![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
Data Sheet, Rev. 1.03, Dec. 2005 www..com HYB18H256321AF-12/14/16 HYB18H256321AFL14/16/20 256-Mbit x32 GDDR3 DRAM RoHS compliant Memory Products www..com Edition 2005-12 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 Munchen, Germany (c) Infineon Technologies AG 2005. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Under no circumstances may the Infineon Technologies product as referred to in this data sheet be used in 1. Any applications that are intended for military usage (including but not limited to weaponry), or 2. Any applications, devices or systems which are safety critical or serve the purpose of supporting, maintaining, sustaining or protecting human life (such applications, devices and systems collectively referred to as "Critical Systems"), if a) A failure of the Infineon Technologies product can reasonable be expected to - directly or indirectly (i) Have a detrimental effect on such Critical Systems in terms of reliability, effectiveness or safety; or (ii) Cause the failure of such Critical Systems; or b) A failure or malfunction of such Critical Systems can reasonably be expected to - directly or indirectly (i) Endanger the health or the life of the user of such Critical Systems or any other person; or (ii) Otherwise cause material damages (including but not limited to death, bodily injury or significant damages to property, whether tangible or intangible). HYB18H256321AF[L] 256-Mbit GDDR3 www..com HYB18H256321AF-12/14/16, HYB18H256321AFL14/16/20 Revision History: Page 87,88 91-95 10,12,18,34 and 81 15 88 Rev. 1.03 2005-12 Subjects (major changes since last revision) Table 35 and Table 36: change all IDD values ( Table 38 and Table 39: change tRC= tRAS + tRP editorial changes: see change list Figure 2: added SEN pin Table 35 and Table 36: added IDD values, (IDD5B and IDD7 are different from HYB18H512xxx. Previous Revision 1.02 We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: techdoc.mp@infineon.com Data Sheet 3 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Table of Contents 1 1.1 1.2 2 2.1 2.2 2.3 2.4 2.4.1 2.4.2 2.5 2.5.1 2.5.2 2.6 3 3.1 3.2 3.3 3.3.1 3.3.2 3.3.3 4 4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6 4.5 4.6 4.6.1 4.6.2 4.6.3 4.6.3.1 4.6.3.2 4.6.4 4.6.5 4.6.6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ball Definition and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mirror Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Command Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . State Diagram and Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . State Diagram for One Activated Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Function Truth Table for more than one Activated Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Function Truth Table for CKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Boundary Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Disabling the scan feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scan Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scan Initialization for Stand-Alone Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scan Initialization in regular SGRAM operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scan Exit Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programmable impedance output drivers and active terminations . . . . . . . . . . . . . . . . . . . . . . . . . . . GDDR3 IO Driver and Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self Calibration for Driver and Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamic Switching of DQ terminations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output impedance and Termination DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . Extended Mode Register Set Command (EMRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DLL enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Termination Rtt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Driver Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vendor Code and Revision Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mode Register Set Command (MRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Burst length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Burst type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CAS Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DLL Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bank / Row Activation (ACT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Writes (WR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write - Basic Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write - Basic Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write - Consecutive Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gapless Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bursts with Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write with Autoprecharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write followed by Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write followed by DTERDIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 11 12 13 15 16 16 17 20 20 21 22 23 23 23 27 27 28 30 31 31 33 33 34 36 36 37 38 38 38 38 38 39 40 41 41 41 42 42 42 43 44 44 46 47 47 48 49 50 51 Data Sheet Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com 4.6.7 4.6.8 4.7 4.7.1 4.7.2 4.7.3 4.7.3.1 4.7.4 4.7.5 4.7.6 4.7.7 4.7.8 4.8 4.8.1 4.8.2 4.8.3 4.9 4.10 4.11 4.11.1 4.12 4.13 4.14 4.14.1 4.14.2 4.14.3 4.14.4 4.14.5 5 5.1 5.2 5.2.1 5.3 5.4 5.5 5.6 5.7 5.7.1 5.7.2 5.8 5.9 5.10 5.10.1 5.10.2 5.11 5.12 5.13 6 6.1 6.2 Write with Autoprecharge followed by Read / Read with Autoprecharge . . . . . . . . . . . . . . . . . . . . Write followed by Precharge on same bank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reads (RD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read - Basic Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read - Basic Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Consecutive Read Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gapless Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bursts with Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read followed by DTERDIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read with Autoprecharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read followed by Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read followed by Precharge on the same Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Termination Disable (DTERDIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DTERDIS followed by DTERDIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DTERDIS followed by READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DTERDIS followed by Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Precharge (PRE/PREALL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Auto Refresh Command (AREF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self-Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self-Refresh Entry (SREFEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self-Refresh Exit (SREFEX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DLL Off Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frequency range in DLL off mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Initialization in DLL off mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Writes (WR) in DLL off mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reads (RD) in DLL off mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self Refresh in DLL off mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings and Operation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Operation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended Power & DC Operation Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC & AC Logic Input Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential Clock DC and AC Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Driver current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Driver IV characteristics at 40 Ohms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Termination IV Characteristic at 60 Ohms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Termination IV Characteristic at 120 Ohms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Termination IV Characteristic at 240 Ohms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Current Ratings (HYB18H256321AF-12/14/16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Current Ratings (HYB18H256321AFL14/16/20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Current Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Timings (HYB18H256321AF-12/14/16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Timings (HYB18H256321AFL14/16/20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 53 54 54 56 57 57 58 59 60 61 62 63 64 65 66 67 69 70 70 71 72 73 73 73 74 75 78 79 79 80 80 81 81 82 82 83 83 84 85 86 87 87 88 89 91 93 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Data Sheet 5 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 16 Figure 17 Figure 18 Figure 20 Figure 21 Figure 23 Figure 24 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 31 Figure 32 Figure 33 Figure 34 Figure 36 Figure 37 Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Figure 43 Figure 45 Figure 46 Figure 47 Figure 48 Figure 50 Figure 52 Figure 53 Figure 54 Figure 56 Figure 58 Figure 59 Figure 60 Figure 61 Figure 62 Figure 63 Data Sheet Ballout 256-Mbit Graphics RAM [Top View, MF = Low] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . State diagram for one bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal Block Diagram (Reference only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scan Capture Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scan Shift Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scan Initialization for Stand-Alone mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scan Initialization Sequence within regular SGRAM Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Boundary Scan Exit Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Up Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Driver simplified schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Termination update Keep Out time after Autorefresh command . . . . . . . . . . . . . . . . . . . . . . . . . . Self Calibration of PMOS and NMOS Legs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ODT Disable Timing during a READ command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extended Mode Register Bitmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extended Mode Register Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing of Vendor Code and Revision ID Generation on DQ[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . Mode Register Bitmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mode Register Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bank Activating Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock, CKE and Command/Address Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Basic Write Burst / DM Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Basic Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gapless Write Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Consecutive Write Bursts with Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write with Autoprecharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write followed by Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Command followed by DTERDIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write with Autoprecharge followed by Read or Read with Autoprecharge on another bank. . . . . . Write followed by Precharge on same Bank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Basic Read Burst Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gapless Consecutive Read Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Consecutive Read Bursts with Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Command followed by DTERDIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read with Autoprecharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read followed by Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read followed by Precharge on the same bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DTERDIS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DTERDIS Command followed by DTERDIS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DTERDIS Command followed by READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DTERDIS Command followed by Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Precharge Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Auto Refresh Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self-Refresh Entry Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self Refresh Entry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self Refresh Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DLL off: Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DLL off: Write followed by Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write followed by Precharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DLL off: Read Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DLL off: Read followed by Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 11 15 20 23 26 26 28 29 30 32 33 34 35 36 37 38 39 40 41 43 44 45 46 47 48 49 50 51 52 53 55 56 57 58 59 60 61 62 63 64 65 66 68 69 70 70 71 72 73 74 75 76 77 Rev. 1.03, 2005-12 HYB18H256321AF[L] 256-Mbit GDDR3 www..com Figure 64 Figure 65 Figure 66 Figure 67 Figure 68 Figure 69 Output Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Ohm Driver Pull-Down and Pull-Up characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Ohm Active Termination Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Ohm Active Termination Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 Ohm Active Termination Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PG-TFBGA 136 package (11mm x 14mm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 83 84 85 86 96 Data Sheet 7 Rev. 1.03, 2005-12 HYB18H256321AF[L] 256-Mbit GDDR3 www..com List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Table 24 Table 25 Table 26 Table 27 Table 28 Table 29 Table 30 Table 31 Table 32 Table 33 Table 34 Table 35 Table 36 Table 37 Table 38 Table 39 Table 40 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ball Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ball Assignment with Mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Command Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Minimum delay from RD/A and WR/A to any other command (to another bank) with concurrent Autoprecharge 19 Function Truth Table I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Function Truth Table II (CKE Table). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Boundary Scan Exit) Order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scan Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scan DC Electrical Characteristics and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scan AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scan AC Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Range of external resistance ZQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Termination Types and Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Number of Legs used for Terminator and Driver Self Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision ID and Vendor Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Burst Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mapping of WDQS and DM Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BA1 and BA0 precharge bank selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DLL off: General Timing Parameter for HYB18H256321AFL14/16/20 . . . . . . . . . . . . . . . . . . . . . . General Timing Parameter for HYB18H256321AFL14/16/20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Timing Parameter for HYB18H256321AFL14/16/20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self Refresh Exit Timing Parameter for HYB18H256321AFL14/16/20. . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power & DC Operation Conditions.(0 C Tc 85 C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC & AC Logic Input Levels (0 C Tc 85 C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential Clock DC and AC Input conditions (0 C Tc 85 C) . . . . . . . . . . . . . . . . . . . . . . . . Pin Capacitances (VDDQ = 1.8V, TA = 25C, f= 1MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programmed Driver IV Characteristics at 40 Ohm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programmed Terminator Characteristics at 60 Ohm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programmed Terminator Characteristics of 120 Ohm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programmed Terminator Characteristic at 240 Ohm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Current Ratings (0 C Tc 85 C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Current Ratings (0 C Tc 85 C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Current Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Parameters (HYB18H256321AF-12/14/16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Parameters (HYB18H256321AFL14/16/20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PG-TFBGA 136 Package Thermal Resistances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 12 13 16 17 21 22 24 25 25 26 30 33 33 35 36 39 41 45 67 73 74 76 78 79 80 81 81 82 83 84 85 86 87 88 89 91 93 97 Data Sheet 8 Rev. 1.03, 2005-12 www..com 256-Mbit x32 GDDR3 DRAM HYB18H256321AF[L] HYB18H256321AF-12/14/16 HYB18H256321AFL14/16/20 1 1.1 * * * * * * * * * * * * * * * * * * * * * * * * * Overview Features 2.0 V VDDQ IO voltage (HYB18H256321AF-12/14/16) 2.0 V VDD core voltage (HYB18H256321AF-12/14/16) 1.8 V VDDQ IO voltage (HYB18H256321AFL14/16/20) 1.8 V VDD core voltage (HYB18H256321AFL14/16/20) Organization: 2048K x 32 x 4 banks 4096 rows and 512 columns (128 burst start locations) per bank Differential clock inputs (CLK and CLK) CAS latencies of 7 8, 9, 10, 11 Write latencies of 3, 4 Burst sequence with length of 4, 8. 