684 table 1. MAX2683/max2684 rfin port s-parameters (v cc = +5v, t a = +25 c)
MAX2683/max2684 3.5ghz downconverter mixers with selectable lo doubler ______________________________________________________________________________________ 13 (vco) from the pa, and reducing the demands of designing a high-frequency vco. an internal lo band- pass filter is integrated after the frequency doubler to help reduce lo harmonic content and spurious mixing. to enable the lo frequency doubler, drive enx2 to a logic-low level and connect the half-frequency external lo to the lox2 port. to disable and bypass the lo fre- quency doubler and lo filter, drive enx2 to a logic- high level and connect the full-frequency external lo to 1800 0.254 -98.9 3600 0.271 -164.9 1875 0.262 lox1 (enx2 = v cc ) lox2 frequency (mhz) s11 mag s11 phase (degrees) 3450 0.306 -167.3 3300 0.338 -167.0 3150 0.358 -165.4 3000 0.362 -163.5 lox2 (enx2 = gnd) lox2 frequency (mhz) s11 mag s11 phase (degrees) 1725 0.247 -95.3 1650 0.241 -91.1 1575 0.237 -86.7 1500 0.234 -82.0 -102.3 3750 0.235 -160.6 1950 0.268 -104.9 3900 0.200 -154.8 1500 0.211 -77.9 3000 0.343 -159.1 1575 0.213 -83.7 3150 0.341 -160.0 1650 0.217 -89.3 3300 0.330 -162.3 1725 0.222 -94.5 3450 0.310 -162.0 1800 0.230 -99.3 3600 0.285 -160.2 1875 0.240 -103.6 3750 0.256 -156.4 1950 0.249 -107.1 3900 0.224 -151.1 1500 0.213 -78.0 3000 0.339 -155.2 1575 0.214 -83.7 3150 0.340 -156.0 1650 0.218 -89.3 3300 0.332 -156.0 1725 0.223 -94.5 3450 0.315 -155.3 1800 0.231 -99.3 3600 0.294 -153.3 1875 0.241 -103.7 3750 0.268 -150.0 1950 0.249 -107.2 3900 0.240 -145.5 r bias = 820 ? r bias = 1.2k ? r bias = 2.0k ? table 2. MAX2683 lo port s-parameters (v cc = +5v, t a = +25 c)
MAX2683/max2684 3.5ghz downconverter mixers with selectable lo doubler 14 ______________________________________________________________________________________ the lox1 port. disabling the lo doubler has the bene- fit of reducing the supply current by 15ma. see tables 2 and 3 for the lo input frequency ranges. lox1 and lox2 are single-ended lo inputs that achieve a return loss of typically -20db over the speci- fied lo input frequency range. they are internally biased and require a dc-blocking capacitor. to improve lox2 input return loss, use a series inductor between the blocking capacitor and lox2 input. see the typical operating circuit for recommended compo- nent values. see tables 2 and 3 for lox1 and lox2 s-parameters. leave the unused port unconnected. if output the MAX2683 is optimized for if frequencies in the 100mhz to 400mhz range, while the max2684 is opti- mized for if frequencies in the 900mhz to 1000mhz range. the differential, open-collector ifout- and ifout+ ports require external pull-up inductors to v cc , 1400 0.210 -72.4 2800 0.305 -158.8 1450 0.209 lox1 (enx2 = v cc ) lox1 frequency (mhz) s11 mag s11 phase (degrees) 2700 0.296 -152.1 2600 0.281 -147.5 2500 0.266 -143.5 2400 0.249 -138.9 lox2 (enx2 = gnd) lox2 frequency (mhz) s11 mag s11 phase (degrees) 1350 0.212 -69.1 1300 0.215 -66.0 1250 0.219 -62.8 1200 0.225 -59.6 -75.4 2900 0.302 -167.3 1200 0.228 -64.7 2400 0.235 -135.3 1250 0.222 -68.9 2500 0.251 -139.8 1300 0.219 -71.2 2600 0.265 -143.5 1350 0.216 -74.4 2700 0.280 -147.8 1400 0.214 -77.8 2800 0.290 -152.8 1450 0.213 -81.0 2900 0.292 -157.0 1200 0.212 -75.4 2400 0.224 -132.3 1250 0.222 -63.1 2500 0.240 -136.6 1300 0.217 -66.2 2600 0.255 -140.1 1350 0.213 -69.2 2700 0.269 -143.8 1400 0.211 -72.3 2800 0.279 -147.6 1450 0.209 -75.3 2900 0.283 -150.3 r bias = 820 ? r bias = 1.2k ? r bias = 2.0k ? table 3. max2684 lo port s-parameters (v cc = +5v, t a = +25 c)