4n pre fetch Short RAS to CAS timing for Writes tRAS Lockout support tWR programmable for Writes with Auto-Precharge Data mask for write commands Single ended READ strobe (RDQS) per byte. RDQS edge-aligned with READ data Single ended WRITE strobe (WDQS) per byte. WDQS center-aligned with WRITE data DLL aligns RDQS and DQ transitions with Clock Programmable IO interface including on chip termination (ODT) Autoprecharge option with concurrent auto precharge support 4k Refresh (32ms) Autorefresh and Self Refresh PG-TFBGA 136 package (11mm x 14mm) Calibrated output drive. Active termination support RoHS Compliant Product1) 1)RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers. Data Sheet 9 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Overview Table 1 Ordering Information Organisation x32 Clock (MHz) 800/700/600 700/600/500 Package PG-TFBGA 136 Part Number1) HYB18H256321AF-12/14/16 HYB18H256321AFL14/16/20 1) HYB: designator for memory components 18H: VDDQ = 1.8 V 256: 256-Mbit density 32: Organization A: Product revision F: Lead- and Halogen-Free L: Low power product 1.2 Description The Infineon 256-Mbit x32 GDDR3 DRAM is a high speed memory device, designed for high bandwidth intensive applications like PC graphics systems. The chip's 4 bank architecture is optimized for high speed. HYB18H256321AF[L] uses a double data rate interface and a 4n-pre fetch architecture. The GDDR3 interface transfers two 32 bit wide data words per clock cycle to/from the I/O pins. Corresponding to the 4n-pre fetch a single write or read access consists of a 128 bit wide, one-clock-cycle data transfer at the internal memory core and four corresponding 32 bit wide, one-half-clock-cycle data transfers at the I/O pins. Single-ended unidirectional Read and Write Data strobes are transmitted simultaneously with Read and Write data respectively in order to capture data properly at the receivers of both the Graphics SDRAM and the controller. Data strobes are organized per byte of the 32 bit wide interface. For read commands the RDQS are edge-aligned with data, and the WDQS are center-aligned with data for write commands. The HYB18H256321AF[L] operates from a differential clock (CLK and CLK). Commands (addresses and control signals) are registered at every positive edge of CLK. Input data is registered on both edges of WDQS, and output data is referenced to both edges of RDQS. In this document references to "the positive edge of CLK" imply the crossing of the positive edge of CLK and the negative edge of CLK. Similarly, the "negative edge of CLK" refers to the crossing of the negative edge of CLK and the positive edge of CLK. References to RDQS are to be interpreted as any or all RDQS<3:0>. WDQS, DM and DQ should be interpreted in a similar fashion. Read and write accesses to the HYB18H256321AF[L] are burst oriented. The burst length is fixed to 4 and 8 and the two least significant bits of the burst address are "Don't Care" and internally set to LOW. Accesses begin with the registration of an ACTIVATE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVATE command are used to select the bank and the row to be accessed. The address bits registered coincident with the READ or WRITE command are used to select the bank and the column location for the burst access. Each of the 4 banks consists of 4096 row locations and 512 column locations. An AUTO PRECHARGE function can be combined with READ and WRITE to provide a self-timed row precharge that is initiated at the end of the burst access. The pipe lined, multibank architecture of the HYB18H256321AF[L] allows for concurrent operation, thereby providing high effective bandwidth by hiding row precharge and activation time. The "On Die Termination" interface (ODT) is optimized for high frequency digital data transfers and is internally controlled. The termination resistor value can be set using an external ZQ resistor or disabled through the Extended Mode Register. The output driver impedance can be set using the Extended Mode Register. It can either be set to ZQ / 6 (auto calibration) or to 35, 40 or 45 Ohms. Auto Refresh and Power Down with Self Refresh operations are supported. A standard JEDEC PG-TFBGA 136 package is used which enables ultra high speed data transfer rates and a simple upgrade path from former DDR Graphics SDRAM products. Data Sheet 10 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Pin Configuration 2 Pin Configuration 1 2 3 4 ZQ 5 6 A B C D E F G H J K L M N P R T V 7 8 9 MF 10 11 12 V DDQ V SSQ V DDQ V DD DQ0 DQ2 V SS DQ1 DQ3 V SS DQ9 DQ11 V DD DQ8 DQ10 V DDQ V SSQ V DDQ V SSQ V DDQ V DD V SS V REF V SS V DD V SS V DD V DDQ V SSQ V DDQ V SSQ V DDQ V SSQ V DDQ V SSQ V DDQ CAS BA0 CKE V SSQ V DDQ V SSQ V DDQ CS BA1 WE V SSQ WDQS0 RDQS0 V DDQ V DD V SS V REF V SS V DD V SS V DD V DDQ DQ4 DQ6 DM0 DQ5 DQ7 RAS RFU A2 DQ25 DQ27 DM3 RDQS1 WDQS1 DM1 DQ13 DQ15 RFM CK A6 DQ17 DQ19 DM2 DQ12 DQ14 V SSQ A1 RFU A10 V SSQ A5 CK A8/AP V DDQ A0 A11 A3 V DDQ A4 A7 A9 V SSQ DQ24 DQ26 V SSQ DQ16 DQ18 V DDQ V SSQ V DDQ V SSQ SEN V DDQ V SSQ V DDQ V SSQ RESET V SSQ WDQS3 RDQS3 V DDQ V SSQ V DDQ DQ28 DQ30 DQ29 DQ31 RDQS2 WDQS2 DQ21 DQ23 DQ20 DQ22 V DD V SS V SS V DD Figure 1 Ballout 256-Mbit Graphics RAM [Top View, MF = Low] Data Sheet 11 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Pin Configuration 2.1 Table 2 Ball CLK, CLK Ball Definition and Description Ball Description Type Input Detailed Function Clock: CLK and CLK are differential clock inputs. Address and command inputs are latched on the positive edge of CLK. Graphics SDRAM outputs (RDQS, DQs) are referenced to CLK. CLK and CLK are not internally terminated. Clock Enable: CKE HIGH activates and CKE LOW deactivates the internal clock and input buffers. Taking CKE LOW provides Power Down. If all banks are precharged, this mode is called Precharge Power Down and Self Refresh mode is entered if a Auto Refresh command is issued. If at least one bank is open, Active Power Down mode is entered and no Self Refresh is allowed. All input receivers except CLK, CLK and CKE are disabled during Power Down. In Self Refresh mode the clock receivers are disabled too. Self Refresh Exit is performed by setting CKE asynchronously HIGH. Exit of Power Down without Self Refresh is accomplished by setting CKE HIGH with a positive edge of CLK. The value of CKE is latched asynchronously by Reset during Power On to determine the value of the termination resistor of the address and command inputs. CKE is not allowed to go LOW during a RD, a WR or a snoop burst. Chip Select: CS enables the command decoder when low and disables it when high. When the command decoder is disabled, new commands with the exception of DTERDIS are ignored, but internal operations continue. CS is one of the four command balls. Command Inputs: Sampled at the positive edge of CLK, CAS, RAS, and WE define (together with CS) the command to be executed. Data Input/Output: The DQ signals form the 32 bit data bus. During READs the balls are outputs and during WRITEs they are inputs. Data is transferred at both edges of RDQS. Input Data Mask: The DM signals are input mask signals for WRITE data. Data is masked when DM is sampled HIGH with the WRITE data. DM is sampled on both edges of WDQS. DM0 is for DQ<0:7>, DM1 is for DQ<8:15>, DM2 is for DQ<16:23> and DM3 is for DQ<24:31>. Although DM balls are input-only, their loading is designed to match the DQ and WDQS balls. CKE Input CS Input RAS, CAS, WE DQ<0:31> DM<0:3> Input I/O Input RDQS<0:3> Output Read Data Strobes: RDQSx are unidirectional strobe signals. During READs the RDQSx are transmitted by the Graphics SDRAM and edge-aligned with data. RDQS have preamble and postamble requirements. RDQS0 is for DQ<0:7>, RDQS1 for DQ<8:15>, RDQS2 for DQ<16:23> and RDQS3 for DQ<24:31>. WDQS<0:3> Input Write Data Strobes: WDQSx are unidirectional strobe signals. During WRITEs the WDQSx are generated by the controller and center aligned with data. WDQS have preamble and postamble requirements. WDQS0 is for DQ<0:7>, WDQS1 for DQ<8:15>, WDQS2 for DQ<16:23> and WDQS3 for DQ<24:31>. Bank Address Inputs: BA select to which internal bank an ACTIVATE, READ, WRITE or PRECHARGE command is being applied. BA are also used to distinguish between the MODE REGISTER SET and EXTENDED MODE REGISTER SET commands. Address Inputs: During ACTIVATE, A0-A11 defines the row address. For READ/WRITE, A2-A7 and A9 defines the column address, and A8 defines the auto precharge bit. If A8 is HIGH, the accessed bank is precharged after execution of the column access. If A8 is LOW, AUTO PRECHARGE is disabled and the bank remains active. Sampled with PRECHARGE, A8 determines whether one bank is precharged (selected by BA<0:1>, A8 LOW) or all 4 banks are precharged (A8 HIGH). During (EXTENDED) MODE REGISTER SET the address inputs define the register settings. A<0:11> are sampled with the positive edge of CLK. 12 Rev. 1.03, 2005-12 06302005-SES0-FM0M BA<0:1> Input A<0:11> Input Data Sheet HYB18H256321AF[L] 256-Mbit GDDR3 www..com Pin Configuration Table 2 Ball ZQ RESET Ball Description Type Input Detailed Function ODT Impedance Reference: The ZQ ball is used to control the ODT impedance. Reset pin: The RES pin is a VDDQ CMOS input. RES is not internally terminated. When RES is at LOW state the chip goes into full reset. The chip stays in full reset until RES goes to HIGH state. The Low to High transition of the RES signal is used to latch the CKE value to set the value of the termination resistors of the address and command inputs. After exiting the full reset a complete initialization is required since the full reset sets the internal settings to default. Mirror function pin: The MF pin is a VDDQ CMOS input. This pin must be hardwired on board either to a power or to a ground plane. With MF set to HIGH, the command and address pins are reassigned in order to allow for an easier routing on board for a back to back memory arrangement. Enables Boundary Scan Functionality. If Boundary Scan is not used PIN should be constantly connected to GND. MF Input SEN VREF Input Supply Voltage Reference: VREF is the reference voltage input. Supply Power Supply: Power and Ground for the internal logic. Supply I/O Power Supply: Isolated Power and Ground for the output buffers to provide improved noise immunity. When the MF ball is tied LOW, RFM receiver is disabled and it recommended to be driven to a static LOW state. However, either static HIGH or floating state on this pin will not cause any problem for the GDDR3 SGRAM. When the MF ball is tied HIGH, RAS(H3) becomes RFM due to mirror function and the receiver is disabled. It is recommended to be driven to a static LOW state. However, either static HIGH or floating state on this pin will not cause any problem for the GDDR3 SGRAM. VDD, VSS VDDQ, VSSQ RFM 2.2 Mirror Function The GDDR3 Graphics RAM provides a ball mirroring feature that is enabled by applying a logic HIGH on ball MF. This function allows for efficient routing in a clam shell configuration. Depending of the logic state applied on MF, the command and address signals will be assigned to different balls. The default ball configuration (see Figure 1) corresponds to MF = LOW. The DC level (HIGH or LOW) must be applied on the MF pin at power up and is not allowed to change after that. Table 3 shows the ball assignment as a function of the logic state applied on MF. Table 3 LOW H3 F4 H9 F9 H4 K4 H2 K3 M4 Data Sheet Ball Assignment with Mirror Signal HIGH H10 F9 H4 F4 H9 K9 H11 K10 M9 13 RAS CAS WE CS CKE A0 A1 A2 A3 Rev. 1.03, 2005-12 06302005-SES0-FM0M MF Logic State HYB18H256321AF[L] 256-Mbit GDDR3 www..com Pin Configuration Table 3 LOW K9 H11 K10 L9 K11 M9 K2 L4 G4 G9 Ball Assignment with Mirror (cont'd) Signal HIGH K4 H2 K3 L4 K2 M4 K11 L9 G9 G4 A4 A5 A6 A7 A8 A9 A10 A11 BA0 BA1 MF Logic State Data Sheet 14 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Pin Configuration 2.3 Functional Block Diagram Figure 2 Functional Block Diagram Data Sheet 15 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Pin Configuration 2.4 2.4.1 Commands Command Table In the following table CKEn refers to the positive edge of CLK corresponding to the clock cycle when the command is given to the Graphics SDRAM. CKEn-1 refers to the previous positive edge of CLK. For all command and address inputs CKEn is implied. All input states or sequences not shown are illegal or reserved. Table 4 Operation Device Deselect Command Overview Code DESEL CKE CKE CS n-1 n H H H RAS CAS WE L X H H H L L L H H H H L L L X H X L X X X H L H L L H L L L L H H L X H X L X X L H H H L L H H H L L L L H X H X H X BA0 BA1 A8 X X A2-7 A9-11 X Note 1) Data Terminator Disable DTERDIS No Operation Mode Register Set NOP MRS H H H H H H H H H H H H H L H L H H H H H H H H H H H H L H L H H L L L L L L L L L L L H L X L X X X 0 1 BA BA BA BA BA BA X X X X X X X X 0 0 BA BA BA BA BA BA X X X X X X X X X X 1)2) OPCODE OPCODE Row Address L H L H L H X X X X X Col. Col. Col. Col. X X X X X X X 1)3) 1)4) 1)4) 1)4) 1)4) 1) 1) 1)5) 1)6) Extended Mode Register EMRS Set Bank Activate Read Read w/ Autoprecharge Write Write w/ Autoprecharge Precharge Precharge All Auto Refresh ACT RD RD/A WR WR/A PRE PREALL AREF Power Down Mode Entry PWDNEN Power Down Mode Exit Self Refresh Entry Self Refresh Exit PWDNEX SREFEN SREFEX 1)7) 1)8) 1)9) 1) X represents "Don't Care". 2) This command is invoked when a Read is issued on another DRAM rank placed on the same command bus. Cannot be in powerdown or Self Refresh state. The Read command will cause the data termination to be disabled. Refer to Figure 14 for timing. 3) BA0 - BA1 provide bank address, A0 - A11 provide the row address. 4) BA0 - BA1 provide bank address, A2- A7, A9 provide the column address, A8/AP controls Auto Precharge. 5) Auto Refresh and Self Refresh Entry differ only by the state of CKE. 6) PWDNEN is selected by issuing a DESEL or NOP at the first positive CLK edge following the HIGH to LOW transition of CKE. 7) First possible valid command after tXPN. During tXPN only NOP or DESEL commands are allowed. 8) Self Refresh is selected by issuing AREF at the first positive CLK edge following the HIGH to LOW transition of CKE. 9) First possible valid command after tXSC. During tXSC only NOP or DESEL commands are allowed. Abbreviations: BA: Bank Address; Col.: Column Address Data Sheet 16 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Pin Configuration 2.4.2 Table 5 Command DESEL NOP Description of Commands Description of Commands Description The DESEL function prevents new commands from being executed by the Graphics SDRAM. The Graphics SDRAM is effectively deselected. Operations in progress are not affected. The NOP command is used to perform a no operation to the Graphics SDRAM, which is selected (CS is LOW). This prevents unwanted commands from being registered during idle or wait states. Operations already in progress are not affected. The Mode Register is loaded via address inputs A0 - A11. For more details see "Mode Register Set Command (MRS)" on Page 40. The MRS command can only be issued when all banks are idle and no bursts are in progress. A subsequent executable command cannot be issued until tMRD is met. The Extended Mode Register is loaded via address inputs A0 - A11. For more details see section "Extended Mode Register Set Command (EMRS)" on Page 37. The EMRS command can only be issued when all banks are idle and no bursts are in progress. A subsequent executable command cannot be issued until tMRD is met. The ACT command is used to open (or activate) a row in a particular bank for a subsequent access. The value on the BA0 - BA1 inputs selects the bank, and the address provided in inputs A0 - A11 selects the row. This row remains active (or open) for accesses until a precharge (PRE, RD/A, or WR/A command) is issued to that bank. A precharge must be issued before opening a different row in the same bank. The RD command is used to initiate a burst read access to an active row. The value on the BA0 BA1 inputs selects the bank, and the address provided on inputs A2-A7, A9 selects the column location. The row will remain open for subsequent accesses. For RD commands the value on A8 is set LOW. The RD/A command is used to initiate a burst read access to an active row. The value on the BA0 BA1 inputs selects the bank, and the address provided on inputs A2-A7, A9 selects the column location. The value on input A8 is set HIGH. The row being accessed will be precharged at the end of the read burst. The same individual-bank precharge function is performed like it is described for the PRE command. Auto precharge ensures that the precharge is initiated at the earliest valid stage within the burst. The user must not issue a new ACT command to the same bank until the precharge time (tRP) is completed. This time