MAX2683/max2684 3.5ghz downconverter mixers with selectable lo doubler ______________________________________________________________________________________ 15 as well as an output matching network for optimum per- formance. see typical operating circuit for recommend- ed component values. see tables 4 and 5 for ifout port s-parameters. bias circuitry the linearity and supply current of the MAX2683/ max2684 are externally programmable with a single resistor, r bias , from bias to gnd. a nominal resistor value of 1.2k ? will set an iip3 of +9dbm and a supply current of 55ma. decreasing the resistor value improves linearity at the cost of increased supply cur- rent. increasing the resistor value decreases supply current while degrading linearity. use resistor values in the range of 820k ? to 2k ? . __________ _ applications information layout considerations a properly designed pc board is an essential part of any rf/microwave circuit. keep rf signal lines as short as possible to reduce losses, radiation, and induc- tance. use separate, low-inductance vias to the ground plane for each ground pin. for best performance, sol- der the exposed pad on the bottom of the device pack- age evenly to the board ground plane. power-supply and enx2 bypassing proper voltage-supply bypassing is essential for high- frequency circuit stability. bypass v cc with a 10? capacitor in parallel with a 100pf capacitor located as close to the v cc pin as possible. bypass enx2 with a 100pf capacitor to ground to mini- mize noise injected into the lo doubler cell. use a series resistor (typically 1.2k ? ) to further reduce cou- pling of high-frequency signals into the enx2 pin. r bias = 1.2k ? s11 phase (degrees) -10.9 -23.5 -20.3 -17.2 -14.2 r bias = 1.2k ? s11 mag s11 phase (degrees) s11 mag 0.914 -11.2 0.930 0.893 -24.5 0.907 0.900 -21.3 0.911 0.905 -17.8 0.917 0.905 -14.7 0.920 r bias = 820 ? rf frequency (mhz) s11 mag s11 phase (degrees) 150 0.915 -11.3 350 0.894 -24.5 300 0.899 -21.3 250 0.904 -17.7 200 0.907 -14.8 r bias = 1.2k ? s11 phase (degrees) -49.7 -53.3 -52.3 -51.4 -50.6 960 r bias = 1.2k ? s11 mag s11 phase (degrees) s11 mag 0.955 -49.6 0.955 0.940 -53.1 0.937 0.944 -52.3 0.941 0.948 -51.4 0.946 0.952 -50.5 0.950 r bias = 820 ? rf frequency (mhz) s11 mag s11 phase (degrees) 860 0.955 -49.4 940 0.943 -53.0 920 0.946 -52.0 900 0.950 -51.1 880 0.952 -50.3 0.941 -53.6 0.936 -54.0 0.935 -53.8 table 5. max2684 ifout port s-parameters (v cc = +5v, t a = +25 c) table 4. MAX2683 ifout port s-parameters (v cc = +5v, t a = +25 c)
MAX2683/max2684 3.5ghz downconverter mixers with selectable lo doubler 16 ______________________________________________________________________________________ typical operating circuit 1 2 16 15 14 13 12 11 10 9 bias gnd ifout+ gnd gnd ifout- gnd gnd 3 4 5 6 7 8 v cc gnd gnd rfin gnd enx2 lox2 lox1 100pf r bias 1.5k ? 1pf 10 f 3300pf 1.2nh v cc rf input on off lo doubler enable 1.2k ? 100pf 100pf 100pf 3.9nh half-frequency lo input full-frequency lo input 1.5k ? 39nh 8.2pf 3.3pf 8.2pf 0.01 f 39nh balun 300mhz if output MAX2683 14 13 12 11 ifout+ gnd gnd ifout- 300 ? 6.8nh 8.2pf 8.2pf 0.01 f 6.8nh balun 900mhz if output v cc v cc max2684 if output differential to single-ended conversion network. note: evenly solder exposed pad (ep) on bottom of device to ground plane.
MAX2683/max2684 3.5ghz downconverter mixers with selectable lo doubler tssop4.40mm.eps maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a maxim product. no circuit patent licenses are implied. maxim reserves the right to change the circuitry and specifications without notice at any time. maxim integrated products, 120 san gabriel drive, sunnyvale, ca 94086 408-737-7600 ____________________ 17 ? 2003 maxim integrated products printed usa is a registered trademark of maxim integrated products. package information (the package drawing(s) in this data sheet may not reflect the most current specifications. for the latest package outline info rmation go to www.maxim-ic.com/packages .)


▲Up To Search▲   

 
Price & Availability of MAX2683

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X