is determined as if an explicit PRE command was issued at the earliest possible time as described in section "Reads (RD)" on Page 54. The WR command is used to initiate a burst write access to an active row. The value on the BA0 BA1 inputs selects the bank, and the address provided on inputs A2-A7, A9 selects the column location. The row will remain open for subsequent accesses. For WR commands the value on A8 is set LOW. Input data appearing on the DQs is written to the memory array depending on the value on the DM input appearing coincident with the data. If a given DM signal is registered LOW, the corresponding data will be written to the memory; if the DM signal is registered HIGH, the corresponding data inputs will be ignored, and a write will not be executed for that byte / column location. MRS EMRS ACT RD RD/A WR Data Sheet 17 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Pin Configuration Table 5 Command WR/A Description of Commands Description The WR/A command is used to initiate a burst write access to an active row. The value on the BA0, BA1 inputs selects the bank, and the address provided on inputs A2-A7, A9 selects the column location. The value on input A8 is set HIGH. The row being accessed will be precharged at the end of the write burst. The same individual-bank precharge function is performed which is described for the PRE command. Auto precharge ensures that the precharge is initiated at the earliest valid stage within the burst. The user is not allowed to issue a new ACT to the same bank until the precharge time (tRP) is completed. This time is determined as if an explicit PRE command was issued at the earliest possible time as described in section "Writes (WR)" on Page 44. Input data appearing on the DQs is written to the memory array depending on the DM input logic level appearing coincident with the data. If a given DM signal is registered LOW, the corresponding data will be written to the memory; if the DM signal is registered HIGH, the corresponding data inputs will be ignored, and a write will not be executed to that byte / column location. The PRE command is used to deactivate the open row in a particular bank. The bank will be available for a subsequent row access a specified time (tRP) after the PRE command is issued. Inputs BA0 - BA1 select the bank to be precharged. A8/AP is set to LOW. Once a bank has been precharged, it is in the idle state and must be activated again prior to any RD or WR commands being issued to that bank. A PRE command will be treated as a NOP if there is no open row in that bank, or if the previously open row is already in the process of precharging. The PREALL command is used to deactivate all open rows in the memory device. The banks will be available for a subsequent row access a specified time (tRP) after the PREALL command is issued. Once the banks have been precharged, they are in the idle state and must be activated prior to any read or write commands being issued. The PREALL command will be treated as a NOP for those banks where there is no open row, or if a previously open row is already in the process of precharging. PREALL is issued by a PRE command with A8/AP set to HIGH. The AREF is used during normal operation of the GDDR3 Graphics RAM to refresh the memory content. The refresh addressing is generated by the internal refresh controller. This makes the address bits "Don't Care" during an AREF command. The HYB18H256321AF[L] requires AREF cycles at an average periodic interval of tREFI(max). To improve efficiency a maximum number of eight AREF commands can be posted to one memory device (with tRFC from AREF to AREF) as described in section "Auto Refresh Command (AREF)" on Page 69. This means that the maximum absolute interval between any AREF command is 8 x tREFI(max). This maximum absolute interval is to allow the GDDR3 Graphics RAM output drivers and internal terminators to recalibrate, compensating for voltage and temperature changes. All banks must be in the idle state before issuing the AREF command. They will be simultaneously refreshed and return to the idle state after AREF is completed. tRFC is the minimum required time between an AREF command and a following ACT/AREF command. The Self Refresh function can be used to retain data in the GDDR3 Graphics RAM even if the rest of the system is powered down. When entering the Self Refresh mode by issuing the SREFEN command, the GDDR3 Graphics RAM retains data without external clocking. The SREFEN command is initiated like an AREF command except CKE is disabled (LOW). The DLL is automatically disabled upon entering Self Refresh mode and automatically enabled and reset upon exiting Self Refresh. (1000 cycles must then occur before a RD or DTERDIS command can be issued) The active terminations remain enabled during Self Refresh. Input signals except CKE are "Don't Care". If two GDDR3 Graphics RAMs share the same Command and Address bus, Self Refresh may be entered only for the two devices at the same time. PRE PREALL AREF SREFEN Data Sheet 18 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Pin Configuration Table 5 Command SREFEX Description of Commands Description The SREFEX command is used to exit the Self Refresh mode. The DLL is automatically enabled and reset upon exiting. The procedure for exiting Self Refresh requires a sequence of commands. First CLK and CLK must be stable prior to CKE going from LOW to HIGH. Once CKE is HIGH, the GDDR3 Graphics RAM must receive only NOP/DESEL commands until tXSNR is satisfied. This time is required for the completion of any internal refresh in progress. A simple algorithm for meeting both refresh, DLL requirements and output calibration is to apply NOPs for 1000 cycles before applying any other command to allow the DLL to lock and the output drivers to recalibrate. The PWDNEN command enables the power down mode. It is entered when CKE is set low together with a NOP/DESEL. The CKE signal is sampled at the rising edge of the clock. Once the power down mode is initiated, all of the receiver circuits except CLK and CKE are gated off to reduce power consumption. The DLL remains active (unless disabled before with EMRS). All banks can be set to idle state or stay active. During Power Down Mode, refresh operations cannot be performed; therefore the refresh conditions of the chip have to be considered and if necessary Power Down state has to be left to perform an Auto Refresh cycle. If two GDDR3 Graphics RAMs share the same Command and Address bus, Power down may be entered only for the two devices at the same time. A CKE HIGH value sampled at a low to high transition of CLK is required to exit power down mode. Once CKE is HIGH, the GDDR3 Graphics RAM must receive only NOP/DESEL commands until tXPN is satisfied. After tXPN any command can be issued, but it has to comply with the state in which the power down mode was entered. Data Termination Disable (Bus snooping for RD commands): The Data Termination Disable Command is detected by the device by snooping the bus for RD commands excluding CS. The GDDR3 Graphics RAM will disable its Data terminators when a RD command is detected. The terminators are disabled starting at CL - 1 clocks after the RD command is detected and the duration is 4 clocks. In a two rank system, both DRAM devices will snoop the bus for RD commands to either device and both will disable their terminators if a RD command is detected. The command and address terminators are always enabled. See Figure 14 for an example of when the data terminators are disabled during a RD command. Minimum delay from RD/A and WR/A to any other command (to another bank) with concurrent Autoprecharge To Command RD or RD/A WR or WR/A PRE ACT RD/A RD or RD/A WR or WR/A PRE ACT Minimum delay to another bank (with concurrent auto precharge) (WL + 2) x tCK + tWTR 2 x tCK Note PWDNEN PWDNEX DTERDIS Table 6 From Command WR/A tCK tCK 2 x tCK (CL + 4 - WL) x tCK tCK tCK Data Sheet 19 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Pin Configuration 2.5 2.5.1 State Diagram and Truth Tables State Diagram for One Activated Bank The following diagram shows all possible states and transitions for one activated bank. The other 3 banks of the Graphics SDRAM are assumed to be in idle state. single bank WR ACTIVE PRE WR/A RD/A PDEN PDEX RD ACT MRS EMRS IDLE AUTO REFRESH SREX SREN PDEN PDEX active POWER DOWN precharge SELF REFRESH all banks Figure 3 State diagram for one bank Note: MRS, EMRS, AUTO REFRESH, SELF REFRESH and precharge POWER DOWN are only allowed if all 4 banks are idle. Data Sheet 20 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Pin Configuration 2.5.2 Function Truth Table for more than one Activated Bank If there is more than one bank activated in the Graphics SDRAM, some commands can be performed in parallel due to the chip's multibank architecture. The following table defines for which commands such a scheme is possible. All other transitions are illegal. Notes 1-11 define the start and end of the actions belonging to a submitted command. This table is based on the assumption that there are no other actions ongoing on bank n or bank m. If there are any actions ongoing on a third bank tRRD, tRTW and tWTR have to be taken always into account. Table 7 ACTIVE Function Truth Table I ongoing action on bank n ACTIVATE WRITE 3) 1) Current State possible action in parallel on bank m ACT, PRE, WRITE, WRITE/A, READ, READ/A 2) ACT, PRE, WRITE, WRITE/A, READ, READ/A4) ACT, PRE, WRITE, WRITE/A, READ 6) ACT, PRE, WRITE, WRITE/A, READ, READ/A8) ACT, PRE, WRITE, WRITE/A, READ, READ/A WRITE/A 5) READ 7) READ/A 9) PRECHARGE 10) ACT, PRE, WRITE, WRITE/A, READ, READ/A 11) 12) PRECHARGE ALL POWER DOWN ENTRY IDLE ACTIVATE 1) ACT 14) POWER DOWN ENTRY AUTO REFRESH 13) SELF REFRESH ENTRY MODE REGISTER SET (MRS) EXTENDED MRS POWER DOWN SELF REFRESH POWER DOWN EXIT 15) 16) - SELF REFRESH EXIT 1) Action ACTIVATE starts with issuing the command and ends after tRCD. 2) During action ACTIVATE an ACT command on another bank is allowed considering tRRD, a PRE command on another bank is allowed any time. WR, WR/A, RD and RD/A are always allowed. 3) Action WRITE starts with issuing the command and ends tWR after the first pos. edge of CLK following the last falling WDQS edge. 4) during action WRITE an ACT or a PRE command on another bank is allowed any time. A new WR or WR/A command on another bank must be separated by at least one NOP from the ongoing WRITE. RD or RD/A are not allowed before tWTR is met. 5) Action WRITE/A starts with issuing the command and ends tWR after the first positive edge of CLK following the last falling WDQS edge. 6) during action WRITE/A an ACT or a PRE command on another bank is allowed any time. A new WR or WR/A command on another bank has to be separated by at least one NOP from the ongoing command. RD is not allowed before tWTR is met. RD/A is not allowed during an ongoing WRITE/A action. 7) Action READ starts with issuing the command and ends with the first positive edge of CLK following the last falling edge of RDQS. 8) during action READ and READ/A an ACT or a PRE command on another bank is allowed any time. A new RD or RD/A command on another bank has to be separated by at least one NOP from the ongoing command. A WR or WR/A command on another bank has to meet tRTW. 9) Action READ/A starts with issuing the command and ends with the first positive edge of CLK following the last falling edge of RDQS. 10) Action PRECHARGE and PRECHARGE ALL start with issuing the command and ends after tRP. 11) During Action ACTIVE an ACT command on another banks is allowed considering tRRD. A PRE command on another bank is allowed any time. WR, WR/A, RD and RD/A are always allowed. 12) During POWER DOWN and SELF REFRESH only the EXIT commands are allowed. Data Sheet 21 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Pin Configuration 13) AUTO REFRESH starts with issuing the command and ends after tRFC. 14) Actions MODE REGISTER SET and EXTENDED MODE REGISTER SET start with issuing the command and ends after tMRD. 15) Action POWER DOWN EXIT starts with issuing the command and ends after tXPN. 16) Action SELF REFRESH EXIT starts with issuing the command and ends after tXSC. 2.6 Table 8 CKE n-1 L L H Function Truth Table for CKE Function Truth Table II (CKE Table) CKE n L H L CURRENT STATE Power Down Self Refresh Power Down Self Refresh All Banks Idle Bank(s) Active All Banks Idle COMMAND X X DESEL or NOP DESEL or NOP DESEL or NOP DESEL or NOP Auto Refresh ACTION stay in Power Down stay in Self Refresh Exit Power Down Exit Self Refresh 5 Entry Precharge Power Down Entry Active Power Down Entry Self Refresh Note: 1. 2. 3. 4. 5. CKEn is the logic step at clock edge n; CKEn-1 was the state of CKE at the previous clock edge. Current state is the state of the GDDR3 Graphics RAM immediately prior to clock edge n. COMMAND is the command registered at clock edge n, and ACTION is a result of COMMAND. All states and sequences not shown are illegal or reserved. DESEL or NOP commands should be issued on any clock edges occurring during the tXSR period. A minimum of 1000 clock cycles is required before applying any other valid command. Data Sheet 22 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Boundary Scan 3 3.1 Boundary Scan General Description The 256M GDDR3 incorporates a modified boundary scan test mode. This mode doesn't operate in accordance with IEEE Standard 1149.1-1990. To save the current GDDR3 ball-out, this mode will scan the parallel data input and output the scanned data through the WDQS0 pin controlled by SEN. 3.2 Disabling the scan feature It is possible to operate the 256Mb GDDR3 without using the boundary scan feature. SEN (at U-4 of 136- ball package) should be tied LOW(VSS) to prevent the device from entering the boundary scan mode. The other pins which are used for scan mode, RES, MF, WDQS0 and CS will be operating at normal GDDR3 functionalities when SEN is deasserted. Dedicated Scan Flops (1 per signal under test) Tie to logic 0 DM0 D DQ CK Pins under test DQ5 D DQ CK DQ4 D DQ CK The following lists the rest of the signals on the scan chain: DQ[3:0], DQ[31:6], RDQS[3:1], WDQS[3:1], DM[3:1], CAS, WE, CKE, BA[1:0], A[11:0], CK, CK and ZQ D DQ CK Two RFU's (J-2 and J-3 on 136-ball package) and NC (H-10) will be on the scan chain and will read as a logic "0" The following lists the signals not on the scan chain: VDD, VSS, VDDQ, VSSQ, VDDA, VSSA and VREF RDQS0 RES (SSH, Scan Shift) CS (SCK, Scan Clock) WDQS0 (SOUT, Scan Out) SEN, Scan Enable MF (SOE, Output Enable) Puts device into scan mode and re-maps pins to scan functionality Figure 4 Data Sheet Internal Block Diagram (Reference only) 23 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Boundary Scan Table 9 BIT# 1 2 3 4 5 6 7 8 9 10 11 12 Notes Boundary Scan Exit) Order BALL D-3 C-2 C-3 B-2 B-3 A-4 B-10 B-11 C-10 C-11 D-10 D-11 BIT# 13 14 15 16 17 18 19 20 21 22 23 24 BALL E-10 F-10 E-11 G-10 F-11 G-9 H-9 H-10 H-11 J-11 J-10 L-9 BIT# 25 26 27 28 29 30 31 32 33 34 35 36 BALL K-11 K-10 K-9 M-9 M-11 L-10 N-11 M-10 N-10 P-11 P-10 R-11 BIT# 37 38 39 40 41 42 43 44 45 46 47 48 BALL R-10 T-11 T-10 T-3 T-2 R-3 R-2 P-3 P-2 N-3 M-3 N-2 BIT# 49 50 51 52 53 54 55 56 57 58 59 60 BALL L-3 M-2 M-4 K-4 K-3 K-2 L-4 J-3 J-2 H-2 H-3 H-4 BIT# 61 62 63 64 65 66 67 BALL G-4 F-4 F-2 G-3 E-2 F-3 E-3 1. When the device is in scan mode, the mirror function will be disabled and none of the pins are remapped. 2. Since the other input of the MUX for DM0 tied to GND, the device will output the continuous zeros after scanning a bit #67, if the chip stays in scan shift mode. 3. Two RFU balls (#56 and #57) in the scan order, will read as a logic"0". Data Sheet 24 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Boundary Scan Table 10 Scan Pin Description DESCRIPTION Scan Shift: Capture the data input from the pad at logic LOW and shift the data on the chain at logic HIGH. Scan Clock: Not a true clock, could be a single pulse or series of pulses. All scan inputs will be referenced to rising edge of the scan clock Scan Output Scan Enable: Logic HIGH enables the device into scan mode and will be disabled at logic LOW. Must be tied to GND when not in use. Scan Output Enable: Enables (registered LOW) and disables (registered HIGH) SOUT data. This pin will be tied to VDD or GND through a resistor (typically 1K for normal operation. Tester needs to overdrive this pin to guarantee the required input logic level in scan mode. PACKAGE SYMBOL NORMAL TYPE BALL FUNCTION V-9 F-9 SSH SCK RES CS Input Input D-2 V-4 SOUT SEN WDQS0 SEN Output Input A-9 SOE MF Input Notes 1. When SEN is asserted, no commands are to be executed by the GDDR3. This applies both to user commands and manufacturing commands which may exist while RES is deasserted. 2. The Scan Function can be used right after bringing up VDD / VDDQ of the device. No initialization sequence of the device is required. After leaving the Scan Function it is required to run through the complete initialization sequence. 3. In Scan Mode all terminations for CMD/ADD and DQ, DM, RDQS and WDQS are switched off. 4. In a double-load clam-shell configuration, SEN will be asserted to both devices. Separate two SOE's should be provided to top and bottom devices to access the scanned output. When either of the devices is in scan mode, SOE for the other device which is not in a scan will be disabled. Table 11 Scan DC Electrical Characteristics and Operating Conditions SYMBOL MIN MAX -- UNITS NOTES 1)2) 1)2) PARAMETER/CONDITION Input High (Logic 1) Voltage Input Low (Logic 0) Voltage - VIH(DC) VIL(DC) VREF+0.15 -- VREF-0.15 V 1) The parameter applies only when SEN is asserted. 2) All voltages referenced to GND. Data Sheet 25 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Boundary Scan SCK t SES SEN Low SSH t SCS SON Pins under Test t SDS t SDH VALID Don't Care Figure 5 Scan Capture Timing SCK t SES SEN t SCS SSH t SCS SON SON Scan Out bit 0 Scan Out bit 1 Scan Out bit 2 Scan Out bit 3 t SAC t SOH Don't Care Figure 6 Table 12 Clock Scan Shift Timing Scan AC Electrical Characteristics SYMBOL MIN 40 20 20 14 14 10 10 MAX -- -- -- -- -- -- -- UNITS ns ns ns ns ns ns ns NOTES 1 1)2 1 1 1 1 1 PARAMETER/CONDITION Clock cycle time Scan Command Time Scan enable setup time Scan enable hold time Scan command setup time for SSH, SOE and SOUT Scan command hold time for SSH, SOE and SOUT Scan Capture Time Scan capture setup time Scan capture hold time Data Sheet 26 tSCK tSES tSEH tSCS tSCH tSDS tSDH Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Boundary Scan Table 12 Scan AC Electrical Characteristics SYMBOL MIN -- 1.5 MAX -- -- UNITS ns ns NOTES 1 1 PARAMETER/CONDITION Scan Shift Time Scan clock to valid scan output Scan clock to scan output hold Notes tSAC tSOH 1. The parameter applies only when SEN is asserted. 2. Scan Enable should be issued earlier than other Scan Commands by 6 ns. 3.3 Scan Initialization The Initialization sequence for the boundary scan functionality depends on the intended SGRAM operation mode. There are two modes to distinguish. The first mode is the Stand-Alone mode. In the Stand-Alone mode the SGRAM is supposed to support the Boundary Scan functionality only, the user does not intend to operate the DRAM in its ordinary functionality after or prior to the entering of the Boundary Scan functionality. The purpose of the Stand-Alone mode could be a connectivity test at the manufacturing site. The second mode is the regular SGRAM functionality. With this common mode the boundary scan functionality can be enabled after the SGRAM has been initialized by the regular power-up and SGRAM Initialization sequence. When the boundary scan functionality is left the regular SGRAM initialization sequence has to be re-iterated. 3.3.1 Scan Initialization for Stand-Alone Mode The SGRAM needs to follow the given sequence to support the boundary scan functionality in the Stand-Alone mode. There is no external clock for the whole sequence needed. Sequence Flow: 1.) external Voltages (VDD/VDDQ/VREF) need to be stable for 200us, SEN has to be kept low 2.) bring SEN up to high state to enter boundary scan functionality 3.) operate boundary scan functionality according to the scan features given in Chapter 3.2 4.) boundary scan can be exited by bringing SEN low or simply by switching power off The Scan initialization sequence for the Stand-Alone Mode is shown in Figure 7. Data Sheet 27 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Boundary Scan V DD V DDQ V REF tSDS tSDH CLK/CLK# tSCS SSH [RES] VALID tSCH tSCS SEN tSCH tSES SCK[CS#] SOE[MF] tSCS SOUT[WDQS] tSDS Pins Under Test tSDH Scan Out Bit 0 VALID tSCS T = 200s Boundary Scan Mode Power-up: VDD /VDDQ/VREF stable Don't Care Figure 7 Scan Initialization for Stand-Alone mode 3.3.2 Scan Initialization in regular SGRAM operation The Initialization sequence of the boundary scan functionality in regular SGRAM operation has to follow the given sequence. Sequence Flow: 1.) external Voltages (VDD/VDDQ/VREF) need to be stable for 200us, RES has to be kept low, external clock has to be stable prior to RES goes high 2.) bring RES high and keep clock stable for 700tcks, CKE will be latched by rising RES edge, keep tATH/tATS 3.) bring SEN up to high state to enter boundary scan functionality 4.) operate boundary scan functionality accordingly to the scan features given in Chapter 3.2 5.) boundary scan can be exited by bringing SEN low 6.) wait tSN for bringing up RES, prior to bringing RES to high state external has to be stable 7.) after RES is at high state wait 700tck 8.) continue with regular Initialization sequence (PRE-ALL, EMRS, MRS) The steps 1 and 2 are necessary to enable the termination for the command/address pins. They are part of the regular SGRAM Initialization. They are required if the user wants to issue commands between to entering of the boundary scan functionality and the power-up sequence. The entering of the boundary scan mode is resetting the command/address termination values and all EMRS/MRS settings. Therefore they have to be initialized again after the boundary scan functionary has been left. Figure 8 shows the scan initialization sequence for regular SGRAM operation. Data Sheet 28 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Boundary Scan V DD V DDQ V REF t SDS tSDH CLK/CLK# VALID t SCS t SCH SSH[RES] t ATS t ATH t SDS t SDH t SCS t SCH CKE VALID SEN SCK[#CS] t SES SOE[MF] t SCS SOUT[WDQS] t SDS Pins Under Test T = 200s 700tck t SDH Scan Out Bit 0 VALID t SCS Power-up: VDD stable RESET at power - up Boundary Scan Mode Don't Care Figure 8 Scan Initialization Sequence within regular SGRAM Mode Data Sheet 29 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Boundary Scan 3.3.3 Scan Exit Sequence Figure 9 shows the Scan exit Sequence. This figure show the exiting of the boundary scan functionality in conjugation with the appended regular SGRAM initialization sequence to bring the SGRAM again in a well defined state. stable clock CLK/ CLK# tRESL RES tATS tATH Standard Power up sequence starting with PRE ALL CKE tSN SEN SOUT invalid 700tck Figure 9 Table 13 Parameter Boundary Scan Exit Sequence Scan AC Electrical Parameters CAS latency Symbol Limit Values min max 20 20 Unit Notes tRESL tSN tRESL tSN ns ns Data Sheet 30 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4 4.1 Functional Description Initialization The HYB18H256321AF[L] must be powered up and initialized in a predefined manner. Operational procedures other than those specified may result in undefined operation or permanent damage to the device. The following sequence is highly recommended for Power-Up: 1. Apply power (VDD, VDDQ, VREF). Apply VDD before or at the same time as VDDQ, apply VDDQ before or at the same time as VREF. Maintain RES=L and CS=H to ensure that all the DQ outputs will be in HiZ state, all active terminations off and the DLL off. All other pins may be undefined. 2. Maintain stable conditions for 200 s minimum for the HYB18H256321AF[L] to power up. 3. After clock is stable, set CKE to High or Low. After tATS minimum set RES to high. On the rising edge of RES, the CKE value is latched to determine the address and command bus termination value. If CKE is sampled LOW the address termination value is set to ZQ / 2. If CKE is sampled HIGH, the address and command bus termination is set to ZQ. 4. After tATH minimum, set CKE to high. 5. Wait a minimum of 700 cycles to calibrate and update the address and command termination impedances. Issue DESELECT on the command bus during these 700 cycles. 6. Apply a PRECHARGE ALL command, followed by an Extended Mode Register command after tRP is met and activate the DLL. 7. Issue an Mode Register Set command after tMRD is met to reset the DLL and define the operating parameters. 8. Wait 1000 cycles of clock input to lock the DLL. No Read command can be applied during this time. Since the impedance calibration is already completed, the DLL mimic circuitry can use the actual programmed driver impedance value. 9. Issue a PRECHARGE ALL command or issue 4 single bank PRECHARGE commands, one to each of the 4 banks to place the chip in an idle state. 10. Issue two or more AUTO REFRESH commands. Data Sheet 31 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description VDD VDDQ VREF t ATS tATH RES CKE CLK# CLK Com . DM A0-A7, A9-A11 All Banks A 8 CODE CODE DES DES PA EMR MRS PA ARF ARF ACT CODE CODE RA All Banks RA BA0 = H, BA0 = L, BA1 = L BA1 = L BA0, BA1 RDQS WDQS DQ RA min. 200 s VDD and CLK stable 700 cycles t RP t MRD t MRD t RP t RFC 1000cycles t RFC MRS: MRS command with DLL Reset EMR: EMRS command DES : Deselect PA: PREALL command ARF: AUTO REFRESH command A.C.: Any command Don't Care Figure 10 Power Up Sequence Data Sheet 32 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.2 4.2.1 Programmable impedance output drivers and active terminations GDDR3 IO Driver and Termination The is equipped with programmable impedance output buffers and active terminations. This allows the user to match the driver impedance to the system impedance. To adjust the impedance of DQ<0:31> and RDQS<0:3>, an external precision resistor (ZQ) is connected between the ZQ pin and VSS. The value of the resistor must be six times the value of the desired impedance. For example, a 240 resistor is required for an output impedance of 40 . The range of ZQ is 210 to 270 , giving an output impedance range of 35 to 45 (one sixth the value of ZQ within 10%). The value of ZQ is used to calibrate the internal DQ termination resistors of DQ<0:31>, WDQS<0:3> and DM<0:3>. The two termination values that are selectable using EMRS[3:2] are ZQ / 4 and ZQ / 2. The value of ZQ is also used to calibrate the internal address command termination resistors. The inputs terminated in this manner are A<0:11>, CKE, CS, RAS, CAS, WE. The two termination values that are selectable upon power up (CKE latched LOW to HIGH transition of RES) are ZQ/2 and ZQ. RES, MF, CLK and CLK are not internally terminated. If no resistance is connected to ZQ, an internal default value of 240 will be used. In this case, no calibration will be performed. VDDQ ZQ/4 or ZQ/2 Terminator when receiving Read to other Rank Output Data Read Data Enable DQ ZQ/6 Driver when transmitting VSSQ Figure 11 Table 14 Parameter Output Driver simplified schematic Range of external resistance ZQ Symbol ZQ min 210 nom 240 max 270 Units Notes External resistance value Table 15 Ball CLK, CLK, RDQS<0:3>, ZQ, RES, MF Termination Types and Activation Termination type No termination Add / CMDs DQ DQ Always ON Always ON CMD bus snooping Termination activation CKE, CS, RAS, CAS, WE, BA0 - BA1, A<0:11> DM<0:3>, WDQS<0:3>, DQ<0:31> Data Sheet 33 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.2.2 Self Calibration for Driver and Termination The output impedance is updated during all AREF commands. These updates are used to compensate for variations in supply voltage and temperature. Impedance updates do not affect device operation. No activity on the Address, command and data bus is allowed during a minimum Keep Out time tKO after the Autorefresh command has been issued. CLK# CLK Com. ARF NOP Add. DQ t KO ARF: Autorefresh Don't Care Keep Out time Figure 12 Termination update Keep Out time after Autorefresh command To guarantee optimum driver impedance after power-up, the HYB18H256321AF[L] needs 700 cycles after the clock is applied and stable to calibrate the impedance upon power-up. The user can operate the part with fewer than 700 cycles, but optimal output impedance will not be guaranteed. The GDDR3 Graphics RAM proceeds in the following manner for Self Calibration: The PMOS device is calibrated against the external ZQ resistor value. First one PMOS leg is calibrated against ZQ. The number of legs used for the terminators (DQ and ADD/CMD) and the PMOS driver is represented in Table 16. Next, one NMOS leg is calibrated against the already calibrated PMOS leg. The NMOS driver uses 6 NMOS legs. Data Sheet 34 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description Table 16 Number of Legs used for Terminator and Driver Self Calibration Termination CKE (at RES) Number of Legs Notes 2 1 0 4 2 6 6 1) Terminator ADD / CMD 0 1 EMRS[3:2] ZQ/2 ZQ Disabled ZQ/4 ZQ/2 ZQ/6 ZQ/6 DQ 00 10 11 Driver PMOS NMOS 1) EMRS[3:2] = 00 disables the ADD and CMD terminations as well. Figure 13 represents a simplified schematic of the calibration circuits. First, the strength control bits are adjusted in such a way that the VDDQ voltage is divided equally between the PMOS device and the ZQ resistor. The best bit pattern will cause the comparator to switch the PMOS Match signal output value. In a second step, the NFET is calibrated against the already calibrated PFET. In the same manner, the best control bit combination will cause the comparator to switch the NMOS Match signal output value. VDDQ VDDQ Strength Control [2:0] VSSQ NMOS Calibration PMOS Calibration Match VDDQ / 2 ZQ Match VDDQ / 2 VSSQ Strength Control [2:0] VSSQ Figure 13 Self Calibration of PMOS and NMOS Legs Data Sheet 35 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.2.3 Dynamic Switching of DQ terminations The GDDR3 Graphics RAM will disable its data terminators when a READ or DTERDIS command is detected. The terminators are disabled starting at CL - 1 Clocks after the READ / DTERDIS command is detected and the duration is 4 clocks. In a two rank system, both devices will snoop the bus for a READ / DTERDIS command to either device and both will disable their terminators if a READ / DTERDIS command is detected. The address and command terminators are always enabled. 0 CLK# CLK Com . 1 2 5 6 7 8 9 10 11 RD N/D N/D N/D N/D N/D N/D N/D N/D N/D Addr. B/C CAS latency = 7 RDQS DQ D0 D1 D2 D3 DQ Termination Data Terminations are disabled Dx: Data from B / C B / C: Bank / Column address RD: N/D: READ NOP or Deselect Com.: Command Addr.: Address B / C Don't Care Figure 14 ODT Disable Timing during a READ command 4.2.4 Output impedance and Termination DC Electrical Characteristics The Driver and Termination impedances are determined by applying VDDQ/2 nominal at the corresponding input / output and by measuring the current flowing into or out of the device. VDDQ is set to the nominal value. IOH is the current flowing out of DQ when the Pull-Up transistor is activated and the DQ termination disabled. IOL is the current flowing into DQ when the Pull-Down transistor is activated and the DQ termination disabled. ITCAH(ZQ) is the current flowing out of the Termination of Commands and Addresses for a ZQ termination value. Table 17 Parameter ZQ Value DC Electrical Characteristics Nom. 240 min max 25.0 25.0 4.2 mA mA mA 1) 1) 1) Unit Notes IOH IOL ITCAH(ZQ) ZQ/6 ZQ/6 ZQ 20.5 20.5 3.4 1) Measurement performed with VDDQ (nominal) and by applying VDDQ/2 at the corresponding Input / Output. 0 C Tc 85 C Data Sheet 36 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.3 Extended Mode Register Set Command (EMRS) CLK# CLK CKE CS# RAS# CAS# The Extended Mode Register is used to set the output driver impedance value, the termination impedance value, the Write Recovery time value for Write with Autoprecharge. It is used as well to enable/disable the DLL, to issue the Vendor ID and to enable/disable the Low Power mode. There is no default value for the Extended Mode Register. Therefore it must be written after power up to operate the GDDR3 Graphics RAM. The Extended Mode Register can be programmed by performing a normal Mode Register Set operation and setting the BA0 bit to HIGH. All other bits of the EMR register are reserved and should be set to LOW. The Extended Mode Register must be loaded when all banks are idle and no burst are in progress. The controller must wait the specified time tMRD before initiating any subsequent operation (Figure 16). The timing of the EMRS command operation is equivalent to the timing of the MRS command operation. WE# A0-A11 COD BA0 1 COD: Code to be loaded int the register BA1 0 Don't Care Figure 15 Extended Mode Register Set Command BA1 BA0 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 0 1 LP V RFU WR DLL WR Rtt Data Z A11 0 1 SelfRefresh 32ms 8ms A6 0 1 DLL Enable Enable Disable A1 0 0 1 1 A0 0 1 0 1 Output Driver Impedance Autocal 35 40 45 A10 Vendor ID 0 1 Off A7 0 A5 0 0 1 1 0 0 1 1 A4 0 1 0 1 0 1 0 1 WR 11 4 5 6 1 0 1 ZQ / 4 ZQ / 2 (Default)2) 7 8 9 10 1 0 0 0 1 ODT disabled RFU A3 A2 Termination On 0 0 0 1 1 1 1 Figure 16 Extended Mode Register Bitmap option implemented in the device) or no action is taken by the device (if option not implemented). 5. WR (write recovery time for auto precharge) in clock cycles is calculated by dividing tWR (in ns) and rounding up to the next integer (WR[cycles] = tWR[ns] / tCK[ns]). The mode register must be programmed to this value. 37 Rev. 1.03, 2005-12 06302005-SES0-FM0M 1. These settings are for debugging purposes only. 2. Default termination values at Power Up. 3. The ODT disable function disables all terminators on the device. 4. If the user activates bits in the extended mode register in an optional field, either the optional field is activated (if Data Sheet HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description CLK# CLK Command PA NOP t RP EMRS NOP t MRD NOP A.C. A.C.: Any command EMRS: Extended MRS command PA: PREALL command Don't Care Figure 17 Extended Mode Register Set Timing 4.3.1 DLL enable The DLL must be enabled for normal operation. DLL enable is required during power-up initialization and upon returning to normal operation after having disabled the DLL. (When the device exits self-refresh mode, the DLL is enabled automatically). Anytime the DLL is enabled, 1000 cycles must occur before a READ command can be issued. 4.3.2 WR The WR parameter is programmed using the register bits A4, A5 and A7. This integer parameter defines as a number of clock cycles the Write Recovery time in a Write with Autoprecharge operation. The following inequality has to be complied with: WR * tCK tWR, where tCK is the clock cycle time. 4.3.3 Termination Rtt The data termination, Rtt, is used to set the value of the internal termination resistors. The GDDR3 DRAM supports ZQ / 4 and ZQ / 2 termination values. The termination may also be disabled for testing and other purposes. 4.3.4 Output Driver Impedance The Output Driver Impedance extended mode register is used to set the value of the data output driver impedance. When the auto calibration is used, the output driver impedance is set nominally to ZQ / 6. If the Output Driver Impendance is changed to 30, 40 or 45 Ohms the user needs to issue 16 AREF commands separated by tRFC consecutively to make the change effective. The user must be aware that the Command bus needs to be stable for a time of tKO after each AREF. 4.3.5 Low Power When the Low Power extended mode register is set, the device changes its internal self-refresh rate from 32 ms to 8 ms. This allows self-refresh operation at higher temperatures for mobile applications. Data Sheet 38 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.3.6 Vendor Code and Revision Identification The Manufacturer Vendor Code is selected by issuing an Extended Mode Register Set command with bit A10 set to 1 and bits A0-A9 and A11 set to the desired value. When the Vendor Code function is enabled the GDDR3 DRAM will provide the Infineon vendor code on DQ[3:0] and the revision identification on DQ[7:4]. The code will be driven onto the DQ bus after tRIDon following the EMRS command that sets A10 to 1. The Vendor Code and Revision ID will be driven on DQ[7:0] until a new EMRS command is issued with A10 set back to 0. After tRDoff following the second EMRS command, the data bus is driven back to HIGH. This second EMRS command must be issued before initiating any subsequent operation. Violating this requirement will result in unspecified operation. Table 18 DQ[7:4] 0000 Revision ID and Vendor Code Infineon Vendor Code DQ[3:0] 0010 Revision Identification Note: Please refer to Revision Release Note for Revision ID value 0 CLK# CLK Com. EMRS 1 2 3 4 5 6 7 8 9 10 N/D N/D N/D N/D N/D EMRS N/D N/D N/D N/D A[9:0], A11 Add Add A10 t RDQS RIDon t RIDoff DQ[7:0] Vendor Code and Revision ID EMRS: Extended Mode Register Set Command Add: Address N/D: NOP or Deselect Don't Care Figure 18 Timing of Vendor Code and Revision ID Generation on DQ[7:0] Data Sheet 39 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..co Functional Description 4.4 Mode Register Set Command (MRS) CLK# CLK CKE CS# RAS# The mode register stores the data for controlling the operating modes of the memory. It programs CAS latency, test mode, DLL Reset and the value of the write latency. There is no default value for the mode register; therefore it must be written after power up to operate the . During a Mode Register Set command the address inputs are sampled and stored in the mode register. tMRD must be met before any command can be issued CAS# WE# to the Graphics SDRAM. The Mode Register contents can only be set or changed when the Graphics SDRAM is in idle state. COD A0-A11 BA0 1 COD: Code to be loaded int the register BA1 0 Don't Care Figure 19 Mode Register Set Command BA1 BA0 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 0 0 WL DLL TM CAS Latency BT BL Burst Length Write Latency A11 A10 0 1 1 0 all others A9 1 0 WL 3 4 RFU A7 0 1 A2 A1 1 1 all others A0 0 1 BL 4 8 RFU Testmode mode Normal Testmode 0 0 CAS Latency DLL Reset A8 0 1 DLL Reset No Yes A6 0 0 0 0 1 A5 0 0 1 1 1 all others A4 0 1 0 1 1 Latency A3 8 0 9 1 10 11 7 RFU Burst Type BT sequential RFU Note: 1) The DLL Reset command is self-clearing Figure 20 Mode Register Bitmap Data Sheet 40 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description CLK# CLK Com. PA NOP MRS NOP NOP A.C. NOP RD t RP t MRD tMRDR MRS: MRS command PA: PREALL command A.C.: Any other command as READ RD: READ command Don't Care Figure 21 Mode Register Set Timing 4.4.1 Burst length Read and Write accesses to the GDDR3 Graphics RAM are burst oriented with burst length of 4 and 8. This value must be programmed using the Mode Register Set command (A0 .. A2). The burst length determines the number of column locations that can be accessed for a given READ or WRITE command. When a READ or WRITE command is issued, a block of columns equal to the burst length is effectively selected. All accesses for that burst take place within this block if a boundary is reached. The starting location within this block is determined by the two least significant bits A0 and A1 which are set internally to the fixed value of zero each. Reserved states should not be used, as unknown operation or incompatibility with future versions may result. 4.4.2 Burst type Accesses within a given bank must be programmed to be sequential. This is done using the Mode Register Set command (A3). This device does not support the burst interleave mode. Table 19 Burst Definition Starting Column Address A2 4 8 -- 0 1 A1 X X X A0 X X X 0-1-2-3 0-1-2-3-4-5-6-7 4-5-6-7-0-1-2-3 Order of Accesses within a Burst (Type = sequential) Burst Length The value applied at the balls A0 and A1 for the column address is "Don't care" 4.4.3 CAS Latency The CAS latency is the delay, in clock cycles, between the registration of a READ command and the availability of the first bit of output data as shown on Figure 37. If a READ command is registered at clock edge n, and the latency is m clocks, the data will be available nominally coincident with clock edge n+m. Reserved states should not be used as unknown operation or incompatibility with future versions may result. Data Sheet 41 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.4.4 Write Latency The WRITE latency, WL, is the delay, in clock cycles, between the registration of a WRITE command and the availability of the first bit of input data as shown in Figure 27. 4.4.5 Test mode The normal operating mode is selected by issuing a Mode Register Set command with bit A7 set to zero and bits A0-A6 and A8-A11 set to the desired value. 4.4.6 DLL Reset The normal operating mode is selected by issuing a Mode Register Set command with bit A8 set to zero and bits A0-A7 and A9-A11 set to the desired values. A DLL Reset is initiated by issuing a Mode Register Set command with bit A8 set to one and bits A0-A7 and A9-A11 set to the desired values. The GDDR3 Graphics RAM returns automatically in the normal mode of operations once the DLL reset is completed. Data Sheet 42 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.5 Bank / Row Activation (ACT) CLK# CLK Before a READ or WRITE command can be issued to a bank, a row in that bank must be opened. This is accomplished via the ACT command, which selects both the bank and the row to be activated. After opening a row by issuing an ACT command, a READ or WRITE command may be issued after tRCD to that row. A subsequent ACT command to a different row in the same bank can only be issued after the previous active row has been closed (precharged). The minimum time interval between successive ACT commands to the same bank is defined by tRC. A subsequent ACT command to another bank can be issued while the first bank is being accessed, which results in a reduction of total row-access overhead. The minimum time interval between successive ACT commands to different banks is defined by tRRD. RA: Row Address BA: Bank Address CKE CS# RAS# CAS# WE# A0-A11 RA BA0-BA1 BA There is a minimum time tRAS between opening and closing a row. Don't Care Figure 22 Activating a specific row CLK# CLK Com. A0-A11 ACT Row B.Y tRCD R/W Col B.Y tRAS tRC tRRD PRE A8 B.Y ACT Row B.Y ACT Row B.X Row: Row Address Col: Column Address B.X: Bank X B.Y: Bank Y R/W: READ or WRITE comman PRE: PRECHARGE command ACT: ACTIVATE command Don't Care BA0-BA1 Figure 23 Bank Activating Timing Data Sheet 43 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description t CK t CH t CL CLK# CLK t IPW CMD, ADDR, CKE t IS t IH Don't Care Figure 24 Clock, CKE and Command/Address Timings Setup and Hold Timing for CKE is equal to CMD and ADDR Setup and Hold Timing. 4.6 4.6.1 Writes (WR) Write - Basic Information CLK# CLK four or eight depending on the mode register setting. There is no interruption of WR bursts. The two least significant address bits A0 and A1 are "Don't Care". For WR commands with Autoprecharge the row being accessed is precharged tWR/A after the completion of the burst. If tRAS(min) is violated the begin of the internal Autoprecharge will be performed one cycle after tRAS(min) is met. WR, the write recovery time for write with Autoprecharge can be programmed in the Mode Register. Choosing high values for WR will prevent the chip to delay the internal Autoprecharge in order to meet tRAS(min). During WR bursts data will be registered with the edges of WDQS. The write latency can be programmed during Extended Mode Register Set. The first valid data is registered with the first valid rising edge of WDQS following the WR command. The externally provided WDQS must switch from HIGH to LOW at the beginning of the preamble. There is also a postamble requirement before the WDQS returns to HIGH. The WDQS signal can only transition when data is applied at the chip input and during pre- and postambles. CKE CS# RAS# CAS# WE# A2-A7, A9 CA A0, A1 A10-A11 A8 AP AP: AutoPrecharge CA: Column Addres BA: Bank Address Don't Care BA0-BA1 BA Figure 25 Write Command Write bursts are initiated with a WR command, as shown in Figure 25. The column and bank addresses are provided with the WR command, and Auto Precharge is either enabled or disabled for that access. The length of the burst initiated with a WR command is Data Sheet 44 tDQSS is the time between WR command and first valid rising edge of WDQS. Nominal case is when WDQS edges are aligned with edges of external CLK. Minimum and maximum values of tDQSS define early and late WDQS operation. Any input data will be ignored before the first valid rising WDQS transition. tDQSL and tDQSH define the width of low and high phase of WDQS. The sum of tDQSL and tDQSH has to be tCK. Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description Back to back WR commands are possible and produce a continuous flow of input data. There must be one NOP cycle between two back to back WR commands. Any WR burst may be followed by a subsequent RD command. Figure 31 shows the timing requirements for a WR followed by a RD. A WR may also be followed by a PRE command to the same bank. tWR has to be met as shown in Figure 34. Table 20 WDQS WDQS0 WDQS1 WDQS2 WDQS3 Mapping of WDQS and DM Signals Data mask signal DM0 DM1 DM2 DM3 Controlled DQs DQ0 - DQ7 DQ8 - DQ15 DQ16 - DQ23 DQ24 - DQ31 Setup and hold time for incoming DQs and DMs relative to the WDQS edges are specified as tDS and tDH. DQ and DM input pulse width for each input is defined as tDIPW. The input data is masked if the corresponding DM signal is high. All timing parameters are defined with graphics DRAM terminations on. CLK# CLK nominal WDQS tDQSS tWPRE Preamble WDQS tDQSS nominal tDIPW DQ D0 tDS Data masked min(tDQSS) D1 tDH tDIPW Data masked D2 D3 tDS tDQSH tDH tDQSL tDQSH tDS tDH tWPST Postamble DMx early WDQS WDQS late WDQS WDQS max(tDQSS) Don't Care DMx: Represents one DM line Figure 26 Basic Write Burst / DM Timing Note: WDQS can only transition when data is applied at the chip input and during pre- and postambles. Data Sheet 45 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.6.2 Write - Basic Sequence 0 CLK# CLK Com. WR N/D DES DES DES DES DES DES DES 1 2 3 4 5 6 7 8 Addr. B/C WL = 3 WDQS DQ D0 D1 D2 D3 WL = 4 WDQS DQ D0 D1 D2 D3 Com. WR N/D NOP NOP NOP NOP NOP NOP NOP Addr. B/C WL = 3 DQ D0 D1 D2 D3 WL = 4 WDQS DQ B / C: Bank / Column address WR: WRITE NOP: No Operation D0 D1 D2 D3 Addr.: Address B / C D#: Data to B / C WL: Write Latency Don't Care DES: Deselect N/P: NOP or DES Com.: Command Figure 27 1. 2. 3. 4. Write Basic Sequence Shown with nominal value of tDQSS. WDQS can only transition when data is applied at the chip input and during pre- and postambles. When NOPs are applied on the command bus, the WDQS and the DQ busses remain stable High. When DESs are applied on the command bus, the status of the WDQS and DQ busses is unknown. Data Sheet 46 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.6.3 4.6.3.1 Write - Consecutive Bursts Gapless Bursts 0 1 2 3 4 5 6 7 8 9 CLK# CLK Com. WR N/D WR N/D DES DES DES DES DES DES Addr. B/Cx B/Cy WL = 3 WDQS DQ Dx0 Dx1 Dx2 Dx3 Dy0 Dy1 Dy2 Dy3 WL = 4 WDQS DQ Dx0 Dx1 Dx2 Dx3 Dy0 Dy1 Dy2 Dy3 WR: DES: N/D: WRITE Deselect NOP / Deselect B / Cx: Bank / Column address x B / Cy: Bank / Column address y WL: Write Latency Don't Care Dx#: Data to B / Cx Dy#: Data to B / Cy Com.: Command Addr.: Address B / C Figure 28 Gapless Write Bursts 1. Shown with nominal value of tDQSS. 2. The second WR command may be either for the same bank or another bank. 3. WDQS can only transition when data is applied at the chip input and during pre- and postambles. Data Sheet 47 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.6.3.2 0 CLK# CLK Com . Bursts with Gaps 1 2 3 4 5 6 7 8 9 10 WR N/D N/D WR N/D DES DES DES DES DES DES Addr. B/Cx B/Cy WL = 3 WDQS DQ Dx0 Dx1 Dx2 Dx3 Dy0 Dy1 Dy2 Dy3 WL = 4 WDQS DQ Dx0 Dx1 Dx2 Dx3 Dy0 Dy1 Dy2 Dy3 Com.: Command Addr.: Address B / C WL: Write Latency DES: Deselect N/D: NOP / Deselect Don't Care B / Cx: Bank / Column address x B / Cy: Bank / Column address y WR: WRITE Dx#: Data to B / Cx Dy#: Data to B / Cy Figure 29 Consecutive Write Bursts with Gaps 1. Shown with nominal value of tDQSS. 2. The second WR command may be either for the same bank or another bank. 3. WDQS can only transition when data is applied at the chip input and during pre- and postambles. Data Sheet 48 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.6.4 0 CLK# CLK Write with Autoprecharge 1 2 3 4 5 6 7 8 9 10 11 Com. WR/A N/D DES DES DES DES DES DES DES DES DES DES A9, A7-A2 B/C A8 WL = 3 WDQS tWR/A =4 tRP DQ D0 D1 D2 D3 tRAS MIN satisfied WL = 4 WDQS t WR/A =4 Begin of Autoprecharge tRP DQ D0 D1 D2 D3 tRAS MIN satisfied Com.: Command Addr.: Address B / C WL: Write Latency Don't Care D#: DES: N/D: Begin of Autoprecharge B / C: Bank / Column address WR/A: WRITE with auto-precharge Data to B / C Deselect NOP or Deselect Figure 30 1. 2. 3. 4. Write with Autoprecharge Shown with nominal value of tDQSS. tWR/A starts at the first rising edge of CLK after the last valid edge of WDQS. tRP starts after tWR/A has been expired. When issuing a WR/A command please consider that the tRAS requirement also must be met at the beginning of tRP. 5. tWR/A * tCYC tWR. 6. WDQS can only transition when data is applied at the chip input and during pre- and postambles. Data Sheet 49 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.6.5 Write followed by Read 0 CLK# CLK 1 2 3 4 5 6 7 8 9 WR N/D DES DES DES DES DES DES RD N/D B/C B/C WL = 3 t WTR WDQS DQ D0 D1 D2 D3 WR N/D DES DES DES DES DES DES DES RD B/C B/C WL = 4 t WTR WDQS DQ D0 D1 D2 D3 D#: Data to B / Cx Com.: Command Addr.: Address B / C WL: Write Latency Don't Care B / C: WR: RD: DES: N/D: Bank / Column address WRITE READ Deselect NOP / Deselect Figure 31 Write followed by Read 1. Shown with nominal value of tDQSS. 2. The RD command may be either for the same bank or another bank. 3. WDQS can only transition when data is applied at the chip input and during pre- and postambles. Data Sheet 50 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.6.6 Write followed by DTERDIS 0 1 2 3 4 5 6 7 8 9 10 CLK# CLK WR DTD DES DES DES DES DES DES DES DES DES B/C CL = 7 WL = 3 WDQS DQ D0 D1 D2 D3 WR N/D DTD DES DES DES DES DES DES DES DES B/C CL = 7 WL = 4 WDQS DQ D0 D1 D2 D3 B / C: Bank / Column address WR: DTD: D#: WRITE DTERDIS Data to B / Cx WL: CL: DES: N/D: Write Latency CAS Latency Deselect NOP or Deselect Don't Care Data Termination Off Com.: Command Addr.: Address B / C Figure 32 Write Command followed by DTERDIS 1. Shown with nominal value of tDQSS. 2. WDQS can only transition when data is applied at the chip input and during pre- and postambles. 3. A margin of one clock has been introduced in order to make sure that the data termination are still on when the last Write data reaches the memory. 4. The minimum distance between Write and DTERDIS is one clock. Data Sheet 51 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.6.7 Write with Autoprecharge followed by Read / Read with Autoprecharge 0 1 2 3 4 5 6 7 8 9 10 CLK# CLK Com. WR/A N/D DES DES DES DES DES DES DES RD RD/A DES A9, A2-A7 B/C B/C A8 tWTR tWR/A WL = 3 WDQS tRP DQ D0 D1 D2 D3 Begin of Autoprecharge Com. WR/A N/D DES DES DES DES DES DES DES DES RD RD/A A9, A2-A7 B/C B/C A8 tWTR tWR/A WL = 4 WDQS tRP DQ D0 D1 D2 D3 Begin of Autoprecharge B / C: Bank / Column address WR/A: WRITE with Autoprecharge RD RD/A: READ or READ with Autoprecharge D#: Data to B / Cx DES: Deselect N/D: NOP or Deselect Com.: Command Addr.: Address B / C WL: Write Latency Don't Care 0: RD, 1: RD/A Figure 33 1. 2. 3. 4. Write with Autoprecharge followed by Read or Read with Autoprecharge on another bank. Shown with nominal value of tDQSS. The RD command is only allowed for another activated bank. tWR/A is set to 4 in this example. WDQS can only transition when data is applied at the chip input and during pre- and postambles. Data Sheet 52 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.6.8 0 CLK# CLK Write followed by Precharge on same bank. 1 2 3 4 5 6 7 8 9 10 WR N/D DES DES DES DES DES DES DES PRE DES B/C B WL = 3 WDQS tWR t RP DQ D0 D1 D2 D3 WR N/D DES DES DES DES DES DES DES DES PRE B/C B WL = 4 WDQS t WR tRP DQ D0 D1 D2 D3 N/D: NOP or Deselect DES: Deselect Com.: Command Addr.: Address B / C WL: Write Latency Don't Care B / C: Bank / Column address WR: WRITE PRE: PRECHARGE Dx#: Data to B / Cx Dy#: Data to B / Cy Figure 34 1. 2. 3. 4. Write followed by Precharge on same Bank Shown with nominal value of tDQSS. WR and PRE commands are to same bank. tRAS requirement must also be met before issuing PRE command. WDQS can only transition when data is applied at the chip input and during pre- and postambles. Data Sheet 53 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.7 4.7.1 Reads (RD) Read - Basic Information CLK# CLK its first rising edge (RD preamble tRPRE). After the last falling edge of RDQS a postamble of tRPST is performed. tAC is the time between the positive edge of CLK and CKE CS# RAS# CAS# WE# A2-A7, A9 CA A0, A1 A10-A11 the appearance of the corresponding driven read data. The skew between RDQS and the crossing point of CLK/CLK is specified as tDQSCK. tAC and tDQSCK are defined relatively to the positive edge of CLK. tDQSQ is the skew between a RDQS edge and the last valid data edge belonging to the RDQS edge. tDQSQ is derived at each RDQS edge and begins with RDQS transition and ends with the last valid transition of DQs. tQHS is the data hold skew factor and tQH is the time from the first valid rising edge of RDQS to the first conforming DQ going non-valid and it depends on tHP and tQHS. tHP is the minimum of tCL and tCH. tQHS is effectively the time from the first data transition (before RDQS) to the RDQS transition. The data valid window is derived for each RDQS transition and is defined as tQH minus tDQSQ. After completion of a burst, assuming no other commands have been initiated, data will go HIGH and RDQS will go HIGH. Back to back RD commands are possible producing a continuous flow of output data. There has to be one NOP cycle between back to back RD commands. Any RD burst may be followed by a subsequent WR command. The minimum required number of NOP commands between the RD command and the WR command (tRTW) depends on the programmed Read latency and the programmed Write latency A8 AP AP: AutoPrecharge CA: Column Addres BA: Bank Address Don't Care BA0-BA1 BA Figure 35 Read Command Read bursts are initiated with a RD command, as shown in Figure 35. The column and bank addresses are provided with the RD command and Autoprecharge is either enabled or disabled for that access. The length of the burst initiated with a RD command is 4 or 8. There is no interruption of RD bursts. The two least significant start address bits are "Don't Care". If Autoprecharge is enabled, the row being accessed will start precharge at the completion of the burst. The begin of the internal Autoprecharge will always be one cycle after tRAS(min) is met. During RD bursts the memory device drives the read data edge aligned with the RDQS signal which is also driven by the memory. After a programmable CAS latency of 7, 8, 9, 10 and 11 the data is driven to the controller. RDQS leaves HIGH state one cycle before tRTW(min)= (CL+4-WL). Chapter 4.7.7 shows the timing requirements for RD followed by a WR with some combinations of CL and WL. A RD may also be followed by a PRE command. Since no interruption of bursts is allowed the minimum time between a RD command and a PRE is two clock cycles as shown in Chapter 4.7.8. All timing parameters are defined with controller terminations on. Data Sheet 54 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description tCH CLK# CLK RDQS tCL tCK tHP tDQSCK Preamble tRPRE DQ (first data valid) DQ (last data valid) tAC All DQs collectively D0 tDQSQ tQH tLZ tQHS D1 data valid window D2 tDQSQ D0 D0 D1 D1 D2 D2 D3 Postamble tRPST D3 D3 Don't Care Hi-Z : Not driven by DDRIII SGRAM tHZ Figure 36 Basic Read Burst Timing 2. The GDDR3 SGRAM drives the data bus HIGH one cycle after the last data driven on the bus before switching the termination on again. 1. The GDDR3 SGRAM switches off the DQ terminations one cycle before data appears on the bus and drives the data bus HIGH. Data Sheet 55 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.7.2 0 CLK# CLK Read - Basic Sequence 1 2 3 6 7 8 9 10 11 Com. RD N/D N/D N/D N/D N/D N/D N/D N/D N/D Addr. B/C CAS latency = 7 RDQS DQ D0 D1 D2 D3 CAS latency = 8 RDQS DQ D0 D1 D2 D3 B / C: Dx: Com.: Addr.: Bank / Column address Data from B / C Command Address B / C RD: N/D: READ Nop or Deselect Don't Care DQs : Terminations off RDQS : Not driven Figure 37 Read Burst 1. Shown with nominal tAC and tDQSQ. 2. RDQS will start driving high 1/2 cycle prior to the first falling edge and stop 1/2 cycle after the last rising edge of RDQS. 3. The DQ terminations are switched off 1 cycle before the first Read Data and on again 1 cycle after the last Read data. Data Sheet 56 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.7.3 4.7.3.1 0 CLK# CLK Consecutive Read Bursts Gapless Bursts 1 2 3 6 7 8 9 10 11 12 13 Com. RD N/D RD N/D N/D N/D N/D N/D N/D N/D N/D N/D Addr. B/Cx B/Cy CAS latency = 7 RDQS DQ Dx0 Dx1 Dx2 Dx3 Dy0 Dy1 Dy2 Dy3 CAS latency = 8 RDQS DQ Dx0 Dx1 Dx2 Dx3 Dy0 Dy1 Dy2 Dy3 B / Cx: Bank / Column address x B / Cy: Bank / Column address y Dx#: Dy#: Data from B / Cx Data from B / Cy RD: N/D: READ NOP or Deselect Don't Care DQs : Terminations off RDQS : Not driven Com.: Command Addr.: Address B / C Figure 38 1. 2. 3. 4. Gapless Consecutive Read Bursts The second RD command may be either for the same bank or another bank. Shown with nominal tAC and tDQSQ. Example applies only when READ commands are issued to same device. RDQS will start driving high 1/2 cycle prior to the first falling edge and stop 1/2 cycle after the last rising edge of RDQS. 5. The DQ terminations are switched off 1 cycle before the first Read Data and on again 1 cycle after the last Read data. Data Sheet 57 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.7.4 0 CLK# CLK Bursts with Gaps 1 2 3 6 7 8 9 10 11 12 Com. RD N/D N/D RD N/D N/D N/D N/D N/D N/D N/D Addr. B/Cx B/Cy CAS latency = 7 RDQS DQ Dx0 Dx1 Dx2 Dx3 Dy0 Dy1 Dy2 Dy3 CAS latency = 8 RDQS DQ Dx0 Dx1 Dx2 Dx3 Dy0 Dy1 Dy2 B / Cx: B / Cy: RD: Dx#: Dy#: Com.: Addr.: Bank / Column address x Bank / Column address y READ Data from B / Cx Data from B / Cy Command Address B / C Don't Care DQs : Terminations off RDQS : Not driven Figure 39 Consecutive Read Bursts with Gaps 1. The second RD command may be either for the same bank or another bank. 2. RDQS will start driving high 1/2 cycle prior to the first falling edge and stop 1/2 cycle after the last rising edge of RDQS. 3. The DQ terminations are switched off 1 cycle before the first Read Data and on again 1 cycle after the last Read data. Data Sheet 58 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.7.5 0 CLK# CLK Com. RD Read followed by DTERDIS 1 2 3 6 7 8 9 10 12 13 14 15 16 N/D N/D N/D DTD N/D N/D N/D N/D N/D N/D N/D N/D N/D Addr. B/Cx CAS latency = 7 RDQS DQ Dx0 Dx1 Dx2 Dx3 0 CLK# CLK Com. RD 1 2 3 6 7 8 9 10 13 14 15 16 17 N/D N/D N/D N/D DTD N/D N/D N/D N/D N/D N/D N/D N/D Addr. B/Cx CAS latency = 7 RDQS DQ Dx0 Dx1 Dx2 Dx3 B / Cx: Dx#: Com.: Addr.: Bank / Column address x Data from B / Cx Command Address B / C RD: DTD: DES: N/D: READ DTERDIS Deselect NOP or Deselect Don't Care DQs : Terminations off RDQS : Not driven Figure 40 Read Command followed by DTERDIS 1. At least 3 NOPs are required between a READ command and a DTERDIS command in order to avoid contention on the RDQS bus in a 2 rank system. 2. CAS Latency 7 is used as an example. 3. The DQ terminations are switched off (CL-1) clock periods after the DTERDIS command for a duration of 4 clocks. 4. The dashed lines (RDQS bus) describe the RDQS behavior in the case where the DTERDIS command corresponds to a Read command applied to the second Graphics DRAM in a 2 rank system. In this case, RDQS would be driven by the second Graphics DRAM. Data Sheet 59 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 Functional Description www.DataShee 4.7.6 Read with Autoprecharge 0 CLK# CLK 1 2 3 6 7 8 9 10 Com. RD/A N/D N/D N/D N/D N/D N/D N/D N/D A9, A7-A2 B/C A8 CAS latency = 7 RDQS DQ D0 D1 D2 D3 CAS latency = 8 RDQS DQ BL / 2 tRP Begin of Autoprecharge B / C: RD/A: Dx: Com.: Addr.: D0 D1 D2 D3 Bank / Column address READ with auto-precharge Data from B / C Command Address B / C N/D: NOP or Deselect Don't Care DQs : Terminations off RDQS : Not driven Figure 41 Read with Autoprecharge 1. When issuing a RD/A command, the tRAS requirement must be met at the beginning of Autoprecharge 2. Shown with nominal tAC and tDQSQ 3. RDQS will start driving high 1/2 cycle prior to the first falling edge and stop 1/2 cycle after the last rising edge of RDQS. 4. The DQ terminations are switched off 1 cycle before the first Read Data and on again 1 cycle after the last Read data. 5. tRAS Lockout support. Data Sheet 60 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.7.7 0 CLK# CLK Com. Read followed by Write 1 2 3 6 7 8 9 10 11 12 13 RD DES DES DES DES DES WR DES DES DES DES DES Addr. B/Cr CAS latency = 7 tRTW B/Cw Write latency = 3 RDQS WDQS DQ D0r D1r D2r D3r D0w D1w D2w D3w RD DES DES DES DES DES WR DES DES DES DES DES B/Cr CAS latency = 8 tRTW RDQS B/Cw Write latency = 4 WDQS DQ D0r D1r D2r D3r D0w D1w D2w B / Cr: Bank / Column address for READ B / Cw: Bank / Column address for WRITE RD: READ WR: WRITE DES: Deselect Dxr: READ Data from B / C Dxw: WRITE Data from B / C Com.: Command Addr.: Address B / C Don't Care DQs : Terminations off RDQS : Not driven Figure 42 Read followed by Write 1. Shown with nominal tAC, tDQSQ and tDQSS 2. RDQS will start driving high 1/2 cycle prior to the first falling edge and stop 1/2 cycle after the last rising edge of RDQS. 3. The DQ terminations are switched off 1 cycle before the first Read Data and on again 1 cycle after the last Read data 4. WDQS can only transition when data is applied at the chip input and during pre- and postambles. 5. The Write command may be either on the same bank or on another bank. Data Sheet 61 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www.DataShee Functional Description 4.7.8 Read followed by Precharge on the same Bank 0 1 2 3 6 7 8 9 10 CLK# CLK Com. RD N/D PRE N/D N/D N/D N/D N/D N/D Addr. B/C CAS latency = 7 RDQS DQ D0 D1 D2 D3 CAS latency = 8 RDQS DQ D0 D1 D2 D3 t RP Com.: Command Addr.: Address B / C B / C: Bank / Column address RD: READ PRE: PRECHARGE Dx: Data from B / C N/D: NOP or Deselect Don't Care DQs : Terminations off RDQS : Not driven Figure 43 1. 2. 3. 4. Read followed by Precharge on the same bank tRAS requirement must also be met before issuing PRE command RD and PRE commands are applied to the same bank. Shown with nominal tAC and tDQSQ RDQS will start driving high 1/2 cycle prior to the first falling edge and stop 1/2 cycle after the last rising edge of RDQS. Data Sheet 62 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.8 Data Termination Disable (DTERDIS) CLK# CLK CKE The Data Termination Disable command is detected by the device by snooping the bus for Read commands when CS is high. The terminators are disabled starting at CL - 1 clocks after the DTERDIS command is detected and the duration is 4 clocks. The command and address terminators are always enabled. DTERDIS may only be applied to the GDDR3 Graphics memory if it is not in the Power Down or in the Self Refresh state. The timing relationship between DTERDIS and other commands is defined by the constraint to avoid contention on the RDQS bus (i.e Read to DTERDIS transition) or the necessity to have a defined termination on the data bus during Write (i.e. Write to DTERDIS transition). ACT and PRE/PREALL may be applied at any time before or after a DTERDIS command. CS# RAS# CAS# WE# A2-A7, A9 A0, A1 A10-A11 A8 AP: AutoPrecharge BA0-BA1 Don't Care Figure 44 0 CLK# CLK Data Terminal Disable Command 1 2 3 6 7 8 9 10 11 Com. DTD N/D N/D N/D N/D N/D N/D N/D N/D N/D Addr. CAS latency = 7 DQ Termination Data Terminations are disabled DTD: DTERDIS Com.: Command Addr.: Address B / C Don't Care N/D : NOP or Deselec Figure 45 DTERDIS Timing Data Sheet 63 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.8.1 0 CLK# CLK DTERDIS followed by DTERDIS 1 2 3 6 7 8 9 10 11 12 13 14 15 Com. DTD N/D DTD N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D Addr. CAS latency = 7 RDQS DQ 0 CLK# CLK 3 4 5 6 7 8 9 10 11 12 13 14 15 Com. DTD N/D DTD N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D Addr. CAS latency = 7 RDQS DQ Com. DTD N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D Addr. CAS latency = 7 RDQS DQ Com.: Command Addr.: Address B / C B / Cx: Bank / Column address x RD: DTD: N/D : Dx#: READ DTERDIS NOP or Deselect Data from B / Cx Don't Care DQs : Terminations off RDQS : Not driven Figure 46 DTERDIS Command followed by DTERDIS 1. At least 1NOP is required between 2 DTERDIS commands. This correspond to a Read to Read transition on the other memory in a 2 rank system. 2. CAS Latency 7 is used as an example. 3. The DQ terminations are switched off (CL-1) clock periods after the DTERDIS command for a duration of 4 clocks. 4. The dashed lines (RDQS bus) describe the RDQS behavior in the case where the DTERDIS command corresponds to a Read command applied to the second Graphics DRAM in a 2 rank system. In this case, RDQS would be driven by the second Graphics DRAM. Data Sheet 64 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.8.2 DTERDIS followed by READ 0 CLK# CLK Com. DTD 1 2 5 6 7 8 9 12 13 14 15 16 17 N/D N/D N/D RD N/D N/D N/D N/D N/D N/D N/D N/D N/D Addr. B/Cx CAS latency = 7 RDQS DQ Dx0 Dx1 Dx2 Dx3 Com. DTD N/D N/D N/D N/D RD N/D N/D N/D N/D N/D N/D N/D N/D Addr. B/Cx CAS latency = 7 RDQS DQ Dx0 Dx1 Dx2 Dx3 Com.: Command Addr.: Address B / C B / Cx: RD: DTD: N/D: Dx#: Bank / Column address x READ DTERDIS NOP or Deselect Data from B / Cx Don't Care DQs : Terminations off RDQS : Not driven Figure 47 DTERDIS Command followed by READ 1. At least 3 NOPs are required between a DTERDIS command and a READ command in order to avoid contention on the RDQS bus in a 2 rank system. 2. CAS Latency 7 is used as an example. 3. The DQ terminations are switched off (CL-1) clock periods after the DTERDIS command for a duration of 4 clocks. Data Sheet 65 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.8.3 0 CLK# CLK DTERDIS followed by Write 1 2 3 6 7 8 9 10 11 12 13 Com. DTD DES DES DES DES DES WR DES DES DES DES DES Addr. B/Cw CAS latency = 7 Write latency = 3 WDQS DQ D0w D1w D2w D3w DTD DES DES DES DES DES WR DES DES DES DES DES B/Cw CAS latency = 8 Write latency = 4 WDQS DQ D0w D1w D2w B / Cw: WR: DTD: DES: Bank / Column address for WRITE WRITE DTERDIS Deselect Dxw: WRITE Data from B / C Com.: Command Addr.: Address B / C Don't Care DQs : Terminations off Figure 48 DTERDIS Command followed by Write 1. Write shown with nominal value of tDQSS. 2. WDQS can only transition when data is applied at the chip input and during pre- and postambles 3. The minimum distance between DTERDIS and Write is (CL - WL + BL/2 +2) clocks. Data Sheet 66 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.9 CLK# CLK Precharge (PRE/PREALL) The Precharge command is used to deactivate the open row in a particular bank (PRE) or the open rows in all banks (PREALL). The bank(s) will enter the idle state and be available again for a new row access after the time tRP. A8/AP sampled with the PRE command determines whether one or all banks are to be precharged. For PRE commands BA0, BA1 select the bank. For PREALL inputs BA0, BA1 are "Don't Care". The PRE/PREALL command may not be given unless the tRAS requirement is met for the selected bank (PRE), or for all banks (PREALL). CKE CS# RAS# CAS# WE# A0-7,9-11 A8 ALL ALL: High selects all banks Low selects Bank BA BA: Bank Address BA0-BA1 BA Don't Care Figure 49 Table 21 A8 / AP 0 0 0 0 1 Precharge Command BA1 and BA0 precharge bank selection BA1 0 0 1 1 X BA0 0 1 0 1 X precharged bank(s) Bank 0 only Bank 1 only Bank 2 only Bank 3 only All banks Data Sheet 67 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description CLK# CLK Command ACT NOP PRE NOP NOP ACT A0 - A11 Row Row BA0 - BA1 B.X tRAS tRC B.X tRP B.X PRE: Precharge ACT: Activate Row: Row Address B.X: Bank X Don't Care Figure 50 Precharge Timing Data Sheet 68 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.10 Auto Refresh Command (AREF) CLK# CLK CKE CS# AREF is used to do a refresh cycle on one row in each bank. The addresses are generated by an internal refresh controller; external address pins are "DON'T CARE". All banks must be idle before the AREF command can be applied. The delay between the AREF command and the next ACT or subsequent AREF must be at least tRFC(min). The refresh period starts when the AREF command is entered and ends tRFC later at which time all banks will be in the idle state. Within a period of tREF the whole memory has to be refreshed. The average periodic interval time from AREF to AREF is then tREFI. To improve efficiency bursts of AREF commands can be used. Such bursts may consist of maximum 8 AREF commands. tRFC(min) is the minimum required time between two AREF commands inside of one AREF burst. According to the number of AREF commands in one burst the average required time from one AREF burst to the next can be increased. Example: If the AREF bursts consists of 8 AREF commands, the average time from one AREF burst to the next is 8* tREFI. The AREF command generates an update of the OCD output impedance and of the addresses, commands and DQ terminations. The timing parameter tKO (see Chapter 4.2.2 must be met. RAS# CAS# WE# A0-A11 BA: Bank Address BA0-BA1 Don't Care Figure 51 Auto Refresh Command CLK# CLK Command PRE ARF NOP A.C. NOP ARF NOP CKE tRP tRFC tREFI A.C.: AREF or ACT Command ARF: Auto Refresh Don't Care Figure 52 Auto Refresh Cycle Data Sheet 69 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.11 4.11.1 Self-Refresh Self-Refresh Entry (SREFEN) CLK# CLK CKE CS# The Self-Refresh mode can be used to retain data in the GDDR3 Graphics RAM even if the rest of the system is powered down. When in the Self-Refresh mode, the GDDR3 Graphics RAM retains data without external clocking. The Self-Refresh command is initiated like an Auto-Refresh command except CKE is disabled (LOW). Self Refresh Entry is only possible if all banks are precharged and tRP is met. The GDDR3 Graphics RAM has a build-in timer to accommodate Self-Refresh operation. The SelfRefresh command is defined by having CS, RAS, CAS and CKE held low with WE high at the rising edge of the clock. Once the command is registered, CKE must be held LOW to keep the device in Self-Refresh mode. When the has entered the Self-Refresh mode, all external control signals, except CKE are disabled. The address, command and data terminators remain on. The DLL and the clock are internally disabled to save power. The user may halt the external clock while the device is in Self-Refresh mode the next clock after SelfRefresh entry, however the clock must be restarted before the device can exit Self-Refresh operation. RAS# CAS# WE# A0-A7 A9-A11 A8 BA0-BA1 Don't Care Figure 53 Self-Refresh Entry Command CLK# CLK Command PA AREF 1 Clock CKE t RP CLK/CLK# may be halted PA.: Precharge ALL Command (or last of PREs to each bank) SRF: Self Refresh Command Don't Care Figure 54 Self Refresh Entry Data Sheet 70 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.12 Self-Refresh Exit (SREFEX) CLK# CLK CKE To exit the Self Refresh Mode, a stable external clock is needed before setting CKE high asynchronously. Once the Self-Refresh Exit command is registered, a delay equal or longer than tXSC must be satisfied before any command can be applied. During this time, the DLL is automatically enabled, reset and calibrated. CKE must remain HIGH for the entire Self-Refresh exit period and commands must be gated off with CS held HIGH. Alternately, NOP commands may be registered on each positive clock edge during the Self Refresh exit interval. CS# RAS# CAS# WE# A0-A11 A9-A11 Don't Care Figure 55 Self Refresh Exit Command CLK# CLK Command N/D N/D N/D A.C. CKE tXSC CLK, CLK# must be stable A.C.: Any Command N / D: NOP or DESEL Command Don't Care Figure 56 Self Refresh Exit Data Sheet 71 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.13 Power-Down CLK# CLK defined one clock after the rising edge of the Write Postamble. For Read with Autoprecharge and Write with Autoprecharge, the internal Autoprecharge must be completed before entering Power-Down. 1 2 CKE CS# RAS# CAS# WE# A0-A11 Power-Down is entered when CKE is registered LOW. (No access can be in progress. "Access" means as well READ or WRITE to a second memory sharing the data bus in a dual rank system.) If Power-Down occurs when all banks are idle, this mode is referred to as Precharge Power-Down; if Power-Down occurs when there is a row active in any bank, this mode is referred to as Active Power-Down. Entering power-down deactivates the input and output buffers, excluding CLK, CLK and CKE. For maximum power saving, the user has the option of disabling the DLL prior to entering powerdown. In that case the DLL must be enabled and reset after exiting power-down, and 1000 cycles must occur before a READ command can be issued. 1: DESEL, 2: NOP Don't Care BA0-BA1 Figure 57 Power Down Command The requires CKE to be active at all times an access is in progress: From the issuing of a READ or WRITE command until completion of the burst. For READs, a burst completion is defined after the rising edge of the Read Postamble. For Writes, a burst completion is CLK# CLK Comm. N/D N/D N/D In Power-Down mode, CKE low and a stable clock signal must be maintained at the inputs of the GDDR3 Graphics RAM, all the other input signals are "Don't Care". Power down duration is limited by the refresh requirements of the device. The Power-Down state is synchronously exited when CKE is registered HIGH (along with a NOP or DESEL command). A valid executable command may be applied tXPN later. N/D A.C. A.C. CKE tIS Power-Down Mode Entry Power-Down Mode Exit tXPN N / D: NOP or DESELECT Command Any Command Don't Care A.C.: Figure 58 Power-Down Mode Data Sheet 72 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.14 DLL Off Mode The HYB18H256321AFL14/16/20 supports for very low frequency operation the DLL off mode. Entering this mode requires an Extended Mode Register Set command disabling the DLL by setting A6 to 1. For 350 MHz clock speed and faster DLL on mode operation is recommended. Most of the commands and timings described in Chapter 4.5 to Chapter 4.13 are also applicable for DLL off mode. Differences exist for the frequency range, the initialization and the timing of WR command and RD command. 4.14.1 Frequency range in DLL off mode Operations in DLL off mode are limited to the frequencies between 100 MHz and 350 MHz. 4.14.2 Table 22 Parameter Initialization in DLL off mode DLL off: General Timing Parameter for HYB18H256321AFL14/16/20 Read Symbol Limit Values Latency -14 min max 350 350 350 Unit -16 min 100 100 100 max 350 350 350 -20 min 100 100 100 max 350 350 350 MHz MHz MHz Note Clock DLL off mode System Frequency 9 8 7 fCK9 fCK8 fCK7 100 100 100 VDD VDDQ VREF t ATS RES t ATH CKE CLK# CLK Com. DES DES PA EMR MRS PA ARF ARF A.C. A6 min. 200 s VDD and CLK stable min. 700 cycles t RP t MRD t MRD t RP min. 300 t RFC cycles t RFC MRS: MRS command EMR: EMRS command DES : Deselect PA: A.C.: PREALL command Any command Don't Care ARF: AUTO REFRESH command Figure 59 DLL off: Power Up Sequence Data Sheet 73 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.14.3 Table 23 Parameter Writes (WR) in DLL off mode General Timing Parameter for HYB18H256321AFL14/16/20 Symbol Limit Values -14 min max -16 min max -20 min max Unit Write comm. to the first DQS latching transition Data-in and DM input pulse width (each input) DQS Write Preamble Time DQS Write Postamble Time Write to Read Write Recovery Time tDQSS tDIPW tWPRE tWPST tWTR tWR (WL*tCK) (WL*tCK) (WL*tCK) (WL*tCK) (WL*tCK) (WL*tCK) ns - 0.5 + 0.5 - 0.5 + 0.5 - 0.5 + 0.5 0.77 0.55 0.88 8 14 -- -- 1.32 -- -- 0.77 0.55 0.88 8 14 -- -- 1.32 -- -- 0.88 0.63 1.0 8 14 -- -- 1.5 -- -- ns ns ns ns ns Figure 60 DLL off: Write followed by Read Data Sheet 74 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 0 CLK# CLK 1 2 3 4 5 6 7 8 9 Com. WR DES DES DES DES DES PRE DES DES DES Addr. B/C B Com. contin. WR DES DES DES DES DES DES PRE DES DES Addr. contin. B/C B WL = 3 WDQS tWR t RP DQ D0 D1 D2 D3 WR DES DES DES DES DES DES DES PRE DES B/C B WL = 4 WDQS tWR t RP DQ D0 D1 D2 D3 B / C: Bank / Column address WR: WRITE PRE: Dx#: Dy#: PRECHARGE Data to B / Cx Data to B / Cy Com.: Command Addr.: Address B / C WL: DES: Write Latency Deselect Don't Care Figure 61 Write followed by Precharge 4.14.4 Reads (RD) in DLL off mode Definition of read latency in DLL off mode is different from DLL on mode. Since in DLL off mode the read data is not synchronized to the CLK, the internal access time to the memory array becomes visible. Read data in DLL off mode appears on the I/O balls after (CL - 1) + tAC. CL is the value for the read latency which is set in the Mode Register. Data Sheet 75 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description Table 24 Parameter Read Timing Parameter for HYB18H256321AFL14/16/20 Read Latency Symbol Limit Values -14 -16 -20 min max min max min max Unit Note Read to Write command delay Data Access Time from Clock in DLL off mode DQS edge to Clock edge skew in DLL off mode tRTW tACOFF tDQSCK 3 6 tRTW(min) = (CL+4-WL) 2.4 2.4 6.2 6.2 2.4 2.4 6.2 6.2 2.4 2.4 6.2 6.2 tCK ns ns Read Cycle Timing Parameters for Data and Data Strobe 0 CLK# CLK 1 2 7 8 9 10 Com. RD N/D N/D N/D N/D N/D N/D N/D N/D Addr. B/C CAS latency = 7 t DQSCK RDQS DQ t ACOFF CAS latency = 8 D0 D1 D2 D3 t DQSCK RDQS DQ tACOFF D0 D1 D2 D3 B / C: Bank / Column address RD: Dx: Don't Care READ Data from B / C Com.: Command Addr.: Address B / C N/D: NOP or Deselect Figure 62 DLL off: Read Burst Data Sheet 76 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 0 CLK# CLK 1 2 3 6 7 8 9 10 11 12 13 Com. RD DES DES DES DES DES WR DES DES DES DES DES Addr. B/Cr B/Cw CAS latency = 7 t RTW t DQSCKOFF RDQS Write latency = 3 WDQS DQ t ACOFF D0r D1r D2r D3r D0w D1w D2w D0w RD DES DES DES DES DES WR DES DES DES DES DES B/Cr B/Cw CAS latency = 8 t RTW tDQSCKOFF RDQS Write latency = 4 WDQS DQ t ACOFF D0r D1r D2r D3r D0w D1w D2w B / Cr: Bank / Column address for READ B / Cw: Bank / Column address for WRITE RD: WR: DES: READ WRITE Deselect Dxr: Dxw: READ Data from B / C WRITE Data from B / C Don't Care DQs : Terminations off RDQS : Not driven Com.: Command Addr.: Address B / C Figure 63 DLL off: Read followed by Write Data Sheet 77 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Functional Description 4.14.5 Self Refresh in DLL off mode Self Refresh in DLL off mode is basically the same like in DLL on mode. Table 25 Parameter Self Refresh Exit Timing Parameter for HYB18H256321AFL14/16/20 Read Latency Symbol Limit Values -14 min Self Refresh Exit Time max -- -16 min 700 max -- -20 min 700 max -- tCK Unit Note tXSC 700 Data Sheet 78 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 Electrical Characteristics www.DataShe 5 5.1 Electrical Characteristics Absolute Maximum Ratings and Operation Conditions Table 26 Parameter Absolute Maximum Ratings Symbol Rating min. max. 2.5 2.5 V V V V C C mA -0.5 -0.5 -0.5 -0.5 -55 -- Unit Power Supply Voltage Power Supply Voltage for Output Buffer Input Voltage Output Voltage Storage Temperature Junction Temperature Short Circuit Output Current VDD VDDQ VIN VOUT TSTG TJ IOUT 2.5 2.5 +150 +125 50 Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage of the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Data Sheet 79 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Electrical Characteristics 5.2 5.2.1 Table 27 Parameter DC Operation Conditions Recommended Power & DC Operation Conditions. Power & DC Operation Conditions.(0 C Tc 85 C) Symbol Limit Values min. typ. 2.0 2.0 1.8 1.8 -- -- -- -- max. 2.1 2.1 1.9 1.9 0.71*VDDQ 0.8 +5.0 +5.0 1.9 1.9 1.7 1.7 0.69*VDDQ -- -5.0 -5.0 Unit Note s V V V V V V A A A 5) 5) 1)2) 1)2) 1)3) 1)3) 4) Power Supply Voltage Power Supply Voltage for I/O Buffer Power Supply Voltage Power Supply Voltage for I/O Buffer Reference Voltage Output Low Voltage Input leakage current CLK Input leakage current Output leakage current -5.0 -- +5.0 1) VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together. VDD, VDDA VDDQ VDD, VDDA VDDQ VREF VOL(DC) IIL IILC IOL 2) HYB18H256321AF-12/14/16 3) HYB18H256321AFL14/16/20 4) VREF is expected to equal 70% of VDDQ for the transmitting device and to track variations in the DC level of the same. Peak-to-peak noise on VREF may not exceed 2% VREF (DC). Thus, from 70% of VDDQ, VREF is allowed 19mV for DC error and an additional 27mV for AC noise. 5) IIL and IOL are measured with ODT disabled. Data Sheet 80 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Electrical Characteristics 5.3 5.4 Table 28 Parameter DC & AC Logic Input Levels Differential Clock DC and AC Levels DC & AC Logic Input Levels (0 C Tc 85 C) Symbol Limit Values min. max. -- V V V V V V V 4) 1) 1) 2)3) 2)3) Unit Notes Input logic high voltage, DC Input logic low voltage, DC Input logic high voltage, AC Input logic low voltage, AC Input logic high, DC, RESET pin Input logic low, DC, RESET pin Input Logic High, DC, MF pin Input Logic Low,DC, MF pin -0.3 0 V 1) The DC values define where the input slew rate requirements are imposed, and the input signal must not violate these levels in order to maintain a valid level. 2) Input slew rate = 3V/ns. If the input slew rate is less than 3V/ns, input timing may be compromised. All slew rates are measured between VIL(DC) and VIH(DC). 3) VIH overshoot: VIH(max) = VDDQ+0.5V for a pulse width 500ps and the pulse width cannot be greater than 1/3 of the cycle rate. VIL undershoot: VIL(min) = 0V for a pulse width 500ps and the pulse width cannot be greater than 1/3 of the cycle rate. 4) The MF pin must be hard-wired on board to either VDD or VSS. VIH(DC) VIL(DC) VIH(AC) VIL(AC) VIHR(DC) VILR(DC) VIHMF(DC) VILMF(DC) VREF + 0.15 -- VREF -0.15 -- VREF + 0.25 -- 0.65 x VDDQ -0.3 VDD VREF - 0.25 VDDQ + 0.3 0.35 x VDDQ VDD + 0.3 Table 29 Parameter Differential Clock DC and AC Input conditions (0 C Tc 85 C) Symbol Limit Values min. max. 0.7 x VDDQ + 0.10 V 1) 1) 1) Unit Notes Clock Input Mid-Point Voltage, CLK and CLK VMP(DC) 0.7 x VDDQ - 0.10 0.42 0.3 0.5 VIN(DC) Clock DC Input Differential Voltage, CLK and VID(DC) Clock Input Voltage Level, CLK and CLK CLK Clock AC Input Differential Voltage, CLK and VID(AC) CLK VDDQ + 0.3 VDDQ VDDQ + 0.5 V V V 1)2) 1)3) AC Differential Crossing Point Input Voltage VIX(AC) 0.7 x VDDQ - 0.15 0.7 x VDDQ + 0.15 V 1) All voltages referenced to VSS. 2) VID is the magnitude of the difference between the input level on CLK and the input level on CLK. 3) The value of VIX is expected to equal 0.7 x VDDQ of the transmitting device and must track variations in the DC level of the same. Data Sheet 81 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Electrical Characteristics 5.5 Output Test Conditions VDDQ 60 Ohm DQ DQS Test point Figure 64 Output Test Circuit 5.6 Table 30 Parameter Pin Capacitances Pin Capacitances (VDDQ = 1.8V, TA = 25C, f= 1MHz) Symbol CI,CCK Min 1.5 Max 2.5 Unit pF Notes Input capacitance: A0-A11, BA0-2,CKE, CS, CAS, RAS, WE, CKE, RES,CLK,CLK Input capacitance: DQ0-DQ31, RDQS0-RDQS3, WDQS0-WDQS3, DM0DM3 CIO 2.5 3.5 pF Data Sheet 82 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Electrical Characteristics 5.7 5.7.1 Driver current characteristics Driver IV characteristics at 40 Ohms Figure 65 represents the driver Pull-Down and Pull-Up IV characteristics under process, voltage and temperature best and worst case conditions. The actual Driver Pull-Down and Pull-Up current must lie between these two bounding curves. The value of the external ZQ resistor is 240 , setting the nominal driver output impedance to 40 . Pull-Down Characterstics 50 45 40 35 Iout (mA) 30 20 15 10 5 0 0,0 0,5 1,0 Vout (V) 1,5 2,0 25 Pull-Up Characterstics 0,0 0 -5 -10 -15 Iout (mA) -20 -25 -30 -35 -40 -45 -50 VDDQ - Vout (V) 0,5 1,0 1,5 2,0 Figure 65 40 Ohm Driver Pull-Down and Pull-Up characteristics Table 31 lists the numerical values of the minimum and maximum allowed values of the output driver Pull-Down and Pull-Up IV characteristics. Table 31 Voltage (V) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 Data Sheet Programmed Driver IV Characteristics at 40 Ohm Pull-Down Current (mA) Minimum 2.32 4.56 6.69 8.74 10.70 12.56 14.34 16.01 17.61 19.11 20.53 21.92 23.29 24.65 26.00 27.35 28.70 30.08 -- -- Maximum 3.04 5.98 8.82 11.56 14.19 16.72 19.14 21.44 23.61 26.10 28.45 30.45 32.73 34.95 37.10 39.15 41.01 42.53 43.71 44.89 83 Pull-Up Current (mA) Minimum -2.44 -4.79 -7.03 -9.18 -11.23 -13.17 -15.01 -16.74 -18.37 -19.90 .21.34 -22.72 -24.07 -25.40 -26.73 -28.06 -29.37 -30.66 -- -- Maximum -3.27 -6.42 -9.45 -12.37 -15.17 -17.83 -20.37 -22.78 -25.04 -27.17 -29.17 -31.25 -33.00 -35.00 -37.00 -39.14 -41.25 -43.29 -45.23 -47.07 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Electrical Characteristics 5.7.2 Termination IV Characteristic at 60 Ohms Figure 66 represents the DQ termination Pull-Up IV characteristic under process, voltage and temperature best and worst case conditions. The actual DQ termination Pull-Up current must lie between these two bounding curves. The value of the external ZQ resistor is 240 , setting the nominal DQ termination impedance to 60 . (Extended Mode Register programmed to ZQ/4). 60 Ohm Termination Characterstics 0,0 0 -5 -10 Iout (mA) -15 -20 -25 -30 -35 VDDQ - Vout (V) 0,5 1,0 1,5 2,0 Figure 66 60 Ohm Active Termination Characteristic Table 32 lists the numerical values of the minimum and maximum allowed values of the output driver termination IV characteristic. Table 32 Voltage (V) Programmed Terminator Characteristics at 60 Ohm Terminator Pull-Up Current (mA) Minimum 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -1.63 -3.19 -4.69 -6.12 -7.49 -8.78 -10.01 -11.16 -12.25 -13.27 Maximum -2.18 -4.28 -6.30 -8.25 -10.11 -11.89 -13.58 -15.19 -16.69 -18.11 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 Voltage (V) Terminator Pull-Up Current (mA) Minimum -14.23 -15.14 -16.04 -16.94 -17.82 -18.70 -19.58 -20.44 -- -- Maximum -19.45 -20.83 -22.00 -23.33 -24.67 -26.09 -27.50 -28.86 -30.15 -31.38 Data Sheet 84 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Electrical Characteristics 5.8 Termination IV Characteristic at 120 Ohms Figure 67 represents the DQ or ADD/CMD termination Pull-Up IV characteristic under process, voltage and temperature best and worst case conditions. The actual termination Pull-Up current must lie between these two bounding curves. The value of the external ZQ resistor is 240 , setting the nominal termination impedance to 120 . (Extended Mode Register programmed to ZQ/2 for DQ terminations or CKE = 0 at the RES transition during Power-Up for ADD/CMD terminations). 120 Ohm Termination Characterstics 0,0 0 -2 -4 Iout (mA) -6 -8 -10 -12 -14 -16 VDDQ - Vout (V) 0,5 1,0 1,5 2,0 Figure 67 120 Ohm Active Termination Characteristic Table 33 lists the numerical values of the minimum and maximum allowed values of the termination IV characteristic. Table 33 Voltage (V) Programmed Terminator Characteristics of 120 Ohm Terminator Pull-Up Current (mA) Minimum 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -0.81 -1.60 -2.34 -3.06 -3.74 -4.39 -5.00 -5.58 -6.12 -6.63 Maximum -1.09 -2.14 -3.15 -4.12 -5.06 -5.94 -6.79 -7.59 -8.35 -9.06 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 Voltage (V) Terminator Pull-Up Current (mA) Minimum -7.11 -7.57 -8.02 -8.47 -8.91 -9.35 -9.79 -10.22 -- -- Maximum -9.72 -10.42 -11.00 -11.67 -12.33 -13.05 -13.75 -14.43 -15.08 -15.69 Data Sheet 85 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Electrical Characteristics 5.9 Termination IV Characteristic at 240 Ohms Figure 68 represents the ADD/CMD termination Pull-Up IV characteristic under process, voltage and temperature best and worst case conditions. The actual ADD/CMD termination Pull-Up current must lie between these two bounding curves. The value of the external ZQ resistor is 240 , setting the nominal termination impedance to 240 . (CKE = 1at the RES transition during Power-Up for ADD/CMD terminations). 240 Ohm Termination Characterstics 0,0 0,0 -1,0 -2,0 Iout (mA) -3,0 -4,0 -5,0 -6,0 -7,0 -8,0 VDDQ - Vout (V) 0,5 1,0 1,5 2,0 Figure 68 240 Ohm Active Termination Characteristic Table 34 lists the numerical values of the minimum and maximum allowed values of the ADD/CMD termination IV characteristic. Table 34 Voltage (V) Programmed Terminator Characteristic at 240 Ohm Terminator Pull-Up Current (mA) Minimum 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -0.41 -0.80 -1.17 -1.53 -1.87 -2.20 -2.50 -2.79 -3.06 -3.32 Maximum -0.55 -1.07 -1.58 -2.06 -2.53 -2.97 -3.40 -3.80 -4.17 -4.53 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 Voltage (V) Terminator Pull-Up Current (mA) Minimum -3.56 -3.79 -4.01 -4.23 -4.46 -4.68 -4.90 -5.11 -- -- Maximum -4.86 -5.21 -5.50 -5.83 -6.17 -6.52 -6.88 -7.21 -7.54 -7.85 Data Sheet 86 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Electrical Characteristics 5.10 5.10.1 Table 35 Parameter Operating Currents Operating Current Ratings (HYB18H256321AF-12/14/16) Operating Current Ratings (0 C Tc 85 C) Symbol -12 typ. Values -14 typ. 450 425 240 320 290 245 410 725 580 570 365 8 -16 typ. 405 380 215 280 255 215 365 640 510 520 325 8 570 mA mA mA mA mA mA mA mA mA mA mA mA mA 1)2)3) 1)2)3) 1)2)3) 1)2)3) 1)2)3) 1)2)3) 1)2)3) 1)2)3) 1)2)3) 1)2)3) 1)2)3) 1)2)3)4) 1)2)3) Unit Notes Operating Current Operating Current Precharge Power-Down Standby Current Precharge Floating Standby Current Precharge Quiet Standby Current Active Power-Down Standby Current Active Standby Current Operating Current Burst Read Operating Current Burst Write Auto-Refresh Current (tRC=min(tRFC)) Auto-Refresh Current at tREFI Self Refresh Current Operating Current 630 600 1) IDD specifications are tested after the device is properly initialized. 2) Input slew rate = 3V/ns. 3) Measured with Output open and On Die termination off. 4) Enables on-chip refresh and address counter. IDD0 IDD1 IDD2P IDD2F IDD2Q IDD3P IDD3N IDD4R IDD4W IDD5B IDD5D IDD6 IDD7 500 460 270 350 320 270 455 805 640 610 410 8 Data Sheet 87 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Electrical Characteristics 5.10.2 Table 36 Parameter Operating Current Ratings (HYB18H256321AFL14/16/20) Operating Current Ratings (0 C Tc 85 C) Symbol -14 typ. Values -16 typ. 370 345 190 250 230 195 330 610 465 490 290 8 530 -20 typ. 330 315 170 220 200 170 285 500 400 405 250 8 500 mA mA mA mA mA mA mA mA mA mA mA mA mA 1)2)3) 1)2)3) 1)2)3) 1)2)3) 1)2)3) 1)2)3) 1)2)3) 1)2)3) 1)2)3) 1)2)3) 1)2)3) 1)2)3)4) 1)2)3) Unit Notes Operating Current Operating Current Precharge Power-Down Standby Current Precharge Floating Standby Current Precharge Quiet Standby Current Active Power-Down Standby Current Active Standby Current Operating Current Burst Read Operating Current Burst Write Auto-Refresh Current (tRC=min(tRFC)) Auto-Refresh Current at tREFI Self Refresh Current Operating Current 550 1) IDD specifications are tested after the device is properly initialized. 2) Input slew rate = 3V/ns. 3) Measured with Output open and On Die termination off. 4) Enables on-chip refresh and address counter. IDD0 IDD1 IDD2P IDD2F IDD2Q IDD3P IDD3N IDD4R IDD4W IDD5B IDD5D IDD6 IDD7 405 385 220 285 260 220 370 650 520 535 330 8 Data Sheet 88 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Electrical Characteristics 5.11 Table 37 Operating Current Measurement Conditions Operating Current Measurement Conditions Operating Current - One bank, Activate - Precharge tCK=min(tCK), tRC=min(tRC) Databus inputs are SWITCHING; Address and control inputs are SWITCHING, CS = HIGH between valid commands. Operating Current - One bank, Activate - Read - Precharge One bank is accessed with tCK=min(tCK), tRC=min(tRC), CL = CL(min), Address and control inputs are SWITCHING; CS = HIGH between valid commands. Iout=0mA Precharge Power-Down Standby Current All banks idle, power-down mode, CKE is LOW, tCK=min(tCK), Data bus inputs are STABLE (HIGH). Precharge Floating Standby Current All banks idle; CS is HIGH, CKE is HIGH, tCK=min(tCK); Address and control inputs are SWITCHING; Data bus input are STABLE (HIGH). Precharge Quiet Standby Current CS is HIGH, all banks idle, CKE is HIGH, tCK=min(tCK), Address and other control inputs STABLE (HIGH), Data bus inputs are STABLE (HIGH). Active Power-Down Standby Current One bank active, CKE is LOW, Address and control inputs are STABLE (HIGH); Data bus inputs are STABLE (HIGH); standard active power-down mode. Active Standby Current One bank active, CS is HIGH, CKE is HIGH, tRAS= tRAS,max, tCK=min(tCK); Address and control inputs are SWITCHING; Data bus inputs are SWITCHING. Operating Current - Burst Read One bank active; Continuous read bursts, CL = CL(min); tCK=min(tCK); tRAS= tRAS,max; Address and control inputs are SWITCHING; Iout = 0 mA. Operating Current - Burst Write One bank active; Continuous write bursts; tCK=min(tCK); Address and control inputs are SWITCHING; Data bus inputs are SWITCHING. Burst Auto Refresh Current Refresh command at tRFC=min(tRFC); tCK=min(tCK); CKE is HIGH, CS is HIGH between all valid commands; Other command and address inputs are SWITCHING; Data bus inputs are SWITCHING. Distributed Auto Refresh Current tCK=tCKmin; Refresh command every tREFI; CKE is HIGH, CS is HIGH between valid commands; Other command and address inputs are SWITCHING; Data bus inputs are SWITCHING. Self Refresh Current CKE max(VIL), external clock off, CK and CK LOW; Address and control inputs are STABLE (HIGH); Data Bus inputs are STABLE (HIGH). Operating Bank Interleave Read Current All banks interleaving with CL = CL(min); tRCD = tRCDRD(min); tRRD = tRRD(min); Iout=0 mA; Address and control inputs are STABLE (HIGH) during DESELECT; Data bus inputs are SWITCHING. Symbol Parameter/Condition IDD0 IDD1 IDD2P IDD2F IDD2Q IDD3P IDD3N IDD4R IDD4W IDD5B IDD5D IDD6 IDD7 1. 0 C Tc 85 C 2. Data Bus consists of DQ, DM, WDQS. Data Sheet 89 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Electrical Characteristics 3. Definitions for IDD: LOW is defined as VIN = 0.4 x VDDQ; HIGH is defined as VIN = VDDQ; TABLE is defined as inputs are stable at a HIGH level. SWITCHING is defined as inputs are changing between HIGH and LOW every clock cycle for address and control signals, and inputs changing 50% of each data transfer for DQ signals. Data Sheet 90 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Electrical Characteristics 5.12 Table 38 Parameter AC Timings (HYB18H256321AF-12/14/16) Timing Parameters (HYB18H256321AF-12/14/16) CAS latency Symbol -12 min max 800 700 650 550 500 0.55 0.55 -- -- -- -- Limit Values -14 min 400 400 400 400 400 0.45 0.45 0.45 0.35 0.35 0.7 Unit -16 min max MHz 400 400 400 400 0.45 0.45 0.45 0.4 0.4 0.7 600 550 500 450 0.45 0.45 0.45 -- -- -- Note max 700 650 600 500 450 0.55 0.55 -- -- -- -- Clock and Clock Enable System frequency CL= 11 CL =10 CL = 9 CL = 8 CL = 7 Clock high level width Clock low level width Minimum clock half period fCK11 fCK10 fCK9 fCK8 fCK7 tCH tCL tHP 400 400 400 400 400 0.45 0.45 0.45 0.3 0.3 0.7 1) 1) 1) 1) 1) MHz MHz MHz MHz tCK tCK tCK ns ns 2) Command and Address Setup and Hold Timing Address/Command input setup time tIS Address/Command input hold time Address/Command input pulse width Mode Register Set Timing Mode Register Set cycle time Mode Register Set to READ timing Row Timing Row Cycle Time tIH tIPW tCK tMRD tMRDR 6 12 34 21 8 13 12 -- -- -- -- -- -- -- 6 12 30 18 7 12 11 -- -- -- -- -- -- -- 6 12 28 17 6 11 10 -- -- -- -- -- -- -- tCK tCK tCK tCK tCK tCK tCK tCK 3)4) 3)3) tRC Row Active Time tRAS ACT(a) to ACT(b) Command period tRRD Row Precharge Time tRP Row to Column Delay Time for tRCDRD Reads Row to Column Delay Time for Writes Column Timing CAS(a) to CAS(b) Command period tCCD Write to Read Command Delay Read to Write command delay Write command to first WDQS latching transition Data-in and Data Mask to WDQS Setup Time Data-in and Data Mask to WDQS Hold Time 5) tRCDWR tRCDWR(min) = tRCDRD(min) - (WL + 1) x tCK 2 6 -- -- 2 5 -- -- 2 5 -- -- tWTR tRTW tDQSS tDS tDH tRTW(min)= (CL + BL/2 +2 -WL) WL- 0.25 0.16 0.16 WL+ 0.25 -- -- WL- 0.25 0.18 0.18 WL+ 0.25 -- -- WL- 0.25 0.20 0.20 WL+ 0.25 -- -- tCK tCK tCK tCK ns ns 6) 7) 8) Write Cycle Timing Parameters for Data and Data Strobe Data Sheet 91 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Electrical Characteristics Table 38 Parameter Timing Parameters (HYB18H256321AF-12/14/16) CAS latency Symbol -12 min Data-in and DM input pulse width (each input) DQS input low pulse width DQS input high pulse width DQS Write Preamble Time DQS Write Postamble Time Write Recovery Time Data Access Time from Clock max -- -- -- 1.25 1.25 -- 0.22 1.25 1.25 tACmax tACmax 0.22 0.140 0.140 Limit Values -14 min 0.40 0.40 0.40 0.75 0.75 8 -0.25 0.75 0.75 tACmin tACmin -0.25 -- -- tHP-tQHS 32 7.8 52.0 1000 7 10 10 10 -- -- -- -- -- -- -- -- 20 20 52.0 1000 6 10 10 10 -- -- -- 32 7.8 -- -- -- -- -- -- 20 20 52.8 1000 5 10 10 10 -- -- Unit -16 min 0.40 0.40 0.40 0.75 0.75 7 -0.28 0.75 0.75 tACmin tACmin -0.28 -- -- tHP-tQHS -- 32 7.8 -- -- -- -- -- -- 20 20 Note max -- -- -- 1.25 1.25 -- 0.25 1.25 1.25 tACmax tACmax 0.25 0.160 0.160 max -- -- -- 1.25 1.25 -- 0.28 1.25 1.25 tACmax tACmax 0.28 0.180 0.180 tDIPW tDQSL tDQSH tWPRE tWPST tWR 0.40 0.40 0.40 0.75 0.75 9 -0.22 0.75 0.75 tACmin tACmin -0.22 -- -- tHP-tQHS -- tCK tCK tCK tCK tCK tCK ns 7) Read Cycle Timing Parameters for Data and Data Strobe tAC Read Preamble tRPRE Read Postamble tRPST Data-out high impedance time from tHZ CLK Data-out low impedance time from CLK DQS edge to Clock edge skew tCK tCK ns ns ns ns ns ns ms s ns 9) tLZ tDQSCK DQS edge to output data edge skew tDQSQ Data hold skew factor tQHS Data output hold time from DQS tQH Refresh/Power Down Timing Refresh Period (4096 cycles) Average periodic Auto Refresh interval Delay from AREF to next ACT/ AREF Self Refresh Exit time Power Down Exit time Other Timing Parameters RES to CKE setup timing tREF tREFI tRFC tXSC tXPN tCK tCK ns ns ns ns ns tATS RES to CKE hold timing tATH Termination update Keep Out timing tKO Rev. ID EMRS to DQ on timing tRIDon REV. ID EMRS to DQ off timing tRIDoff 1) DLLon mode (-12/-14/-16 min. 400MHz) 2) tHP is the lesser of tCL minimum and tCH minimum actually applied to the device CLK, CLK inputs 3) This value of tMRD applies only to the case where the "DLL reset" bit is not activated. 4) tMRD is defined from MRS to any other command then READ. 5) tRAS,max is 8*tREFi 6) tCCD is either for gapless consecutive reads or gapless consecutive writes. BL =4 7) WTR and tWR start at the first rising edge of CLK after the last valid (falling) WDQS edge of the slowest WDQS signal. Data Sheet 92 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Electrical Characteristics 8) Please round up tRTW to the next integer of 9) This parameter is defined per byte. tCK. 5.13 Table 39 Parameter AC Timings (HYB18H256321AFL14/16/20) Timing Parameters (HYB18H256321AFL14/16/20) CAS latency Symbol Limit values -14 min max 700 650 600 500 450 0.55 0.55 -- -- -- -- Unit -16 min 350 350 350 350 350 0.45 0.45 0.45 0.4 0.4 0.7 Notes -20 max 600 550 500 450 400 0.55 0.55 -- -- -- -- 350 350 350 350 0.45 0.45 0.45 0.5 0.5 0.7 500 450 400 350 0.55 0.55 -- -- -- -- min max MHz MHz MHz MHz MHz tCK tCK tCK ns ns tCK 2) 1) 1) 1) 1) 1) Clock and Clock Enable System frequency CL = 11 CL = 10 CL = 9 CL = 8 CL = 7 Clock high level width Clock low level width Minimum clock half period Address/Command input setup time Address/Command input pulse width Mode Register Set Timing Mode Register Set cycle time Row Timing fCK11 fCK10 fCK9 fCK8 fCK7 tCH tCL tHP tIS 350 350 350 350 350 0.45 0.45 0.45 0.35 0.35 0.7 Command and Address Setup and Hold Timing Address/Command input hold time tIH tIPW tMRD 6 12 30 18 7 12 11 -- -- -- -- -- -- -- 6 12 28 17 6 11 10 -- -- -- -- -- -- -- 6 12 23 14 5 9 8 -- -- -- -- -- -- -- tCK tCK tCK tCK tCK tCK tCK tCK 5)5) 3) Mode Register Set to READ timing tMRDR tRC Row Active Time tRAS ACT(a) to ACT(b) Command period tRRD Row Precharge Time tRP Row to Column Delay Time for tRCDRD Row Cycle Time Reads Row to Column Delay Time for Writes Column Timing CAS(a) to CAS(b) Command period Write to Read Command Delay Read to Write command delay Write command to first WDQS latching transition Data Sheet tRCDWR tRCDWR(min) = tRCDRD(min) - (WL + 1) x tCK tCCD tWTR tRTW tDQSS 2 5 -- -- 2 5 -- -- 2 4 -- -- tCK tCK tCK 4) 5) 6) tRTW(min)= (CL + BL/2 +2 -WL) WL- 0.25 WL+0. WL- 25 0.25 WL+0 WL .25 0.25 WL +0.25 Write Cycle Timing Parameters for Data and Data Strobe tCK 93 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Electrical Characteristics Table 39 Parameter Timing Parameters (HYB18H256321AFL14/16/20) CAS latency Symbol Limit values -14 min Data-in and Data Mask to WDQS Setup Time Data-in and Data Mask to WDQS Hold Time Data-in and DM input pulse width (each input) DQS input low pulse width DQS input high pulse width DQS Write Preamble Time DQS Write Postamble Time Write Recovery Time Data Access Time from Clock max -- -- -- -- -- 1.25 1.25 -- 0.25 1.25 1.25 tACmax tACmax 0.25 0.160 0.160 Unit -16 min 0.20 0.20 0.40 0.40 0.40 0.75 0.75 7 -0.28 0.75 0.75 tACmin tACmin -0.28 -- -- tHP-tQHS Notes -20 max -- -- -- -- -- 1.25 1.25 -- 0.28 1.25 1.25 tACmax tACmax 0.28 0.18 0.18 min 0.24 0.24 0.40 0.40 0.40 0.75 0.75 6 -0.35 0.75 0.75 tACmin tACmin -0.35 -- -- tHP-tQHS max -- -- -- -- -- 1.25 1.25 -- 0.35 1.25 1.25 tACmax tACmax 0.35 0.225 0.225 ns ns tCK tCK tCK tCK tCK tCK ns tCK tCK ns ns ns ns ns ns 32 7.8 ms s ns tCK tCK ns ns ns ns ns 7) 7) tDS tDH tDIPW tDQSL tDQSH tWPRE tWPST tWR 0.18 0.18 0.40 0.40 0.40 0.75 0.75 8 -0.25 0.75 0.75 tACmin tACmin -0.25 -- -- tHP-tQHS -- Read Cycle Timing Parameters for Data and Data Strobe tAC Read Preamble tRPRE Read Postamble tRPST Data-out high impedance time from tHZ CLK Data-out low impedance time from tLZ CLK DQS edge to Clock edge skew DQS edge to output data edge skew Data hold skew factor Data output hold time from DQS Refresh/Power Down Timing Refresh Period (4096 cycles) Average periodic Auto Refresh interval Delay from AREF to next ACT/ AREF Self Refresh Exit time Power Down Exit time Other Timing Parameters RES to CKE setup timing RES to CKE hold timing Termination update Keep Out timing Rev. ID EMRS to DQ on timing REV. ID EMRS to DQ off timing tDQSCK tDQSQ tQHS tQH tREF tREFI tRFC tXSC tXPN tATS tATH tKO tRIDon tRIDoff 32 7.8 -- 32 7.8 -- 52.0 1000 6 10 10 10 -- -- -- -- -- -- -- -- 20 20 52.8 1000 5 10 10 10 -- -- -- -- -- -- -- -- 20 20 54 1000 4 10 10 10 -- -- -- -- -- -- -- -- 20 20 1) DLLon mode (-14/-16/-20 min. 350MHz) Data Sheet 94 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Electrical Characteristics tHP is the lesser of tCL minimum and tCH minimum actually applied to the device CLK, CLK inputs tRAS,max is 8*tREFi tCCD is either for gapless consecutive reads or gapless consecutive writes. BL =4 5) WTR and tWR start at the first rising edge of CLK after the last valid (falling) WDQS edge of the slowest WDQS signal. 6) Please round up tRTW to the next integer of tCK. 2) 3) 4) 7) This parameter is defined per byte. Data Sheet 95 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 www..com Package 6 6.1 Package Package Outline Figure 69 PG-TFBGA 136 package (11mm x 14mm) Note: . The package is conforming with JEDEC MO-207i, VAR DR-z. Data Sheet 96 Rev. 1.03, 2005-12 06302005-SES0-FM0M HYB18H256321AF[L] 256-Mbit GDDR3 Package www.DataSheet4 6.2 Table 40 Package Thermal Characteristics PG-TFBGA 136 Package Thermal Resistances Theta_jA Theta_jB 2s0p 1 m/s 32 3 m/s 27 0 m/s 22 1 m/s 19 3 m/s 17 5 2 Theta_jC 1s0p 0 m/s 40 JEDEC Board Air Flow K/W 1. Theta_jA: Junction to Ambient thermal resistance. The values have been obtained by simulation using the conditions stated in the JEDEC JESD-51 standard. 2. Theta_jB: Junction to Board thermal resistance. The value has been obtained by simulation. 3. Theta_jC: Junction to Case thermal resistance. The value has been obtained by simulation. Data Sheet 97 Rev. 1.03, 2005-12 06302005-SES0-FM0M www..com www.infineon.com Published by Infineon Technologies AG |
Price & Availability of HYB18H256321AF-12
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |