![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
H5GQ1H24AFR 1Gb (32Mx32) GDDR5 SGRAM H5GQ1H24AFR This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 1 H5GQ1H24AFR Revision History Revision No. 0.1 0.2 0.3 0.4 0.5 0.6 Defined target spec. Updated tRTPS / tRTW / tFAW / t32AW / Thermal Characteristics Updated tCKE / Pin Cap / CRCWL / CRCRL/ IDD / PLL Value Updated tRRDL / Revision ID/ Density ID Removed tFLK / tSTDBYLK Updated tCKE / tCKSRE / tCKSRX (@ 6Gbps only) Updated Updated Updated Updated Updated Updated CRCWL / VREFD Selection Coding Auto VREFD Training tCKE & tPD Leakage Current x16 Mode IDD Value & 1.35V Timing Parameters Ordering Information History Draft Date Dec. 2008 Mar. 2009 April. 2009 May. 2009 May. 2009 July. 2009 Remark Preliminary Preliminary Preliminary Preliminary Preliminary Preliminary 0.7 1.0 VREFD Options Figure31 change Revision 1.0 Release Sep. 2009 Nov. 2009 Preliminary Rev. 1.0/Nov. 2009 2 H5GQ1H24AFR TABLE OF CONTENTS FEATURES........................................................................................................................................................5 FEATURES..............................................................................................................................................5 FUNCTIONAL DESCRIPTION....................................................................................................................5 DEFINITION OF SINGLE STATE TERMINOLOGY....................................................................................................7 CLOCKING..........................................................................................................................................................8 INITIALIZATION................................................................................................................................................10 POWER UP SEQUENCE...........................................................................................................................10 INITIALIZATION WITH STABLE POWER..................................................................................................11 VENDOR ID...........................................................................................................................................13 ADDRESS.........................................................................................................................................................15 ADDRESSING.........................................................................................................................................15 ADDRESS BUS INVERSION(ABI)..............................................................................................................16 BAND GROUP........................................................................................................................................18 TRAINING........................................................................................................................................................21 INTERFACE TRAINING SEQUENCE..........................................................................................................21 ADDRESS TRAINING..............................................................................................................................22 WCK2CK TRAINING...............................................................................................................................25 READ TRAINING...................................................................................................................................32 WRITE TRAINING.................................................................................................................................38 MODE REGISTER..............................................................................................................................................41 Mode REGISTER 0(MR0).......................................................................................................................42 Mode REGISTER 1(MR1).......................................................................................................................45 Mode REGISTER 2(MR2).......................................................................................................................48 Mode REGISTER 3(MR3).......................................................................................................................50 Mode REGISTER 4(MR4).......................................................................................................................52 Mode REGISTER 5(MR5).......................................................................................................................55 Mode REGISTER 6(MR6).......................................................................................................................57 Mode REGISTER 7(MR7).......................................................................................................................60 Mode REGISTER 15(MR15)....................................................................................................................62 OPERATION......................................................................................................................................................63 COMMAND.............................................................................................................................................63 DESELECT.............................................................................................................................................65 NO OPERATION.....................................................................................................................................65 MODE REGISTER SET.............................................................................................................................65 ACTIVATION..........................................................................................................................................66 BANK RESTRITIONS...............................................................................................................................68 WRITE (WOM).......................................................................................................................................70 WRITE DATA MAS(DM)...........................................................................................................................89 Rev. 1.0/Nov. 2009 3 H5GQ1H24AFR READ....................................................................................................................................................86 DQ PREAMBLE .....................................................................................................................................95 READ AND WRITE DATA BUS INVERSION (DBI).......................................................................................97 ERROR DETECTION CODE.....................................................................................................................99 PRECHARGE........................................................................................................................................103 AUTO PRECHARGE...............................................................................................................................104 REFRESH.............................................................................................................................................104 SELF REFRESH....................................................................................................................................106 POWER-DOWN....................................................................................................................................109 COMMAND TRUTH TABLE.....................................................................................................................110 RDQS MODE........................................................................................................................................114 CLOCK FREQUENCY CHANGE SEQUENCE..............................................................................................116 DYNAMIC VOLTAGE SWITCHING(DVS).................................................................................................117 TEMPERATURE SENSOR.......................................................................................................................119 DUTY CYCLE CORRECTOR....................................................................................................................120 OPERATING CONDITIONS................................................................................................................................122 Absolute Maximum Ratings...................................................................................................................122 AC & DC Characteristics........................................................................................................................124 CLOCK TO DATA TIMING SENSITIVITY..................................................................................................148 PACKAGE SPECIFICATION................................................................................................................................151 BALL-OUT...............................................................................................................................................151 SIGNALS.................................................................................................................................................153 ON DIE TERMINATION(ODT)....................................................................................................................156 PACKAGE DIMENSIONS...........................................................................................................................157 MIRROR FUNCTION(MF) ENABLE AND X16 MODE ENABLE.................................................................................158 BOUNDARY SCAN............................................................................................................................................163 This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 4 H5GQ1H24AFR FEATURES FUNCTIONAL DESCRIPTION * Singleendedinterfacefordata,addressandcommand The GDDR5 SGRAM is a high speed dynamic * QuarterdataratedifferentialclockinputsCK/CK#for randomaccess memory designed for applications ADR/CMD requiring high bandwidth. GDDR5 devices contain * TwohalfdataratedifferentialclockinputsWCK/ WCK#,eachassociatedwithtwodatabytes(DQ,DBI#, thefollowingnumberofbits: EDC) * DoubleDataRate(DDR)data(WCK) 1Gbhas1,073,741,824bitsandsixteenbanks * SingleDataRate(SDR)command(CK) * DoubleDataRate(DDR)addressing(CK) * 16internalbanks The GDDR5 SGRAM uses a 8n prefetch * 4bankgroupsfortCCDL=3tCK * 8nprefetcharchitecture:256bitperarrayreadorwrite architecture and DDR interface to achieve high access speed operation. The device can be configured to * Burstlength:8only operate in x32 mode or x16 (clamshell) mode. The * ProgrammableCASlatency:5to20tCK mode is detected during device initialization. The * ProgrammableWRITElatency:1to7tCK GDDR5 interface transfers two 32 bit wide data * WRITEDatamaskfunctionviaaddressbus(single/ doublebytemask) words per WCK clock cycle to/from the I/O pins. * Databusinversion(DBI)&addressbusinversion Corresponding to the 8nprefetch a single write or (ABI) readaccessconsistsofa256bitwide,twoCKclock * Input/outputPLLon/offmode cycledatatransferattheinternalmemorycoreand * Addresstraining:addressinputmonitoringbyDQ pins eightcorresponding32bitwideonehalfWCKclock * WCK2CKclocktrainingwithphaseinformationby cycledatatransfersattheI/Opins. EDCpins The GDDR5 SGRAM operates from a differential * DatareadandwritetrainingviaREADFIFO clock CK and CK#. Commands are registered at * READFIFOpatternpreloadbyLDFFcommand everyrisingedgeofCK.Addressesareregisteredat * DirectwritedataloadtoREADFIFObyWRTR command every rising edge of CK and every rising edge of * ConsecutivereadofREADFIFObyRDTRcommand CK#. * Read/Writedatatransmissionintegritysecuredby GDDR5 replaces the pulsed strobes (WDQS & cyclicredundancycheck(CRC8) RDQS) used in previous DRAMs such as GDDR4 * READ/WRITEEDCon/offmode * ProgrammableEDCholdpatternforCDR with a free running differential forwarded clock * ProgrammableCRCREADlatency=0to3tCK (WCK/WCK#) with both input and output data * ProgrammableCRCWRITElatency=7to14tCK registered and driven respectively at both edges of * LowPowermodes theforwardedWCK. * RDQSmodeonEDCpin * Optionalonchiptemperaturesensorwithreadout ReadandwriteaccessestotheGDDR5SGRAMare * Auto&selfrefreshmodes burstoriented;anaccessstartsataselectedlocation * Autoprechargeoptionforeachburstaccess andconsistsofatotalofeightdatawords.Accesses * 32ms,autorefresh(8kcycles) beginwiththeregistrationofanACTIVEcommand, * Temperaturesensorcontrolledselfrefreshrate * Ondietermination(ODT);nominalvaluesof60ohm which is then followed by a READ or WRITE and120ohm command. The address bits registered coincident * Pseudoopendrain(POD15)compatibleoutputs(40 withtheACTIVEcommandandthenextrisingCK# ohmpulldown,60ohmpullup) * ODTandoutputdrivestrengthautocalibrationwith edge are used to select the bank and the row to be accessed. The address bits registered coincident externalresistorZQpin(120ohm) * Programmableterminationanddriverstrengthoffsets with the READ or WRITE command and the next * SelectableexternalorinternalVREFfordatainputs; risingCK#edgeareusedtoselectthebankandthe programmableoffsetsforinternalVREF columnlocationfortheburstaccess. * SeparateexternalVREFforaddress/commandinputs * VendorID,FIFOdepthandDensityinfofieldsfor identification * x32/x16modeconfigurationsetatpowerupwithEDC pin * MirrorfunctionwithMFpin * BoundaryscanfunctionwithSENpin * 1.6V/1.5V+/0.045Vsupplyfordeviceoperation (VDD) * 1.6V/1.5V+/0.045VsupplyforI/Ointerface(VDDQ) * 170ballBGApackage Rev. 1.0/Nov. 2009 5 H5GQ1H24AFR ORDERING INFORMATION PartNo H5GQ1H24AFR-R0C H5GQ1H24AFR-T3C H5GQ1H24AFR-T2L (Note1) H5GQ1H24AFR-T2C H5GQ1H24AFR-T1C H5GQ1H24AFR-T0C VDD/VDDQ=1.5V PowerSupply VDD/VDDQ=1.6V CKFrequency WCKFrequency MaxDataRate 1.50GHz 1.375GHz 1.25GHz 1.25GHz 1.125GHz 1.00GHz 3.00GHz 2.75GHz 2.50GHz 2.50GHz 2.25GHz 2.00GHz 6.0Gbps/pin 5.5Gbps/pin 5.0Gbps/pin 5.0Gbps/pin 4.5Gbps/pin 4.0Gbps/pin POD_15 Interface Above Hynix P/N's are Leead-free, RoHS Compliant and Halogen-free. Note.1)It supports not only 5Gbps @ 1.5V, but also 3.2Gbps @ 1.35V. Rev. 1.0 /Nov. 2009 6 H5GQ1H24AFR 0.1.DEFINITIONOFSIGNALSTATETERMINOLOGY GDDR5SGRAMwillbeoperatedinbothODTEnable(terminated)andODTDisable(unterminated) modes.ForhighestdataratesitisrecommendedtooperateintheODTEnablemode.ODTDisablemode isdesignedtoreducepowerandmayoperateatreduceddatarates.ThereexistsituationswhereODT Enablemodecannotbeguaranteedforashortperiodoftime,i.e.duringpowerup. Followingarefourterminologiesdefinedforthestateofadevice(GDDR5SGRAMorcontroller)pindur ingoperation.Thestateofthebuswillbedeterminedbythecombinationofthedevicepinsconnectedto thebusinthesystem.ForexampleinGDDR5itispossiblefortheSGRAMpintobetristatedwhilethe controllerpinisHighorODT.InbothcasesthebuswouldbeHighiftheODTisenabled.Fordetailson theGDDR5SGRAMpinsandtheirfunctionsee"PACKAGESPECIFICATION"onpage 156and"SIG NALS"onpage 158inthesectionentitled"PACKAGESPECIFICATION"onpage 156. Devicepinsignallevel: * High:AdevicepinisdrivingtheLogic"1"state. * Low:AdevicepinisdrivingtheLogic"0"state. * HiZ:Adevicepinistristate. * ODT:AdevicepinterminateswithODTsetting,whichcouldbeterminatingortristatedependingonMode Registersetting. Bussignallevel: * High:OnedeviceonbusisHighandallotherdevicesonbusareeitherODTorHiZ.Thevoltagelevelonthebus wouldbenominallyVDDQ * Low:OnedeviceonbusisLowandallotherdevicesonbusareeitherODTorHiZ.Thevoltagelevelonthebus wouldbenominallyVOL(DC)ifODTwasenabled,orVSSQifHiZ. * HiZ:AlldevicesonbusareHiZ.Thevoltagelevelonbusisundefinedasthebusisfloating. * ODT:AtleastonedeviceonbusisODTandallothersareHiZ.Thevoltagelevelonthebuswouldbenominally VDDQ. Rev. 1.0/Nov. 2009 7 H5GQ1H24AFR 0.2.CLOCKING TheGDDR5SGRAMoperatesfromadifferentialclockCKandCK#.Commandsareregisteredatevery risingedgeofCK.AddressesareregisteredateveryrisingedgeofCKandeveryrisingedgeofCK#. GDDR5usesaDDRdatainterfaceandan8nprefetcharchitecture.Thedatainterfaceusestwodifferen tialforwardedclocks(WCK/WCK#).DDRmeansthatthedataisregisteredateveryrisingedgeofWCK andrisingedgeofWCK#.WCKandWCK#arecontinuouslyrunningandoperateattwicethefrequency ofthecommand/addressclock(CK/CK#). CK# CK COMMAND ADDRESS WCK# WCK DQ*1 Figure 1:GDDR5ClockingandInterfaceRelationship Note:Figure.1showstherelationshipbetweenthedatarateofthebusesandtheclocksandisnotatimingdiagram. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 8 H5GQ1H24AFR . Controller ADD/CMDcenteredwithCK/CK# CMD/ADD D Q GDDR5SGRAM CMDsampledbyCK/CK#asSDR ADDsampledbyCK/CK#asDDR D Q QB CMD/ADD DRAM core CK/CK# (1GHz) Oscillator PLL WCK2CK Alignment DataTx/Rx D Q PLL /2 WCK/WCK# (2GHz) ToEDCpin WCKint (1GHz) early/late ClockPhase Controller Phasedetector/ Phaseaccumulator corelogic early/latefrom calibrationdata DQ[0][7] (4Gbps) Q D Q D Receiver clock ClockPhase Controller DQ D D Q Q DRAM core For8databits Figure 2:BlockDiagramofanexampleclocksystem This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 9 H5GQ1H24AFR 1.INITIALIZATION 1.1.POWERUPSEQUENCE GDDR5 SGRAMs must be powered up and initialized in a predefined manner as shown in Figure . Operational procedures other than those specified may result in undefined operation. The Mode Registers do not have RESET default values, except for ABI#, ADR/CMD termination, and the EDC hold pattern. If the mode registers are not set during the initialization sequence, it may lead to unspecified operation. Step 1 2 3 4 5 6 7 ApplypowertoVDD ApplypowertoVDDQatsametimeorafterpowerisappliedtoVDD ApplyVREFCandVREFDatsametimeorafterpowerisappliedtoVDDQ Afterpowerisstable,providestableclocksignalsCK/CK# AssertandholdRESET#lowtoensurealldriversareinHiZandallactiveterminationsareoff.AssertandholdNOPcommand. Waitaminimumof200s. Ifboundaryscanmodeisnecessary,SENcanbeassertedHIGHtoenterboundaryscanmode.Boundaryscanmodemustbe entereddirectlyafterpowerupwhileRESET#islow.Onceboundaryscanisexecuted,powerupsequenceshouldbefollowed. SetCKE#forthedesiredADR/CMDODTsettings,thenbringRESET#HightolatchinthelogicstateofCKE#,tATSandtATHmust bemetduringthisprocedure.SeeTable1forthevaluesandlogicstatesforCKE#.TherisingedgeofRESET#willdetermine x32modeorx16modedependingonthestateofEDC1(EDC2whenMF=1).Innormalx32mode,EDC1hastobesustainedHIGH untilRESET#isHIGH.SeeTableforthevaluesandlogicstatesforEDC1(EDC2whenMF=1). BringCKE#LowaftertATHissatisfied Waitatleast200sreferencedfromthebeginningoftATS Issueatleast2NOPcommands IssueaPRECHARGEALLcommandfollowedbyNOPcommandsuntiltRPissatisfied IssueMRScommandtoMR15.SetGDDR5SGRAMintoaddresstrainingmode(optional) Completeaddresstraining(optional) IssueMRScommandtoreadtheVendorID IssueMRScommandtosetWCK01/WCK01#andWCK23/WCK23#terminationvalues ProvidestableclocksignalsWCK01/WCK01#andWCK23/WCK23# IssueMRScommandstousePLLornotandselectthepositionofaWCK/CKphasedetector.TheuseofPLLandthepositionofa phasedetectorshouldbeissuedbeforeWCK2CKtraining.IssueMRScommandsincludingPLLresettothemoderegistersinany order.tMRDmustbemetduringthisprocedure.WLmrs,CLmrs,CRCWLandCRCRLmustbeprogrammedbeforeWCK2CK training. IssuetwoREFRESHcommandsfollowedbyNOPuntiltRFCissatisfied AfteranynecessaryGDDR5trainingsequencessuchasWCK2CKtraining,READtraining(LDFF,RDTR)andWRITEtraining (WRTR,RDTR),thedeviceisreadyforoperation. 8 9 10 11 12 13 14 15 16 17 18 19 20 This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 10 H5GQ1H24AFR Table 1AddressandCommandTermination VALUE(OHMS) ZQ/2 ZQ CKE#atRESET#hightransition Low High VDD VDDQ VREFD/C (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) tATS tATH (( )) RESET# (( )) (( )) CKE# CK# CK CMD (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) NOP NOP( ( NOP NOP PRE NOP TRAIN/MRS (( )) (( )) A.C. A.C. ADR DQ<31:0>, DBI#<3:0> EDC<3,0> (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) TRAIN/MRS (( )) (( )) ADR ADR ADR ADR (( (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) TRAIN/MRS (( )) (( )) )) TRAIN/MRS (( (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) EDC<2,1> WCK# WCK x32 x16 (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) TRAIN/MRS (( )) (( )) (( )) AllBanks Precharge min.200s Voltagesand CKstable Note:A.C.=AnyCommand min.200s tRP Executionofsteps 1321inPowerup sequence Figure 3:GDDR5SGRAMPowerupInitialization 1.2.Initialization with Stable Power Thefollowingsequenceisrequiredforresetsubsequenttopowerupinitialization.Thisrequiresthatthe powerhasbeenstablewithinthespecifiedVDDandVDDQrangessincepowerupinitialization(See Figure 4) This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 11 H5GQ1H24AFR 1)AssertRESET#Lowanytimewhenresetisneeded. 2)HoldRESET#Lowforminimum100ns.AssertandholdNOPcommand. 3)SetCKE#forthedesiredADR/CMDODTsettings,thenbringRESET#Hightolatchinthelogicstateof CKE#;tATSandtATHmustbemetduringthisprocedure.KeepEDC1(MF=0)/EDC2(MF=1)atthesame logiclevelasduringpowerupinitializationasdevicefunctionalityisnotguaranteediftheI/Owidthhas changed. 4)Continuewithstep9ofthepowerupinitializationsequence. VDD,VDDQ VREFD/C (( )) (( )) (( )) (( )) (( )) (( )) tATS tATH (( )) RESET# (( )) (( )) CKE# CK# CK CMD (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( (( )) )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) NOP NOP( ( NOP NOP PRE NOP TRAIN/MRS (( )) (( )) A.C. A.C. ADR DQ<31:0>, DBI#<3:0> EDC<3:0> WCK# WCK (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) TRAIN/MRS (( )) (( )) ADR ADR ADR ADR (( (( )) (( )) (( )) (( )) (( )) (( )) (( )) )) (( )) (( )) (( )) (( )) (( )) (( )) TRAIN/MRS (( )) (( )) )) (( )) (( )) TRAIN/MRS (( AllBanks Precharge min.100ns min.200s tRP Executionofsteps 1321inPowerup sequence Notes:1.A.C.=AnyCommand 2.Devicefunctionalityisnotguaranteedifx32/x16modeisnotthesameasduringpowerupinitialization. Figure 4:InitializationwithStablePower This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 12 H5GQ1H24AFR 1.2.VENDORID GDDR5SGRAMsarerequiredtoincludeaVendorIDfeaturethatallowsthecontrollertoreceiveinforma tionfromtheGDDR5SGRAMtodifferentiatebetweendifferentvendorsanddifferentdevicesusinga softwarealgorithm. WhentheVendorIDfunctionisenabledtheGDDR5SGRAMwillprovideitsManufacturersVendorCode onbits[3:0]asshowninTable2;RevisionIdentificationonbits[7:4];Densityonbits[9:8];FIFODepthon bits[11:10]asshowninTable3&Table4.Bits[15:12]areRFU. VendorIDispartoftheINFOfieldofModeRegister3(MR3)andisselectedbyissuingaMODEREGIS TERSETcommandwithMR3bitA6setto1,andbitA7setto0.MR3bitsA0A5andA8A11aresettothe desiredvalues. TheVendorIDwillbedrivenontotheDQbusaftertheMRScommandthatsetsbitsA6to1andA7to0. TheDQbuswillbecontinuouslydrivenuntilanMRScommandsetsMR3A6andA7backto0todisable theINFOfieldortoanothervalidstatefortheINFOfieldiftheINFOfieldincludessupportforadditional vendorspecificinformation.TheDQbuswillbeinODTstateaftertWRIDOFF(max).Thecodecanbesam pledbythecontrollerafterwaitingtWRIDON(max)andbeforetWRIDOFF(min).DBIisnotenabledor ignoredduringallVendorIDoperations.Table4showsthemappingoftheVendorIDinfotothephysical DQs.The16bitsofVendorIDaresentonByte0and2whenMF=0.WhenMF=1the16bitsaresenton Byte1and3.Optionallythevendormayreplicatethedataontheother2byteswheninx32mode.Byte0 wouldbereplicatedonByte1andByte2wouldbereplicatedonByte3whenMF=0.WhenMF=1,Byte1 wouldbereplicatedonByte0andByte3wouldbereplicatedonByte2. TABLE2.ManufacturersVendorCode ManufacturersID 0 1 2 3 4 5 6 7 8 9 A B C D E F Bit3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Bit2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 Bit1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 Bit0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 NameofCompany Reserved Samsung Qimonda Elpida Etron Nanya Hynix ProMOS Winbond ESMT Reserved Reserved Reserved Reserved Reserved Micron This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 13 H5GQ1H24AFR Table 3RevisionID&Density&FIFODepth RevisionID Bit7 0 Bit6 0 Bit6 0 Bit4 1 Bit9 0 Density Bit8 1 Bit11 1 FIFO Bit10 0 Table 4VendorIDtoDQmapping Bit MF=0 MF=1 Feature Bit MF=0 MF=1 Feature 15 DQ23 DQ15 7 DQ7 DQ31 6 DQ6 DQ30 5 DQ5 DQ29 4 DQ4 DQ28 3 DQ3 DQ27 2 DQ2 DQ26 1 DQ1 DQ25 0 DQ0 DQ24 RevisionIdentification 14 DQ22 DQ14 RFU 13 DQ21 DQ13 12 DQ20 DQ12 11 DQ19 DQ11 ManufacturersVendorCode 10 DQ18 DQ10 9 DQ17 DQ9 Density 8 DQ16 DQ8 FIFODepth CK# CK CMD BA0BA3 A2A5 A8 A7 A11 A6 A9,A10 A0,A1 NOP MRS MRA Code NOP NOP NOP NOP MRS MRA Code NOP NOP NOP NOP Code Code Code Code Code Code Code Code tWRIDON(max) DQ VendorID+RevCode tWRIDOFF(min) MRA=ModeRegisterAddress;Code=Opcodetobeloaded DontCare Figure 5:VendorIDTimingDiagram This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 14 H5GQ1H24AFR 2.ADDRESS 2.1.ADDRESSING GDDR5SGRAMsuseadoubledatarateaddressschemetoreducepinsrequiredontheGDDR5SGRAM asshowninTable5.TheaddressesshouldbeprovidedtotheGDDR5SGRAMintwoparts;thefirsthalfis latchedontherisingedgeofCKalongwiththecommandpinssuchasRAS#,CAS#andWE#;thesecond halfislatchedonthenextrisingedgeofCK#. TheuseofDDRaddressingallowsalladdressvaluestobelatchedinatthesamerateastheSDRcom mands.Alladdressesrelatedtocommandaccesshavebeenpositionedforlatchingontheinitialrising edgeforfasterdecoding. Table 5AddressPairs Clock RisingCK RisingCK# BA3 A3 BA2 A4 BA1 A5 BA0 A2 (A12) (RFU) A11 A6 A10 A0 A9 A1 A8 A7 Note:AddresspinA12isrequiredonlyfor2Gdensity. GDDR5addressingincludessupportfor1Gdensity.Foralldensitiestwomodesaresupported(x32mode orx16mode).x32andx16modesdifferonlyinthenumberofvalidcolumnaddresses,asshowninTable6. Table 6AddressingScheme 1G x32mode Rowaddress Columnaddress Bankaddress Autoprecharge PageSize Refresh Refreshperiod A0~A11 A0~A5 BA0~BA3 A8 2K 8K/32ms 3.9us x16mode A0~A11 A0~A6 BA0~BA3 A8 2K 8K/32ms 3.9us This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 15 H5GQ1H24AFR 2.2.ADDRESSBUSINVERSION(ABI) AddressBusInversion(ABI)reducesthepowerrequirementsonaddresspins,astheno.ofaddresslines drivingalowlevelcanbelimitedto4(incaseA12/RFUisnotwired)or5(incaseA12/RFUiswired). TheAddressBusInversionfunctionisassociatedwiththeelectricalsignallingontheaddresslines betweenacontrollerandtheGDDR5SGRAM,regardlessofwhethertheinformationconveyedonthe addresslinesisaroworcolumnaddress,amoderegisteropcode,adatamask,oranyotherpattern. TheABI#inputisanactiveLowdoubledatarate(DDR)signalandsampledbytheGDDR5SGRAMatthe risingedgeofCKandtherisingedgeofCK#alongwiththeaddressinputs. OnceenabledbythecorrespondingABIModeRegisterbit,theGDDR5SGRAMwillinvertthepattern receivedontheaddressinputsincaseABI#wassampledLow,orleavethepatternnoninvertedincase ABI#wassampledHigh,asshowninFigure6. Address Pins ABI# 8(9) 8(9) to DRAM core fromModeRegister: 0=enabled 1=disabled Note:buswidthis8whenA12/RFUpinisnotpresent,and9whenA12/RFUpinispresent Figure 6:ExampleofAddressBusInversionLogic This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 16 H5GQ1H24AFR TheflowdiagraminFigure7illustratestheABIoperation.Thecontrollerdecideswhethertoinvertornot invertthedataconveyedontheaddresslines.TheGDDR5SGRAMhastoperformthereverseoperation basedontheleveloftheABI#pin.AddressinputtimingparametersareonlyvalidwithABIbeingenabled andamaximumof4addressinputsdrivenLow. Controller Datatobesent onaddresslines Determine'0' count No '0'count >4? Yes ABI#='H' Don'tinvert ABI#='L' Invert ABI#='H' Don'tinvert ABI#='L' Invert GDDR5 SGRAM Datareceived onaddresslines Figure 7:AddressBusInversion(ABI)FlowDiagram This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 17 H5GQ1H24AFR 2.3.BANKGROUPS ForGDDR5SGRAMdevicesoperatingatfrequenciesaboveacertainthreshold,theactivitywithinabank groupmustberestrictedtoensureproperoperationofthedevice.The8or16banksinGDDR5SGRAMs aredividedintofourbankgroups.ThebankgroupsfeatureiscontrolledbybitsA10andA11inMode Register3(MR3).TheassignmentofthebankstothebankgroupsisshowninTable7. Table 7BankGroups Bank 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Addressing BA3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 BA2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 BA1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 BA0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 GroupD GroupC GroupB GroupA 1G 16banks Thesebankgroupsallowthespecificationofdifferentcommanddelayparametersdependingonwhether backtobackaccessesaretobankswithinonebankgrouporacrossbankgroupsasshowninTable8. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 18 H5GQ1H24AFR Table 8CommandSequencesAffectedbyBankGroups CorrespondingACTimingParameter CommandSequence BankGroups Disabled tRRDS tCCDS tCCDS tWTRS tRTPS BankGroupsEnabled Accessestodifferentbank Accesseswithinthesame groups bankgroup tRRDS tCCDS tCCDS tWTRS 1tck tRRDL tCCDL tCCDL tWTRL tRTPL 1 Notes ACTIVEtoACTIVE WRITEtoWRITE READtoREAD InternalWRITEtoREAD READtoPRECHARGE Note.1:ParameterstRTPSandtRTPLapplyonlywhenREADandPRECHARGEgotothesamebank;usetRTPSwhenBGare disabled,andtRTPLwhenBGareenabled. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 19 H5GQ1H24AFR Back-to-back column accesses based on tCCDL and tCCDS parameters. Example1(BankGroupsdisabled):tCCDS=2*tCK T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 CLK CAS A0 DQ A0 A1 A1 B0 B0 B1 B1 C0 C0 C1 C1 D0 D0 Example2:(BankGroupsenabled):tCCDL=4*tCK T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 CLK CAS A0 DQ A0 A1 A1 A2 A2 A3 A3 Example3:(BankGroupsenabled):tCCDS=2*tCK T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 CLK CAS A0 DQ A0 B0 B0 A1 A1 B1 B1 C0 C0 D0 D0 C1 C1 Notes: 1)Columnaccessesaretoopenbanks,andtRCDhasbeenmet. 2)CL=0assumed 3)Ax,Bx,Cx,Dx:accessestobankgroupsA,B,CorD,respectively 4)Withbankgroupsenabled,tCCDLis3tCK,asprogrammedinMR3. Rev. 1.0 /Nov. 2009 20 H5GQ1H24AFR 3.TRAINING 3.1.INTERFACETRAININGSEQUENCE DuetothehighdataratesofGDDR5,itisrecommendedthattheinterfacesbetrainedtooperatewiththe optimaltimings.GDDR5SGRAMhasfeaturesdefinedwhichallowforcompleteandefficienttrainingof theI/OinterfacewithouttheuseoftheGDDR5SGRAMarray.Theinterfacetrainingsarerequiredfornor malDRAMfunctionalityunlessrunninginlowerfrequencymodesasdescribedinthelowfrequencysec tion.Interfacetimingswillonlybeguaranteedafterallrequiredtrainingshavebeenexecuted. Arecommendedorderoftrainingsequenceshasbeenchosenbasedonthefollowingcriteria: TheaddresstrainingmustbedonefirsttoallowfullaccesstotheModeRegisters.(MRSforaddresstrain ingisaspecialsingledataratemoderegistersetguaranteedtoworkwithouttraining).Addressinputtim ingshallfunctionwithouttrainingaslongastAS/HaremetattheGDDR5SGRAM. WCK2CKtrainingshouldbedonebeforereadtrainingbecauseashiftinWCKrelativeCKwillcausea shiftinallREADtimingsrelativetoCK. READtrainingshouldbedonebeforeWRITEtrainingbecauseoptimalWRITEtrainingdependsoncor rectREADdata. Initialization AddressTraining(optional) WCK2CKAlignmentTraining READTraining WRITETraining StartNormalOperation Figure 8:InterfaceTrainingSequence This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 21 H5GQ1H24AFR 3.2.ADDRESSTRAINING TheGDDR5SGRAMprovidesmeansforaddressbusinterfacetraining.Thecontrollermayusethe addresstrainingmodetoimprovethetimingmarginsontheaddressbus. AddresstrainingmodeisenteredandexitedviatheADTbitinModeRegister15(MR15).ModeRegister 15supportsthesamesetupandholdtimesontheaddresspinsasforcommandstoallowasafeentryinto addresstrainingmode. AddresstrainingmodeusesaninternalbridgebetweentheGDDR5SGRAM'saddressinputsandDQ/ DBI#outputs.ItalsousesaspecialREADcommandforaddresscapturethatisencodedusingtheSDR commandpinsonly(CS#,RAS#,CAS#,WE#=L,H,L,H).Theaddressvaluesnormallyusedtoencodethe commandswillnotbeinterpreted.Oncetheaddresstrainingmodehasbeenentered,theaddressvalues registeredcoincidentwiththisspecialREADcommandwillbetransmittedtothecontrollerontheDQ/ DBI#pins.Thecontrolleristhenexpectedtocomparetheaddresspatternreceivedtotheexpectedvalue andtoadjusttheaddresstransmittimingaccordingly.Theproceduremayberepeatedusingdifferent addresspatternandinterfacetimings. NoWCKclockisrequiredforthisspecialREADcommandoperationduringaddresstrainingmode.The latchedaddressesaredrivenoutasynchronously. TheonlycommandsallowedduringaddresstrainingmodearethisspecialREAD,MRS(e.g.toexit addresstrainingmode)andNOP/DESELECT. WhenenabledbytheABIbitinModeRegister1,addressbusinversion(ABI)iseffectiveduringaddress trainingmode.ItissuggestedtotraintheABI#pin'sinterfacetimingtogetherwiththeotheraddresslines. ThetimingdiagraminFigure9illustratesthetypicalcommandsequenceinaddresstrainingmode.The DQ/DBI#outputdriversareenabledaslongastheADTbitisset.Theminimumspacingbetweenconsec utivespecialREADcommandsis2tCK. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 22 H5GQ1H24AFR CK# CK CMD MRS NOP READ(*) NOP READ(*) NOP READ(*) NOP MRS NOP NOP NOP NOP ADDR MR15 A10=1 ADRx ADRx R# R ADRy ADRy R R# ADRz ADRz R R# MR15 A10=0 tMRD tADR Even DQ Odd DQ tADR tADR tADZ ADRx R ADRx R# ADRy R ADRy R# ADRz R ADRz R# Notes: 1)READcommandencoding:CS#=L,RAS#=H,CAS#=L,WE#=H 2)ADRxR=1sthalfofaddressx,sampledonrisingedgeofCK; ADRxR#=2ndhalfofaddressx,sampledonrisingedgeofCK# 3)AddressessampledonrisingedgeofCKarereturnedonevenDQaftertADR; addressessampledonrisingedgeofCK#arereturnedonoddDQsimultaneouslywithevenDQ 4)DQsareenabledwhenADTbitinModeRegister15setto1(EnterAddressTrainingMode) DQsaredisabledaftertADZwhenADTbitinModeRegister15setto0(ExitAddressTrainingMode) DontCare Figure 9:AddressTrainingTiming Table 9ACtimingsinAddressTrainingMode Parameter READcommandtodataoutdelay ADTofftoDQ/DBI#inODTstatedelay Symbol tADR tADZ Min 0.5*tCK+0 Max 0.5*tCK+10 0.5*tCK+10 Unit ns ns Table10definesthecorrespondencebetweenaddressbitsandDQ/DBI#.Devicesconfiguredtox16mode reflecttheaddressonthetwobytesbeingenabledinthatmode,whicharebytes0and2forMF=0and bytes1and3forMF=1configurations.Devicesconfiguredtox32modereflecttheaddressonthesameDQ asinx16mode;inadditiontheyareallowedbutnotrequiredtoreflecttheaddressonthosebytesthatare disabledinx16mode,thusreflectingeachaddresstwice. DevicesnotsupportinganA12/RFUpinshalldrivealogicHighontheDBI#pins. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 23 H5GQ1H24AFR Table 10AddresstoDQMappinginAddressTrainingMode Output DQ AddressbitsregisteredatrisingedgeofCK A12 DBI0# DBI1# A8 DQ22 DQ30 A11 DQ20 DQ28 BA1 DQ18 DQ26 BA2 DQ16 DQ24 BA3 DQ6 DQ14 BA0 DQ4 DQ12 A9 DQ2 DQ10 A10 DQ0 DQ8 Output DQ AddressbitsregisteredatrisingedgeofCK# RFU DBI2# DBI3# A7 DQ23 DQ31 A6 DQ21 DQ29 A5 DQ19 DQ27 A4 DQ17 DQ25 A3 DQ7 DQ15 A2 DQ5 DQ13 A1 DQ3 DQ11 A0 DQ1 DQ9 This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 24 H5GQ1H24AFR 3.3.WCK2CKTRAINING ThepurposeofWCK2CKtrainingistoalignthedataWCKclockwiththecommandCKclocktoaidinthe GDDR5SGRAM'sinternaldatasynchronizationbetweenthelogicclockedbyCK/CK#andWCK/WCK#. ThiswillhelptodefinebothReadandWritelatenciesbetweentheGDDR5SGRAMandmemorycontrol ler.WCK2CKtrainingmodeiscontrolledviaMRS. BeforestartingWCK2CKtraining,thefollowingconditionsmustbemet: * CK/CK#clockisstableandtoggling * Thetimingofalladdressandcommandpinsmustbeguaranteed * PLLon/off(MR1bitA7)andPLLdelaycompensationenable(MR7bitA2)aresettodesiredmodebeforeWCKto CKtrainingisstarted * ThedesiredWCK2CKalignmentpoint(MR6,bitA0)isselected * TheEDCholdpattern(MR4,bitsA0A3)mustbeprogrammedto`1111' * 2ModeRegisterbitsforinternalWCK01andWCK23inversion(MR3,bitsA2A3)mustbesettoaknownstate * Allbanksareidleandnoothercommandexecutionisinprogress WCK2CKtrainingmustbedoneafteranyofthefollowingconditions: * Deviceinitialization * AnyCLmrs,WLmrs,CRCRLorCRCWLlatencychange * CKandWCKfrequencychanges * PLLon/off(MR1bitA7)andPLLdelaycompensationmode(MR7bitA2)changes * ChangeoftheWCK2CKalignmentpoint(MR6,bitA0) * WCKstatechangefromofftotoggling,includingselfrefreshexitorexitfrompowerdownwhenbitA1(LP2)in MR5isset Figure10andFigure11showexampleWCK2CKtrainingsequences.WCK2CKtrainingisenteredvia MRSbysettingbitA4inMR3.ThiswillinitiatetheWCKdivideby2circuitsassociatedwithWCK01and WCK23clocksintheGDDR5SGRAM.Incasethedivideby2circuitsareatoppositeoutputphases, whichisindicatedbyopposite"early/late"phasesontheEDCpinsassociatedwithWCK01andWCK23 (seebelow),theymaybeputinphasebyusingtheWCK01andWCK23inversionbits.Alternatively,the WCKclocksmaybeputintoastableinactivestateforthisinitializationeventtoaidinresettingalldivid erstothesameoutputphaseasshowninFigure11.Thechallengeofthismethodistorestartthe WCKclocksinawaythateventheirfirstclockedgesmeettheWCKclockinputspecification.Otherwise, divideby2circuitsforbothWCK01andWCK23mightagainhaveoppositephasealignment. Figure12illustrateshowtheWCKphaseinformationisderived.Thephasedetectors(PD)samplethe internallydividedby2WCKclocks.Onlyonesamplepointisshowninthefigureforclarity.Inreality, whenWCK2CKtrainingmodeisenabled,asamplewilloccureverytCKandwillbetranslatedtotheEDC pinsaccordingly.Ifthedividedby2WCKclockarrivesearly,thentheEDCpinoutputstheEDChold patternduringthetimeintervalspecifiedinFigure12.Ifthedividedby2WCKclockarriveslate,thenthe EDCpinoutputstheinvertedEDCholdpatternduringthetimeintervalspecifiedinFigure12.Thisis showninTable11. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 25 H5GQ1H24AFR CK CK# CMD WCK WCK# tLK EnterWCK2CKTraining StartWCK2CK PhaseSearch PLLReset (PLLononly) tMRD ExitWCK2CKTraining (setsdatasynchronizers, restsFIFOpointers) NOP NOP MRS NOP NOP NOP NOP MRS MRS A.C. Figure 10:ExampleWCK2CKTrainingSequence CK# CK CMD WCK WCK# tWCK2MRS tMRSTWCK tWCK2TR tLK tMRD NOP MRS NOP NOP NOP NOP NOP NOP MRS MRS Valid EnterWCK2CK TrainingbyMRS (resetsWCKdivide by2circuits) WCK Restart StartWCK2CK PhaseSearch PLLReset (PLLononly) ExitWCK2CK TrainingbyMRS (Setdatasynchronizers, resetsFIFOpointers) Figure 11:ExampleWCK2CKTrainingSequencewithWCKStopping This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 26 H5GQ1H24AFR CK 1 WCK01/2 WCK23/2 (internal) 1 Early EDC0 EDC2 tWCK2CK WCKEarly x x x x x x x ~ ~ x 1111 tWCKTPH x x x x x x x WCK01/2 WCK23/2 (internal) 2 Late EDC0 EDC2 0 +tWCK2CK WCKLate x x x x x x x ~ ~ x 0000 tWCKTPH x x x x x x x WCK01/2 WCK23/2 (internal) 3 Aligned EDC0 EDC2 x x x x x x x ~ ~ x x x x x x x x x x x x tWCKTPH Figure 12:EDCpinBehaviourforWCK2CKTraining(assumes`1111'asEDCHoldPattern) Table 11PhaseDetectorandEDCPinbehavior WCK/2valuesampledbyCK `1' `0' WCK2CKPhase `Early' `Late' DataonEDCPin EDChold(`1111') InvertedEDCHold(`0000') Action IncreaseDelayonWCK DecreaseDelayonWCK Theidealalignmentisindicatedbythephasedetectoroutputtransitioningfrom"early"to"late"when thedelayoftheWCKphaseiscontinuouslyincreased.TheWCKphaserangeforidealalignmentisspeci fiedbytheparametertWCK2CKPIN;thevalue(s)varywiththePLLmode(onoroff)andtheselectedalign mentpoint. Ifenabled,thePLLshallnotinterfereinthebehavioroftheWCK2CKtraining.Significantlymovingthe phaseand/orstoppingtheWCKduringtrainingmaydisturbthePLL.ItisrequiredtoperformaPLLreset aftertheWCK2CKtraininghasdeterminedandselectedtheproperalignmentbetweenWCKandCK clocks.ThePLLlocktimetLKmustbemetbeforeexitingWCK2CKtrainingtoguaranteethatthePLLisin locksuchthattheGDDR5SGRAMdatasynchronizersaresetuponWCK2CKtrainingexit. WCK2CKtrainingisexitedviaMRSbyresettingbitA4inMR3.Forproperresetofthedatasynchronizers itisrequiredthattheWCKandCKclocksarealignedwithintWCK2CKSYNCatthetimeoftheWCK2CK trainingexit. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 27 H5GQ1H24AFR AfterexitingWCK2CKtrainingmode,theWCKphaseisallowedtofurtherdriftfromtheidealalignment pointbyamaximumoftWCK2CK(e.g.duetovoltageandtemperaturevariation).OncethisWCKphase driftexceedstWCK2CK(min)ortWCK2CK(max),itisrequiredtorepeattheWCK2CKtrainingandrealign theclocks. WCK2CKalignmentatPINMode TheWCKandCKphasealignmentpointcanbechangedviaMRSbysettingbitA0inMR6.Innormal mode,whenMR6A0issetto`0',thephasesofCKandWCKarealignedatCKpinsandtheendofWCK treeasshowninFigure13.Ontheotherhand,whenMR6A0issetto`1',thephasesofCKandWCKare alignedatthepinasshowninFigure14.PINmodeissupporteduptothemaxCKclockfrequencyof fCKPIN,andisanoptiontoreducethetimeofWCK2CKtrainingatlowfrequency. WCK WCK# CK CK# EDC D CK Q InternalWCK/2 Phase Detector InternalCK Figure 13:NormalMode WCK WCK# CK CK# EDC D CK Q InternalWCK/2 Phase Detector InternalCK Figure 14:PinMode WCK2CKAutoSynchronization GDDR5SGRAMssupportaWCK2CKautomaticsynchronizationmodethateliminatestheneedfor WCK2CKtraininguponpowerdownexit.Thismodeiscontrolledbytheautosyncbit(MR7,bitA4),and iseffectivewhentheLP2bit(MR5,bitA1)issetandtheWCKclocksarestoppedduringpowerdown. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 28 H5GQ1H24AFR Also,thismodeworksforbothnormalandPINmode.WhenWCK2CKautomaticsynchronizationmode isenabled,afullWCK2CKtrainingincludingPhasesearchisnotrequiredafterpowerdownexit, althoughWCK2CKMRSmustbeissuedmomentarilyforsettingthedatasynchronizers.However,WCK andCKclocksmustmeetthetWCK2CKSYNCspecificationuponpowerdownexit.Anyallowedcommand maybeissuedaftertXPNoraftertLKincasethePLLhadbeenenableduponpowerdownentry.ThePLL sequenceisnotaffectedbythismode.TheuseofWCK2CKautomaticsynchronizationmodeisrestricted toloweroperatingfrequenciesuptofCKAUTOSYNCasdescribedinthedatasheets. Table12describesWCK2CKtrainingmethodsfordifferentfrequencyranges.EachFrequencyrangeis vendorspecific.NormalandPINmodeofWCK2CKtrainingaredescribedinTable12.Eachfrequency rangeisDRAMvendorspecific.DividerinitializationcanbedonebytrainingwithWCK2CKinversion, WCK2CKstopping,orWCK2CKautosync.IftheuserwantstouseWCK2CKstopfordividerinitializa tioninsteadofWCK2CKautosync,theusermustnotsettheWCK2CKautosync.Lowfrequency,the combineduseofPINandWCK2CKautosyncmodescanminimizeWCK2CKtrainingtime. Table 12WCK2CKtrainingsimplifiedforNormalmodeandPINmode HighFrequency Frequency WCK2CKalignmentmode PhaseSearch LowFrequency 2Gbps 2Gbps Normal Required PIN Required Normal No* PIN No* *Note:ThedividedWCK/WCK#shouldbealignedCK/CK#byWCK2CKAutoSynchronizationorWCKstopmode ThefollowingexamplesdescribetheWCK2CKtraininginmoredetail. Example1:outlineofabasicWCK2CKtrainingsequencewithoutWCKclockstop: 1) EnabletrainingmodeviaMRSandwaittMRD 2) SweepandobservethephaseindependentlyforWCK01onEDC0andWCK23onEDC2;incase theinternaldivideby2circuitsareatoppositephaseuseeithertheWCK01orWCK23inversion bit tofliponeoftheWCKdivideby2circuits 3) AdjusttheWCKphaseindependentlyforWCK01andWCK23totheoptimalpoint("ideal alignment") 4) IssueaPLLresetandwaitfortLK(PLLonmodeonly) 5) WhileallWCKandCKarealigned,exitWCK2CKtrainingmodeviaMRS 6) WaittMRDfortheresetofdatasynchronizers This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 29 H5GQ1H24AFR Example2:outlineofabasicWCK2CKtrainingsequencewithoptionalWCKclockstop: 1) StopWCKclockswithWCK01/WCK23LOWandWCK01#/WCK23#HIGH 2) WaittWCK2MRSforinternalWCKclockstosettle 3) EnabletrainingmodeviaMRSandwaittMRDfordivideby2circuitstoreset 4) StartWCKclockswithoutglitches(bothdivideby2circuitsremaininsync) 5) WaittWCK2TRforinternalWCKclockstostabilize 6) SweepandobservethephaseindependentlyforWCK01onEDC0andWCK23onEDC2;adjust the WCKphasetotheoptimalpoint("idealalignment") 7) IssueaPLLresetandwaittLK(PLLonmodeonly) 8) WhileallWCKandCKarealigned,exitWCK2CKtrainingmodeviaMRS 9) WaittMRDfortheresetofdatasynchronizers READandWRITElatencytimingsaredefinedrelativetoCK.AnyoffsetinWCKandCKatthepinsand/ orthephasedetectorwillbereflectedinthelatencytimings.Theparametersusedtodefinetherelation shipbetweenWCKandCKareshowninFigure6.FormoredetailsontheimpactonREADandWRITE timingsseetheOPERATIONSsection. tCK CK# CK tCH tCL Case1:NegativetWCK2CKPIN;tWCK2CK=0(idealWCK2CKalignment) tWCKH tWCKL tWCK tWCK2CKPIN WCK# WCK Case2:NegativetWCK2CKPIN;negativetWCK2CK WCK# WCK Case3:PositivetWCK2CKPIN;tWCK2CK=0(idealWCK2CKalignment) WCK# WCK Case4:PositivetWCK2CKPIN;positivetWCK2CK WCK WCK# Note: tWCK2CKPINandtWCK2CKparametervaluescouldbenegativeorpositivenumbers,dependingontheselected WCK2CKalignmentpoint,PLLonorPLLoffmodeoperationanddesignimplementation.Theyalsovaryacross PVT.WCK2CKtrainingisrequiredtodeterminethecorrectWCKtoCKphaseforstabledeviceoperation. tWCK2CKPIN+tWCK2CK tWCK2CKPIN tWCK2CKPIN+tWCK2CK Figure 15:WCK2CKTimings This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 30 H5GQ1H24AFR GDDR5WCK2CKTraininginx16mode ForconfigurationswithWCKclocksnotsharedbetweentwoGDDR5SGRAMsitissuggestedtosetthe WCKphasetotheidealalignmentpoint.However,forconfigurationswheretwoGDDR5SGRAMs(x16) sharetheirWCKclocksasinax16clamshell,anoffsetgivenbythemidpointofbothDRAM'sidealWCK positionsmayberequired.Themaximumallowedoffsetinthiscaseisspecifiedbyparameter tWCK2CKSYNC:itdefinestheWCKoffsetrangefromtheidealalignmentwhichstillguaranteesaGDDR5 SGRAMdevicetointernallysynchronizeitsWCKandCKclocksupontrainingexit. Example:outlineoftrainingsequenceforx32andx16configurationswith2GDDR5SGRAMssharing theirWCKclocks(e.g.clamshell): 1) EnabletrainingmodeforbothDRAMsviaMRSandwaittMRD 2) ForbothDRAMssweepandobservethephaseindependentlyforWCK01onEDC0andWCK23 on EDC2;incasetheinternaldivideby2circuitsareatoppositephasesuseeithertheWCK01or WCK23inversionbittofliponeoftheWCKdivideby2circuits;incaseofsharedCS#signalsuse MREMF0andMREMF1bitsinMR15toexplicitlydirecttheMRScommandforthisphaseflipping toeitherDRAM1orDRAM2("softchipselect"); 3) SweepandobservethephaseonDRAM1independentlyforWCK01onEDC0andWCK23on EDC2;storethesettingfortheoptimalWCKphase 4) SweepandobservethephaseonDRAM2independentlyforWCK01onEDC0andWCK23on EDC2;storethesettingfortheoptimalWCKphase 5) SweepWCK01andWCK23phasetomidpointofDRAM1andDRAM2optimalsettings 6) IssueaPLLresetandwaitfortLK(PLLonmodeonly) 7) WhileallWCKandCKarealigned,exitWCK2CKtrainingmodeviaMRS 8) WaittMRDfortheresetofdatasynchronizers This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 31 H5GQ1H24AFR 3.4.READTRAINING Readtrainingallowsthememorycontrollertofindthedataeyecenter(symboltraining)andburstframe location(frametraining)foreachhighspeedoutputoftheGDDR5SGRAM.Eachpin(DQ0DQ31,DBI0# DBI3#,EDC0EDC3)canbeindividuallytrainedduringthissequence. ForReadTrainingthefollowingconditionsmustbetrue: * atleastonebankisactive,oranautorefreshmustbeinprogressandbitA2inModeRegister5(MR5)issetto0to allowtrainingduringautorefresh(todisablethisspecialREFenablingoftheWCKclocktreeanACTcommand mustbeissued,orthedevicemustbesetintopowerdownorselfrefreshmode) * WCK2CKtrainingmustbecomplete * thePLLmustbelocked,ifenabled * RDBIandWDBImustbeenabledpriortoandduringReadTrainingifthetrainingshallincludetheDBI#pins. RDCRCandWRCRCmustbeenabledpriortoandduringReadTrainingifthetrainingshallincludetheEDC pins. ThefollowingcommandsareassociatedwithReadTraining: * LDFFtopreloadtheReadFIFO; * RDTRtoreadaburstofdatadirectlyoutoftheReadFIFO. NeitherLDFFnorRDTRaccessthememorycore.NoMRSisrequiredtoenterReadTraining. Figure16showsanexampleoftheinternaldatapathsusedwithLDFFandRDTR.Table13listsACtiming parametersassociatedwithReadTraining. Table 13LDFFandRDTRTIMINGS VALUES PARAMETER ACTIVEtoLDFFcommanddelay ACTIVEtoRDTRcommanddelay REFRESHtoRDTRorWRTRcommanddelay RDTRtoRDTRcommanddelay LDFFtoLDFFcommandcycletime LDFF(111)toLDFFcommandcycletime LDFF(111)toRDTRcommanddelay READorRDTRtoLDFFcommanddelay a. Themin.valuedoesnotexceed8tCK. SYMBOL MIN tRCDLTR tRCDRTR tREFTR tCCDS tLTLTR tLTL7TR tLTRTR tRDTLT 10 10 10 2 4 4 4 4 MAX - - - - - - - - UNIT NOTES ns ns ns tCK tCK tCK tCK tCK a This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 32 H5GQ1H24AFR SerialtoParallel Converter RX e.g.500Mbps 9 8:1 72 DQ 72 Reverse DBI 64 WRTRstrobe (CKdomain) WRTR FIFO6 x72=432 bitsperbyte DQ0DQ7 DBI0# e.g.4Gbps M U X CRC8 DRAM Core 0 8 ParalleltoSerial Converter TX 1 9 2 3 4 5 6 7 M U X 72 72 DBI 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 64 9 8:1 72 32 33 34 35 36 37 38 39 WRTR LDFF 72 e.g. 40 41 42 43 44 45 46 47 500Mbps 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 RDTRstrobe 01234 output pointer 012345 input pointer (WCK) CRCFIFO6 x 8=48 bitsper byte ParalleltoSerial Converter M U X WRTRstrobe LDFFstrobe(burst7) M U X 8 8 0 1 2 3 4 5 6 7 012345 input pointer 8 8 DEMUX BA0BA2 CRCstrobe LDFFstrobe(burst7) EDC0 TX 8:1 LDFF M U X RDTRstrobe (WCK) 01234 output pointer 10 Address Path ADDR RX 8 DatapathusedwithLDFF DatapathusedwithWRTR DatapathusedwithLDFF/WRTR DatapathusedwithRDTR Notes: 1)FIFOdepthof5shown;supportedFIFOdepths:4,5or6 2)datapathsshownfor1of4bytes(byte0) Figure 16:DataPathsusedforReadandWriteTraining LDFFCommand TheLDFFcommand(Figure17)isusedtosecurelyloaddatatotheGDDR5SGRAMReadFIFOsviathe addressbus.DependingontheGDDR5SGRAMREADFIFOdepthnFIFO6,anybitpatternoflength32 48canbeloadeduniquelytoeveryDQ,DBI#andEDCpinwithinabyte.TheFIFOdepthisfixedby designandcanbereadviatheVendorIDfunction. EightLDFFcommandsarerequiredtofilloneFIFOstage;eachLDFFcommandloadsoneburstposition, andthebankaddressesBA0BA2selecttheburstpositionfrom0to7. ThedatapatternisconveyedonaddresspinsA0A7forDQ0DQ7,A9forDBI0#,andBA3forEDC0;the dataareinternallyreplicatedtoall4bytes,asshowninFigure18. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 33 H5GQ1H24AFR LDFFloadstheDBIFIFOregardlessoftheWDBIandRDBIModeRegisterbits.ItalsoloadstheEDCFIFO regardlessoftheWRCRCandRDCRCModeRegisterbits,andnoCRCiscalculated;however,RDBIand RDCRCmustbeenabledtoreadtheDBIandEDCbits,respectively,withtheRDTRcommand. LDFF CK# CK CKE# CS# LOW RAS# CAS# WE# A9,BA3 A1,A3 A8,A10,A11 A0,A7,A6 BA0BA2 A2,A4,A5 DATA DATA 0,0,1 DATA BP BP=BurstPosition DATA=FIFOdata DATA Figure 17:LDFFCommand This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 34 H5GQ1H24AFR LDFFCommand CK# CK L A10 A9 BA0 BA3 BA2 BA1 H A11 L A8 A0 A1 A2 A3 A4 A5 A6 A7 A0 A1 A2 A3 A4 A5 A6 A7 A9 BA3 1FIFOSTAGE=1BURST 0 1 2 3 4 5 6 7 AddresstoDQMapping Byte0 Byte1 Byte2 Byte3 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQ8 DQ9 DQ16 DQ24 DQ17 DQ25 DQ10 DQ18 DQ26 DQ11 DQ19 DQ27 DQ12 DQ20 DQ28 DQ13 DQ21 DQ29 DQ14 DQ22 DQ30 DQ15 DQ23 DQ31 DBI0# DBI1# DBI2# DBI3# EDC0 EDC1 EDC2 EDC3 BurstPosition 2 3 4 0 0 1 1 1 0 0 1 0 BA2 BA1 BA0 0 0 0 0 1 0 0 1 5 1 0 1 6 1 1 0 7 1 1 1 LDFFFIFOLoadPulse Figure 18:LDFFCommandAddresstoDQ/DBI#/EDCMapping Allburstaddresses0to7mustbeloaded;LDFFcommandstoburstaddress0to6maybeissuedinran domorder;theLDFFcommandtoburstaddress7(LDFF7)mustbethelastof8consecutiveLDFFcom mands,asiteffectivelyloadsthedataintotheFIFOandresultsinaFIFOpointerincrement.Consecutive LDFFcommandshavetobespacedbyatleasttLTLTR,andatleasttLTL7TRcyclesarerequiredaftereach LDFFcommandtoburstaddress7. LDFFpatternmayefficientlybereplicatedtothenextFIFOstagesbyissuingconsecutiveLDFFcommands toburstaddress7(withidenticaldatapattern).ThedatapatterninthescratchmemoryforLDFFwillbe availableuntilthefirstRDTRcommand. TheDQ/DBI#outputbuffersremaininODTstateduringLDFF. AnamountofLDFFcommandstoburstaddress7greaterthantheFIFOdepthisallowedandshallresult inaloopingoftheFIFO'sdatainput. ThetotalnumberofLDFFcommandstoburstaddress7moduloFIFOdepthmustequalthetotalnumber ofRDTRcommandsmoduloFIFOdepthwhenusedinconjunctionwithRDTR.NoREADorWRITEcom mandsareallowedbetweenLDFFandRDTR. TheEDCholdpatternisdrivenontheEDCpinsduringLDFF(providedRDQSmodeisnotenabled). This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 35 H5GQ1H24AFR RDTRCommand ARDTRburstisinitiatedwithaRDTRcommandasshowninFigure19.Nobankorcolumnaddressesare usedasthedataisreadfromtheinternalREADFIFO,notthearray.Thelengthoftheburstinitiatedwith aRDTRcommandiseight.ThereisnointerruptionnortruncationofRDTRbursts. RDTR CK# CK CKE# CS# LOW RAS# CAS# WE# A9(A12) A1 A8,A10,A11 A7,A0,A6 BA0BA3 A2A5 0,1,1 Figure 19:RDTRCommand ARDTRcommandmayonlybeissuedwhenabankisopenorarefreshisinprogressandbitA2inMR5 issetto0toallowtrainingduringrefresh. RDBIandRDCRCmustbeenabledtoreadtheDBIandEDCbits,respectively,withtheRDTRcommand. Ifnotset,theDBI#pinswillremaininODTstate,andtheEDCpinswilldrivetheEDCholdpattern. IncaseoftheRDQSmode,theEDCpinfunctionslikewithanormalREADinthismode.TheDBI#pin behaveslikeaDQ,andnoencodingwithDBIisperformed. AnamountofRDTRcommandsgreaterthantheFIFOdepthisallowedandshallresultinaloopingofthe FIFO'sdataoutput.TheFIFOdepthfromwhichtheRDTRdataisreadmustbeanumberbetween46and mustbespecifiedbytheDRAMvendor.TheFIFOdepthisreadviatheVendorIDfunction. DuringRDTRbursts,thefirstvaliddataoutelementwillbeavailableaftertheCASlatency(CL).The latencyisthesameasforREAD.ThedataontheEDCpinscomeswithadditionalCRClatency(tCRCRD) aftertheCL. Uponcompletionofaburst,assumingnootherRDTRcommandhasbeeninitiated,allDQandDBI#pins willdriveavalueof1andtheODTwillbeenabledatamaximumof1tCKlater.Thedrivevalueandter minationvaluemaybedifferentduetoseparatelydefinedcalibrationoffsets.IftheODTisdisabled,the pinswilldriveHiZ. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 36 H5GQ1H24AFR DatafromanyRDTRburstmaybeconcatenatedwithdatafromasubsequentRDTRcommand.Acontin uousflowofdatacanbemaintained.Thefirstdataelementfromthenewburstfollowsthelastelementof acompletedburst.ThenewRDTRcommandshouldbeissuedafterthefirstRDTRcommandaccordingto thetCCDStiming. AWRTRcanbeissuedanytimeafteraRDTRcommandaslongasthebusturnaroundtimetRTWismet. ThetotalnumberofRDTRcommandsmoduloFIFOdepthmustbeequaltototalnumberofWRTRcom mandsmoduloFIFOdepthwhenusedinconjunctionwithWRTR.NoREADorWRITEcommandsare allowedbetweenWRTRandRDTR. ThetotalnumberofRDTRcommandsmoduloFIFOdepthmustbeequaltothetotalnumberofLDFF commandstoburstposition7moduloFIFOdepthwhenusedinconjunctionwithLDFF.NoREADor WRITEcommandsareallowedbetweenLDFFandRDTR. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 37 H5GQ1H24AFR 3.5.WRITETRAINING Writetrainingallowsthememorycontrollertofindthedataeyecenter(symboltraining)andburstframe location(frametraining)foreachhighspeedinputoftheGDDR5SGRAM.Eachpin(DQ0DQ31,DBI0# DBI3#)canbeindividuallytrainedduringthissequence. ForWriteTrainingthefollowingconditionsmustbetrue: * atleastonebankisactive,oranautorefreshmustbeinprogressandbitA2inModeRegister5(MR5)issetto0to allowtrainingduringautorefresh(todisablethisspecialREFenablingoftheWCKclocktreeanACTcommand mustbeissued,orthedevicemustbesetintopowerdownorselfrefreshmode) * thePLLmustbelocked,ifenabled. * WCK2CKtrainingshouldbecomplete * Readtrainingshouldbecomplete * RDBIandWDBImustbeenabledpriortoandduringWriteTrainingifthetrainingshallincludetheDBI#pins. RDCRCandWRCRCmustbeenabledpriortoandduringWriteTrainingifthetrainingshallincludetheEDC pins. ThefollowingcommandsareassociatedwithWriteTraining: * WRTRtowriteaburstofdatadirectlyintotheReadFIFO; * RDTRtoreadaburstofdatadirectlyoutoftheReadFIFO. NeitherWRTRnorRDTRaccessthememorycore.NoMRSisrequiredtoenterWriteTraining. Figure16showsanexampleoftheinternaldatapathsusedwithWRTRandRDTR.Figure21showsatyp icalWritetrainingcommandsequenceusingWRTRandRDTR.Table14listsACtimingparametersasso ciatedwithWRITETraining. Table 14WRTRandRDTRTimings VALUES PARAMETER ACTIVEtoWRTRcommanddelay ACTIVEtoRDTRcommanddelay REFRESHtoRDTRorWRTRcommanddelay RD/WRbankAtoRD/WRbankBcommanddelay differentbankgroups WRTRtoRDTRcommanddelay WRITEtoWRTRcommanddelay READorRDTRtoWRITEorWRTRcommanddelay SYMBOL MIN tRCDWTR tRCDRTR tREFTR tCCDS tWTRTR tWRWTR tRTW 10 10 10 2 WLtWLmin WL+CRCWL+2 1 MAX - - - - - - - ns ns ns tCK tCK tCK ns b a UNIT NOTES a. tCCDSiseitherforgaplessconsecutiveREADorRDTR(anycombination),gaplessconsecutiveWRITE,orgaplessconsecutive WRTRcommands. b. tRTWisnotadevicelimitbutdeterminedbythesystembusturnaroundtime.ThedifferencebetweentWCK2DQOandtWCK2DQI shallbeconsideredinthecalculationofthebusturnaroundtime. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 38 H5GQ1H24AFR WRTRCommand AWRTRburstisinitiatedwithaWRTRcommandasshowninFigure20.Nobankorcolumnaddresses areusedasthedataiswrittentotheinternalREADFIFO,notthearray.Thelengthoftheburstinitiated withaWRTRcommandiseight.ThereisnointerruptionnortruncationofWRTRbursts. WRTR CK# CK CKE# CS# LOW RAS# CAS# WE# A9(A12) A1 A8,A10,A11 A7,A0,A6 BA0BA3 A2A5 0,1,1 Figure 20:WRTRCommand AWRTRcommandmayonlybeissuedwhenabankisopenorarefreshisinprogressandbitA2inMR5 issetto0toallowtrainingduringrefresh. WDBIandWRCRCmustbeenabledtowritetheDBIandEDCbits,respectively,withtheWRTRcom mand.IfWDBIisnotset,a`1'willbewrittentotheDBIFIFO,anda`1'willbeassumedfortheDBI#input intheCRCcalculation.IncontrasttoanormalWRITE,noCRCisreturnedbytheWRTRcommandand theEDCpinswilldrivetheEDCholdpattern. IncaseoftheRDQSmode,theEDCpinfunctionslikewithanormalREADinthismode.Pleasenotethat RDCRCmustbeenabledtoreadthecalculatedCRCdatawiththeRDTRcommand. AnamountofWRTRcommandsequaltotheFIFOdepthisrequiredtofullyloadtheFIFO;anynumberof WRTRcommandsgreaterthantheFIFOdepthisallowedandshallresultinaloopingoftheFIFO'sdata input.TheFIFOdepthtowhichtheWRTRdataiswrittenmustbe6.TheFIFOdepthisreadviatheVen dorIDfunction. DuringWRTRbursts,thefirstvaliddatainelementmustbeavailableattheinputlatchaftertheWrite Latency(WL).TheWriteLatencyisthesameasforWRITE. Uponcompletionofaburst,assumingnootherWRTRdataisexpectedonthebustheGDDR5SGRAM DQandDBI#pinswillbedrivenaccordingtotheODTstate.Anyadditionalinputdatawillbeignored. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 39 H5GQ1H24AFR DatafromanyWRTRburstmaybeconcatenatedwithdatafromasubsequentWRTRcommand.Acontin uousflowofdatacanbemaintained.Thefirstdataelementfromthenewburstfollowsthelastelementof acompletedburst.ThenewWRTRcommandshouldbeissuedafterthepreviousWRTRcommand accordingtothetCCDStiming. ARDTRcanbeissuedanytimeafteraWRTRcommandaslongastheinternalbusturnaroundtime tRTWTRismet. ThetotalnumberofWRTRcommandsmoduloFIFOdepthmustequalthetotalnumberofRDTRcom mandsmoduloFIFOdepthwhenusedinconjunctionwithRDTR.NoREADorWRITEcommandsare allowedbetweenWRTRandRDTR. T0 CK# CK CMD ADDR WLmrs WCK WCK# WRTR T1 T2 T3 T4 T5 Ta Ta+1 Ta+2 Ta+3 Ta+4 NOP WRTR NOP NOP NOP RDTR NOP RDTR NOP NOP WLmrs tWTRTR CLmrs CRCRL CLmrs CRCRL D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 DQ EDC EDCHold EDCHold EDCHold EDCHold EDCHold EDCHold EDCHold EDCHold 1.WLmrs,CLmrsandCRCRLsetto1foreaseofillustration;checkModeRegisterdefinitionforsupportedsettings 2.WCKandCKareshownaligned(tWCK2CKPIN=0,tWCK2CK=0)forillustrationpurposes.WCK2CKtrainingdeterminestheneededoffsetbetweenWCKandCK. Figure 21:WriteTrainingusingWRTRandRDTRCommands This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 40 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 DontCare D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 H5GQ1H24AFR 4.MODEREGISTERS GDDR5 specifies 10 Mode Registers to define the specific mode of operation. MR0 to MR7 and MR15 are defined as shown in the overview in Figure 22. MR8 to MR13 are not defined and may be used by DRAM vendors for vendor specific features. Reprogramming the Mode Registers will not alter the contents of the memory array. All Mode Registers are programmed via the MODE REGISTER SET (MRS) command and will retain the stored information until they are reprogrammed or the device loses power. Mode Registers must be loaded when all banks are idle and no bursts are in progress, and the controller must wait the specified time tMRD before initiating any subsequent operation. Violating either of these requirements will result in unspecified operation. No default states are defined for Mode Registers except when otherwise noted. Users therefore must fully initialize all Mode Registers to the desired values e.g. upon power-up. Reserved states should not be used, as unknown operation or incompatibility with future versions may result. RFU bits are reserved for future use and must be programmed to 0. Bit A12 is not used for any mode register programming as this address input is not defined for 1G density. BA3 BA2 BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 MR0 MR1 MR2 MR3 0 0 0 0 0 WriteRecovery(WR) TM CASLatency(CLmrs) WriteLatency (WLmrs) Driver Strength 0 0 0 1 0 PLL WDBI RDBI PLL Reset ABI Cal ADR/CMD Data Upd Termination Termination OCDPullup DriverOffset 0 0 1 0 0 ADR/CMD DataandWCK TerminationOffset TerminationOffset Bank Groups WCK Termination Info OCDPulldown DriverOffset 0 0 1 1 0 RDQS WCK WCK WCK Mode 2CK 23Inv 01Inv SelfRefresh MR4 0 1 0 0 0 EDC WR RD 13Inv CRC CRC CRCRead CRCWriteLatency Latency (CRCWL) (CRCRL) EDCHoldPattern MR5 MR6 MR7 MR14 MR15 0 1 0 1 0 RFU VREFDOffset Upper2bytes PLLBandwidth (PLLBW) VREFDOffset Lower2bytes VREFD LP3 LP2 RFU 0 1 1 0 0 Auto VREFD WCK VREFD Merge PIN RFU 0 1 1 1 0 DCC RFU Half Temp DQ Auto LF VREFD Sense PreA Sync Mode RFU MRE MRE RFU ADT MF1 MF0 1 1 1 1 0 X X X X X X X X Figure 22. Mode Registers Overview This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 41 H5GQ1H24AFR 4.1.MODEREGISTER0(MR0) ModeRegister0controlsoperatingmodessuchasWriteLatency,CASlatency,WriteRecoveryandTest ModeasshowninFigure23. TheregisterisprogrammedviatheMODEREGISTERSET(MRS)commandwithBA0=0,BA1=0,BA2=0 andBA3=0. BA3 BA2 BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 0 0 0 0 0 WriteRecovery(WR) TM CASLatency(CLmrs) WriteLatency (WLmrs) A11 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 A10 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 A9 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 A8 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 WriteRecovery (WR) 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 A7 0 1 TestMode Normal TestMode A2 0 0 0 0 1 1 1 1 A1 0 0 1 1 0 0 1 1 A0 0 1 0 1 0 1 0 1 WriteLatency (WLmrs) RFU 1 2 3 4 5 6 7 A6 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 A5 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 A4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 A3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 CASLatency(CLmrs) 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Figure 23. Mode Register 0 (MR0) Definition This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 42 H5GQ1H24AFR WRITELatency(WLmrs) TheWRITElatency(WLmrs)isthedelayinclockcyclesusedinthecalculationofthetotalWRITElatency (WL)betweentheregistrationofaWRITEcommandandtheavailabilityofthefirstpieceofinputdata. DRAMvendorspecificationsshouldbecheckedforvalue(s)ofWLmrssupported.ThefullWRITElatency definitioncanbefoundinthesectionentitledOPERATION. WhentheWRITElatenciesaresettosmallvalues(i.e.1,2,...clocks),theinputreceiversneverturnoff,in turn,raisingtheoperatingpower.WhentheWRITElatencyissettohighervalues(i.e...6,7clocks)theinput receivers turn on when the WRITE command is registered. Refer to vendor datasheets for value(s) of WLmrswheretheinputreceiversarealwaysonoronlyturnonwhentheWRITEcommandisregistered Speed 6.0Gbps 5.5Gbps 5.0Gbps 4.5Gbps 4.0Gbps AllowableOperatingFrequency(Gbps) WL7 WL6 WL5 WL4 WL3 WL2 WL1 CASLatency(CLmrs) TheCASlatency(CLmrs)isthedelayinclockcyclesusedinthecalculationofthetotalREADlatency (CL)betweentheregistrationofaREADcommandandtheavailabilityofthefirstpieceofoutputdata. BydefaultCLmrsisspecifiedbybitsA3A6,definingaCLmrsrangeof5to20tCK. DRAMvendorspecificationsshouldbecheckedforvalue(s)ofCLmrssupported.ThefullREADlatency definitioncanbefoundinthesectionentitledOPERATION Speed RDBI ON/OFF OFF ON OFF ON OFF ON OFF ON OFF ON AllowableOperatingFrequency(Gbps) CL20 CL19 CL18 CL17 CL16 CL15 CL14 CL13 CL12 6.0Gbps 5.5Gbps 5.0Gbps 4.5Gbps 4.0Gbps Rev. 1.0 /Nov. 2009 43 H5GQ1H24AFR WRITERecovery(WR) TheprogrammedWRvalueisusedfortheautoprechargefeaturealongwithtRPtodeterminetDAL.The WR register bits are not a required function and may be implemented at the discretion of the DRAM manufacturer. WRmustbeprogrammedwithavaluegreaterthanorequaltoRU{tWR/tCK},whereRUstandsforround up,tWRistheanalogvaluefromthevendordatasheetandtCKistheoperatingclockcycletime. BydefaultWRisspecifiedbybitsA8A11,definingaWRrangeof4to19tCK. TestMode ThenormaloperatingmodeisselectedbyissuingaMODEREGISTERSETcommandwithbitA7setto '0',andbitsA0A6andA8A11settothedesiredvalues.ProgrammingbitA7to`1'placesthedeviceintoa testmodethatisonlytobeusedbytheDRAMmanufacturer.Nofunctionaloperationisspecifiedwithtest modeenabled. Rev. 1.0 /Nov. 2009 44 H5GQ1H24AFR 4.2.MODEREGISTER1(MR1) ModeRegister1controlsfunctionslikedrivestrength,datatermination,address/commandtermination, ReadDBI,WriteDBI,ABI,controlofcalibrationupdatesandPLLasshowninFigure24. TheregisterisprogrammedviatheMODEREGISTERSET(MRS)commandwithBA0=1,BA1=0,BA2=0 andBA3=0.BitsA0A1,A4A6andA10ofthisregisterareinitializedwith'0's. BA3 BA2 BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 0 0 0 1 0 PLL ABI WDBI RDBI PLL Reset Cal ADR/CMD Data Upd Termination Termination Driver Strength A1 0 A11 0 1 PLLReset No Yes A0 0 1 0 1 DriverStrength AutoCalibrationOn A7 0 1 PLL Off On 0 1 1 RFU Nominal(60/40) RFU A10 0 1 ABI On Off A6 0 1 CalibrationUpdate On Off A3 0 0 1 1 A2 0 1 0 1 DataTermination Disabled ZQ/2 ZQ RFU A9 0 1 WriteDBI On Off A8 0 1 ReadDBI On Off A5 0 0 1 1 A4 0 1 0 1 ADD/CMDTermination CKE#valueatReset ZQ/2 ZQ Disabled Figure 24. Mode Register 1 (MR1) Definition ImpedanceAutocalibrationofOutputBufferandActiveTerminator GDDR5SGRAMsofferautocalibratingimpedanceoutputbuffersandondieterminations.Thisenablesa usertomatchthedriverimpedanceandterminationstothesystemwithinagivenrange.Toadjustthe impedance,anexternalprecisionresistorisconnectedbetweentheZQpinandVSSQ.Anominalresistor This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 45 H5GQ1H24AFR valueof120Ohmsisequivalenttothe40OhmsPulldownand60OhmsPullupnominalimpedancesof GDDR5SGRAMs.RESET#,CKandCK#arenotinternallyterminated.CKandCK#shallbeterminatedon thesystemusingexternal1%resistorstoVDDQ. TheoutputdriverandondieterminationimpedancesareupdatedduringallREFRESHcommandsto compensateforvariationsinsupplyvoltageandtemperature.Theimpedanceupdatesaretransparentto thesystem. DriverStrength Bits A0 and A1 define the driver strength. The Auto Calibration setting enables the AutoCalibration functionalityforthePulldown,PullupandTerminationoverprocess,temperatureandvoltagechanges. Thedesigntargetforthefactorysettingis40OhmPulldown,60OhmPullupdriverstrengthwithnominal process,voltageandtemperatureconditions. ThenominaloptionenablesthefactorysettingforthePulldown,Pullupdriverstrengthandtermination. With thisoptionenabled, driver strength andterminationareexpected tochangewithprocess,voltage andtemperature.ACtimingsareonlyguaranteedwithAutoCalibration. DataTermination BitsA2andA3definethedataterminationvaluefortheondietermination(ODT)fortheDQandDBI# pinsincombinationwiththedriverstrengthsetting. TheterminationcanbesettoavalueofZQ/2whichisintendedforasingleloadedsystem,orZQwhich is intended for a weaker termination used in a lower power or frequency applications. The data terminationmayalsobeturnedoff. ADR/CMDTermination Bits A4 and A5 define the address/command termination. The default setting ('00') provides that the address/commandterminationisdeterminedbylatchingCKE#ontherisingedgeofRESET#. The address/command termination can also be set to a value of ZQ/2 which is intended for a single loaded system, or ZQ which is intended for double loaded configurations with two devices sharing a commonaddress/commandbus.Theaddress/commandterminationmayalsobeturnedoff. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 46 H5GQ1H24AFR CalibrationUpdate The Calibration Update setting enables the calibration value to be updated automatically by the auto calibrationengine.Thefunctionisenableduponpoweruptoreduceupdateinducedjitter.Theusermay decidetosuppressupdatesfromtheautocalibrationenginebydisablingCalibrationUpdate(A6=1). ThecalibrationupdatescanoccurwithanyREFRESHcommand.Theupdateisnotcompleteforatime tKO after the latching of the REFRESH command. During this tKO time, only NOP or DESELECT commandsmaybeissued PLLandPLLReset IfaPLListobeused,itmustbeenabledfornormaloperationbysettingbitA7to'1'. APLLresetisdonebyturningthePLLoffthenon,orbyuseofthePLLResetbitA11.ThePLLResetbit isselfclearingmeaningthatitreturnsbacktothevalue`0'afterthePLLresetfunctionhasbeenissued. RDBIandWDBI BitA8controlsDataBusInversion(DBI)forREADs(RDBI),andbitA9controlsDataBusInversionfor WRITEs(WDBI).FormoredetailsonDBIseeREADandWRITEDataBusInversion(DBI)inthesection entitledOPERATION. ABI AddressBusInversion(ABI)isselectedindependentlyfromDBIusingbitA10.Whenenabledanydata sentovertheaddressbus(whetheropcode,addresses,LDFFdataorDM)isinvertedornotinvertedbased onthestateofABI#signal.FormoredetailsonABIseeAddressBusInversion(ABI)inthesectionentitled OPERATION. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 47 H5GQ1H24AFR 4.3.MODEREGISTER2(MR2) ModeRegister2definestheoutputdriver(OCD)andterminationoffsetsasshowninFigure25. Mode Register 2 is programmed via the MODE REGISTER SET (MRS) command with BA0=0, BA1=1, BA2=0andBA3=0. BA3 BA2 BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 0 0 1 0 0 ADR/CMD DataandWCK TerminationOffset TerminationOffset OCDPullup DriverOffset OCDPulldown DriverOffset A8 0 0 0 0 1 1 1 1 A7 0 0 1 1 0 0 1 1 A6 0 1 0 1 0 1 0 1 DataandWCK TerminationOffset 0 +1 +2 +3 4 3 2 1 A2 0 0 0 0 1 1 1 1 A1 0 0 1 1 0 0 1 1 A0 0 1 0 1 0 1 0 1 OCDPulldown DriverOffset 0 +1 +2 +3 4 3 2 1 A11 0 0 0 0 1 1 1 1 A10 0 0 1 1 0 0 1 1 A9 0 1 0 1 0 1 0 1 ADR/CMD TerminationOffset 0 +1 +2 +3 4 3 2 1 A5 0 0 0 0 1 1 1 1 A4 0 0 1 1 0 0 1 1 A3 0 1 0 1 0 1 0 1 OCDPullup DriverOffset 0 +1 +2 +3 4 3 2 1 Figure 25. Mode Register 2 (MR2) Definition ImpedanceOffsets ThedriverandterminationimpedancesmaybeoffsetindividuallyforPDdriver,PUdriver,DQ/DBI#/ WCK termination and address/command termination. The offset impedance step values may be non linearandwillvaryacrossPVT.WithnegativeoffsetstepsthedrivestrengthswillbedecreasedandRon This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 48 H5GQ1H24AFR will be increased. With positive offset steps the drive strengths will be increased and Ron will be decreased.Withnegativeoffsetstepstheterminationvaluewillbeincreased.Withpositiveoffsetsteps theterminationvaluewillbedecreased. IVcurvesandACtimingsareonlyguaranteedwithzerooffset. Offset PUDriver Autocalibrated Impedance Offset PDDriver Auto/Fixed nominal(60/40) FixedImpedance Offset ADD/CMDTermination Pullup Impedance ZQ 120 Ohms Calibration Engine Pulldown Impedance VSSQ ADD/CMD Termination Impedance Note:sumofoffset+auto calibratedimpedancecannot exceedmaximumminimum / availableimpedancesteps Offset DQ/DBI#/WCKTermination DQ/DBI#/WCK Termination Impedance Figure 26. Impedance Offsets This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 49 H5GQ1H24AFR 4.4.MODEREGISTER3(MR3) ModeRegister3controlsfunctionsincludingBankGroups,WCKtermination,selfrefresh,RDQSmode, DRAMInfoandWCK2CKtrainingasshowninFigure27. Mode Register 3 is programmed via the MODE REGISTER SET (MRS) command with BA0=1, BA1=1, BA2=0andBA3=0. BA3 BA2 BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 0 0 1 1 0 Bank Groups WCK Termination Info RDQS WCK WCK WCK Mode 2CK 23Inv 01Inv SelfRefresh A11 0 1 A10 X X BankGroups off/tCCDL=2tCK on/tCCDL=3tCK A1 0 0 1 1 A0 0 1 0 1 SelfRefresh 32ms 16ms 8ms RFU A9 0 0 1 1 A8 0 1 0 1 WCKTermination Disabled ZQ/2 ZQ RFU A3 0 WCK23Invert Off On A5 0 1 RDQS Mode Off On A2 0 1 WCK01Invert Off On A7 0 0 1 1 A6 0 1 0 1 DRAMInfo off VendorID TemperatureReadout RFU A4 0 1 1 WCK2CKTraining Off On Figure 27. Mode Register 3 (MR3) Definition SelfRefresh Therefreshintervalinselfrefreshmodemaybesetto32ms,16msand8ms. WCK2CK Bit A4 (WCK2CK) enables and disables the WCK2CK alignment training. For details on this training sequence,seethesectiononTRAINING. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 50 H5GQ1H24AFR WCK01/WCK23Inversion BitsA2andA3controlwhethertheinternalphaseoftheWCK01andWCK23clockinputsafterinternal divideby2shallbeinverted,correspondingtoa2U.I.phaseshift.Thebitsareusedinconjunctionwith WCK2CKtrainingmode. RDQSMode BitA5enablestheRDQSmodeoftheGDDR5SGRAM.InthismodetheEDCpinswillactasaREAD strobe (RDQS). No CRC is supported in RDQS mode, and all related bits in MR4 will be ignored. A detaileddescriptionoftheRDQSmodecanbefoundinthesectionentitledOPERATION. DRAMInfo BitsA6andA7enabletheDRAMInfomodewhichisprovidedtooutputtheVendorID,orthecurrent junctiontemperature. The Vendor ID identifies the manufacturer of the GDDR5 SGRAM, and provides the die revision, memorydensityandFIFOdepth. TheTemperatureReadoutprovidestheSGRAM'sjunctiontemperature.Theonchiptemperaturesensor isenabledinadvancebybitA6inMR7. WCKTermination BitsA8andA9definetheterminationvaluefortheondietermination(ODT)fortheWCK01,WCK01#, WCK23andWCK23#pinsincombinationwiththedriverstrengthsetting. TheterminationcanbesettoavalueofZQ/2whichisintendedforasingleloadedsystem,orZQwhich is intended for double load configurations with two devices sharing the WCK clocks. The WCK terminationmayalsobeturnedoff. BankGroups Bit A11 enables the bank groups feature. With A11 set to `1', the bank groups feature is enabled and tCCDLis3tCK. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 51 H5GQ1H24AFR 4.5.MODEREGISTER4(MR4) Mode Register 4 defines the Error Detection Code (EDC) features of GDDR5 SGRAMs as shown in Figure28. TheregisterisprogrammedviatheMODEREGISTERSET(MRS)commandwithBA0=0,BA1=0,BA2=1 andBA3=0.BitsA0A3(EDCHoldPattern)ofthisregisterareinitializedwith'1111'. BA3 BA2 BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 0 1 0 0 0 EDC WR RD 13Inv CRC CRC CRCRead Latency CRCWriteLatency (CRCWL) (CRCRL) EDCHoldPattern A11 0 1 EDCHoldPatternInvert forEDC1+EDC3 EDCholdpatternnot inverted EDCholdpatterninverted A3 0 A2 0 A1 0 A0 0 EDCHoldPattern Pattern ... 1 1 1 1 Pattern Burst Burst Burst Burst Pos3 Pos2 Pos1 Pos0 A10 0 1 WRCRC On Off A9 0 1 RDCRC On Off A6 0 0 0 A5 0 0 1 1 0 0 1 1 A4 0 1 0 1 0 1 0 1 CRCWriteLatency(CRCWL) N/A 8 9 10 11 12 13 14 A8 0 0 1 1 A7 0 1 0 1 CRCReadLatency(CRCRL) 0 1 2 3 0 1 1 1 1 Figure 28. Mode Register 4 (MR4) Definition EDCHoldpattern/EDC13Invert The4bitEDCholdpatternisconsideredabackgroundpatterntransmittedontheEDCpins.Theregister isinitializedwithall'1's.Thepatternisshiftedfromrighttoleftandrepeatedwitheveryclockcycle.The outputtimingisthesameasofaREADburst. CRC bursts calculated from WRITEs or READs will replace the EDC hold pattern for the duration of thosebursts,providedCRCisenabledforthosebursts. With each MRS command to MR4 that changes bits A0A3 or A9A11, the EDC hold pattern will be undefinedfortMRD. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 52 H5GQ1H24AFR TheEDCholdpatternwillnotbetransmittedwhenthedeviceisinaddresstrainingmode,inWCK2CK trainingmode,inRDQSmode,inselfrefreshmode,inresetstate,inpowerdownstatewiththeLP2bit set,orinscanmode. WithregisterbitA11setHigh,EDC1andEDC3willtransmittheinvertedEDCholdpattern,resultingin apseudodifferentialpattern.Pleasenotethatthisfunctionisnotavailableinx16configuration.BitA11is ignoredforREAD,WRITEandRDTRCRCburstsandtheclockphaseinformationinWCK2CKtraining mode. CRCWriteLatency(CRCWL) The value of the CRC write latency is loaded into register bits A4A6. If the DRAM vendor does not supporttheModeRegisterdefinitionofCRCWL,theModeRegistersettingswillbeignored.Inthatcase the valid fixed latency is given with the DRAM vendor's specification. The user must set the CRCWL ModeRegisterbits. AllowableOperatingFrequency(Gbps) CRCWL14 CRCWL13 CRCWL12 CRCWL11 CRCWL10 CRCWL9 CRCWL8 Speed 6.0Gbps 5.5Gbps 5.0Gbps 4.5Gbps 4.0Gbps CRCReadLatency(CRCRL) ThevalueoftheCRCreadlatencyisloadedintoregisterbitsA7A8.IftheDRAMvendordoesnotsupport theModeRegisterdefinitionofCRCRL,theModeRegistersettingswillbeignored.Inthatcasethevalid fixedlatencyisgivenwiththeDRAMvendor'sspecification.TheusermustsettheCRCRLModeRegister bits. Speed RDBI ON/OFF OFF ON OFF ON OFF ON OFF ON OFF ON AllowableOperatingFrequency(Gbps) CRCRL3 CRCRL2 CRCRL1 CRCRL0 6.0Gbps 5.5Gbps 5.0Gbps 4.5Gbps 4.0Gbps This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 53 H5GQ1H24AFR ReadCRC BitA9controlstheCRCcalculationforREADbursts.Whenenabled,thecalculatedCRCpatternwillbe transmitted on the EDC pins with the latency as programmed in the CRCRL field of this register. With Read CRC being off, no CRC will be calculated for READ bursts, and the EDC hold pattern will be transmittedinstead. WriteCRC BitA10controlstheCRCcalculationforWRITEbursts.Whenenabled,thecalculatedCRCpatternwillbe transmittedontheEDCpinswiththelatencyasprogrammedintheCRCWLfieldofthisregister.With WriteCRCbeingoff,noCRCwillbecalculatedforWRITEbursts,andtheEDCholdpatternwillbetrans mittedinstead. Rev. 1.0 /Nov. 2009 54 H5GQ1H24AFR 4.6.MODEREGISTER5(MR5) ModeRegister5definesdigitalRAS,PLLbandwidthandlowpowermodesasshowninFigure29. TheregisterisprogrammedviatheMODEREGISTERSET(MRS)commandwithBA0=1,BA1=0,BA2=1 andBA3=0. BA3 BA2 BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 0 1 0 1 0 RFU PLLBandwidth LP3 LP2 RFU A1 A5 0 0 0 0 1 1 1 1 A4 0 0 1 1 0 0 1 1 A3 0 1 0 1 0 1 0 1 3dB[MHz] BW3dBLL 13 18 22 28 36 44 54 69 Peak[MHz] BWPKLL 2 4 5 7 10 13 15 20 Peak[dB] PKLL 1.2 1.1 1.1 1.2 1.2 1.2 1.7 1.5 A2 0 1 LP3 Off On 0 1 LP2 Off On Note 1) PLL BW characteristics is extracted at 4Gbps Note 2) PLL BW is linearly proportional to the data rate Figure 29. Mode Register 5 (MR5) Definition This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 55 H5GQ1H24AFR LowPowerModes(LP2,LP3) BitsA1A2controlseverallowpowermodesoftheGDDR5SGRAM.Themodesareindependentofeach other. WhenbitA1(LP2)isset,theWCKreceiversmaybeturnedoffduringpowerdown. WhenbitA2(LP3)isset,RDTR,WRTRandLDFFcommandsarenotallowedwhileaREFcommandis beingexecuted. PLL Bandwidth ThePLLbandwidthmayoptionallybeconfiguredtomatchsystemcharacteristics.Eachsettingdefinesa uniquecombinationof3dBcornerfrequency,peakingfrequencyandpeakingmagnitude. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 56 H5GQ1H24AFR 4.7.MODEREGISTER6(MR6) Mode Register 6 controls the WCK2CK alignment point and defines VREFD related features such as source,level,offsets,VREFDMergeandVREFDAutoCalibrationmode,asshowninFigure30. TheregisterisprogrammedviatheMODEREGISTERSET(MRS)commandwithBA0=0,BA1=1,BA2=1 andBA3=0. BA3 BA2 BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 0 1 1 0 0 VREFDOffset BytesinrowsAF VREFDOffset BytesinrowsMU Auto VREFD WCK VREFD VREFD Merge PIN A11 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 A10 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 A9 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 A8 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 VREFD Offset 0/ default +1 +2 +3 +4 +5 +6 +7 0/Auto (opt.) 7 6 5 4 3 2 1 A7 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 A6 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 A5 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 A4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 VREFD Offset 0/ default +1 +2 +3 +4 +5 +6 +7 0/Auto (opt.) 7 6 5 4 3 2 1 A3 0 1 A1 0 1 A0 0 1 WCK2CK AlignmentPt. PDinside DRAM PDatpins VREFDMerge Off On VREFD externalVREFDpins internallygenerated Figure 30. Mode Register 6 (MR6) Definition WCK2CKAlignmentPoint(WCKPIN) BitA0definesthepositionofthealignmentpointbetweenCKandWCK.Whensetto`0`,thealignment pointwillbeatthephasedetectorinsidetheGDDR5SGRAM.Whensetto`1`,thealignmentpointwillbe attheCKandWCKpins. InputReferenceVoltageforDQandDBI#Pins GDDR5SGRAMsoffermultipleoptionsfortheinputreferencevoltage(Vref)fortheDQandDBI#pins, asshowninFigure31. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 57 H5GQ1H24AFR SeparateVrefcircuitsareassociatedwiththebytesinrowsAtoFandthebytesinrowsMtoU,with separateVREFDpinsfortherequiredexternalVref. The only mandatory mode is that Vref will be supplied externally at the VREFD pins. This mode is configuredwithbitsA1A3andbitA7inMR7allsetto'0'. VREFDOffsets 0.7*VDDQ(opt.) 0.5*VDDQ(opt.) + VREFD VREFD Merge (opt.) + Receiver DQ/DBI# + Figure 31. VREFD Options VREFDMerge The VREFD Merge mode is enabled when bit A1 is set to'1'. The externally supplied VFRED and the internally generated Vref will be merged, resulting in the average value of both. DRAM vendor specificationsshouldbecheckedforvaluesofexternalresistorsthatmaybeconnectedtoVREFDpinsin thisVREFMergemode. AutoVREFDTraining When Auto is set for VREFD offsets, the internal Vref generator must be trained. Bit A2 enables this training; the bit is selfclearing, meaning that it returns back to the value `0' after the training has completed. Once the training mode is enabled, the GDDR5 SGRAM drives the EDC pins Low to indicate to the controllerthatthetraininghasstarted.ThecontrollerisnowexpectedtosendthespecifiedPRBSpattern totheGDDR5SGRAM.Uponcompletionofthetraining,theGDDR5SGRAMstopsdrivingtheEDCpins Low,andtheEDCpinswillresumetransmittingtheEDCholdpattern. But,itisnotsupported. VREFD Bit A3selects between external and internalVref. Thebit is "Don't Care"when VREF Merge modeis selected. VREFDOffsetsandVREFDAutoMode ItsupportsthecapabilitytooffsetVrefindependentlyfortheupper2bytesandthelower2bytes.The offsetstepvaluesmaybenonlinearandwillvaryacrossPVT. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 58 H5GQ1H24AFR ThevendorsmayoptionallysupporttheoffsetcapabilitytobeappliedtotheexternalVref(notshownin Figure31). TheoptionalAutosettingforVREFDenablestheGDDR5SGRAMtosearchforitsownoptimalinternal Vref.Thereisnooffsetfromthisinternallydeterminedvalue(seealsoAutoVREFDTraining). This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 59 H5GQ1H24AFR 4.8.MODEREGISTER7(MR7) Mode Register 7 controls features like PLL Standby, PLL FastLock, PLL Delay Compensation, Low Frequency mode, Auto Synchronization, Data Preamble, Temperature Sensor operation, Half VREFD, VDDRangeandDCCasshowninFigure32. TheregisterisprogrammedviatheMODEREGISTERSET(MRS)commandwithBA0=1,BA1=1,BA2=1 andBA3=0. BA3 BA2 BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 0 1 1 1 0 DCC RFU Half Temp DQ Auto LF VREFD Sense PreA Sync Mode RFU A11 0 0 1 1 A10 0 1 0 1 DCC noDCC/ DCCofforhold/opt. DCCstart DCCresetl RFU A4 0 1 WCK2CKAutoSync Off On A5 0 1 DataPreamble Off On A3 0 1 LowFrequencyMode Off On A7 0 1 HalfVFRED 0.7*VDDQ 0.5*VDDQ A6 0 1 TemperatureSensor Off On Figure 32. Mode Register 7 (MR7) Definition LowFrequencyMode When Low FrequencyMode is enabledby bitA3,the power consumption of input receivers andclock treesisreduced.Themaximumoperatingfrequencyforthislowfrequencymodeisgiveninthevendor`s datasheet. WCK2CKAutoSynchronization GDDR5 SGRAMs support a WCK2CK automatic synchronization mode that eliminates the need for WCK2CKtraininguponpowerdownexitorforreducingWCK2CKtrainingtimeatlowfrequency.This modeiscontrolledbybitA4.ForadetaileddescriptionseeWCK2CKAutoSynchronizationinthesection entitledWCK2CKTraining. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 60 H5GQ1H24AFR DataPreamble WhenenabledbybitA5,nongaplessREADburstswillbeprecededbyafixeddatapreambleontheDQ and DBI# pins of 4 U.I. duration. The programmed READ latency does not change when the Data Preambleisenabled.ThepatternisnotencodedwithRDBI,however,ifRDBIisdisabled,theDBI#pins willnottoggleanddriveaHIGH. TemperatureSensor TheonchiptemperaturesensorisenabledbybitA6. AdetaileddescriptionoftheTemperatureSensorcanbefoundintheVENDORID,TEMPSENSORand SCANsection. HalfVREFD This mode allows users to adjust the Vref level in case the GDDR5 SGRAM is operated without termination:whenbitA7issetto'1',aVreflevelofnominally0.5*VDDQisexpectedattheVREFDpinor beinggeneratedinternally(seeFigure31). DutyCycleCorrection(DCC) BitsA10andA11controltheoperationofthedutycyclecorrector(DCC).TheDCCcanbeusedtocancel outastaticdutycycleerrorontheWCKclocks.FormoredetailsseeDutyCycleCorrection(DCC)inthe sectionentitledOPERATION. VREFDSelectionOptionsSummary ThefollowingtablesummarizesthecompletesetofVREFDselectionoptions. Table 15VREFDSelectionOptions MR6 A3 InternalVREFD 0 0 1 1 MR7 A7 HalfVREFD 0 1 0 1 External External Internal0.7*VDDQ Internal0.5*VDDQ Description This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 61 H5GQ1H24AFR 4.9.MODEREGISTER15(MR15) ModeRegister15controlsaddresstrainingmode(ADT)andaccesstoModeRegisters0to14(MRE)as showninFigure33. TheregisterisprogrammedviatheMODEREGISTERSET(MRS)commandwithBA0=1,BA1=1,BA2=1 andBA3=1. ModeRegister15 is a special registerthat operatesin SDR addressing mode. Increasedsetup and hold timesasforcommandinputsareassumedtoensuretheMRScommandtothisregisterissuccessfulwhile addresstraining(ADT)hasnottakenplaceandtheintegrityofDDRaddressesmaynotbeguaranteed. ThisisindicatedbysettingbitsA0A7toDon'tCare("X")whicharepairedwiththeusablebits(A8A11) andtheModeRegisteraddress(BA0BA3). BA3 BA2 BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 1 1 1 1 0 RFU ADT MRE MRE MF1 MF0 X X X X X X X X A10 AddressTraining(ADT) 0 1 Off On A9 0 1 MR014EnableMF=1 Enabled Disabled A8 0 1 MR014EnableMF=0 Enabled Disabled Figure 33. Mode Register 15 (MR15) Definition AddressTraining(ADT) AddresstrainingmodeisenabledanddisabledwithbitA10. ModeRegister014Enable WhendisabledbybitA8(forSGRAMsconfiguredtoMF=0)orbitA9(forSGRAMsconfiguredtoMF=1), the GDDR5 SGRAM will ignore any MODE REGISTER SET command to Mode Registers 0 to 14. If enabled, MODE REGISTER SET commands function as normal. MODE REGISTER SET commands to ModeRegister15(thisregister)arenotaffectedandwillalwaysbeexecuted. ThisfunctionalallowsforindividualconfigurationoftwoGDDR5SGRAMSonacommonaddressbus withouttheuseofaCS#pin. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 62 H5GQ1H24AFR 5.OPERATION 5.1.COMMANDS Table 16TruthTableCommands Operation Symbol Previous Current cycle cycle DESELECT(NOP) NOOPERATION(NOP) MODEREGISTERSET ACTIVE(Selectbank& activaterow) READ(Selectbankand column,&startburst) READwithAutoprecharge LoadFIFO READTraining WRITEwithoutMask (Selectbankandcolumn,& startburst) WRITEwithoutMaskwith Autoprecharge WRITEwithsinglebyte mask WRITEwithsinglebyte maskwithAutoprecharge WRITEwithdoublebyte mask(WDM) WRITEwithdoublebyte maskwithAutoprecharge WRITETraining PRECHARGE(Deactivate rowinbankorbanks) PRECHARGEALL REFRESH POWERDOWNENTRY POWERDOWNEXIT SELFREFRESHENTRY SELFREFRESHEXIT DES NOP MRS ACT RD RDA LDFF RDTR WOM L L L L L L L L L X X L L L L L L L CKE# CS# H L L L L L L L L RAS# CAS# WE# X H L L H H H H H X H L H L L L L L X H L H H H H H L BA X X MRA BA BA BA X X BA A11 X X A10 X X A8 X X Opcode RA A6, A7, A9, (A12) X X A0 A5 (A6) X X Notes 1,2,8 1,2,8 1,2,3 1,2,4 L L H H L L L L H L L H L L L X X X X X CA CA X X CA 1,2,5, 9 1,2,5 1,2,7 1,2 1,2,5 WOMA WSM WSMA WDM WDMA WRTR PRE PREALL REF PDE PDX SRE SRX L L L L L L L L L L H L H L L L L L L L L L H L H L L L L L L L L L L H L H L L H L H H H H H H L L L X H X H L X H L L L L L L H H L X H X H L X H L L L L L L L L H X H X H H X H BA BA BA BA BA X BA X X X X X X X L L L H H H X X X X X X X X L H H L L H X X X X X X X X H L H L H L L H X X X X X X X X X X X X X X X X X X X X CA CA CA CA CA X X X X X X X X X 1,2,5 1,2,5 1,2,5 1,2,5 1,2,5 1,2 1,2 1,2 1,6 1 1 1 1,6 1 Notes: 1)H=LogicHighLevel;L=LogicLowLevel;X=Don'tcare:signalmaybeHorL,butnotfloating 2)Addressesshownarelogicaladdresses;physicaladdressesareinvertedwhenaddressbusinversion(ABI)isactivatedandABI#=L 3)BA0BA3providetheModeRegisteraddress(MRA),A0A11theopcodetobeloaded 4)BA0BA3providethebankaddress(BA),A0A11(A12)providetherowaddress(RA). 5)BA0BA3providethebankaddress,A0A5(A6)providethecolumnaddress(CA);nosubwordaddressingwithinaburstof8. 6)ThecommandisRefreshwhenCKE#(n)=LandSelfRefreshEntrywhenCKE#(n)=H. 7)BA0BA3andCAareusedtoselectburstlocationanddatarespectively 8)DESELECTandNOParefunctionallyinterchangeable 9)InaddresstrainingmodeREADisdecodedfromthecommandspinsonlywithRAS#=H,CAS#=L,WE#=H This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 63 H5GQ1H24AFR Figure34andFigure35illustratethetimingsassociatedwiththeCommandandAddressinputaswellas Datainput. tCK CK# CK tCH tCL tCMDPW COMMAND tAPW ADDRESS tAPW tAS tAH tCMDS tCMDH tAS tAH DontCare Figure 34. Command and Address Input Timings WCK# WCK tWCK2DQI tWCK2DQI tDIPW tDIVW DQ/DBI# (1Pin) tDIPW tDIVW Figure 35. Data Input Timings This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 64 H5GQ1H24AFR 5.2.DESELECT(NOP) TheDESELECTfunction(CS#HIGH)preventsnewcommandsfrombeingexecutedbytheGDDR5 SGRAM.TheGDDR5SGRAMiseffectivelydeselected.Operationsalreadyinprogressarenotaffected. 5.3.NOOPERATION(NOP) TheNOOPERATION(NOP)commandisusedtoinstructtheselectedGDDR5SGRAMtoperformaNOP (CS#LOW).Thispreventsunwantedcommandsfrombeingregisteredduringidleorwaitstates.Opera tionsalreadyinprogressarenotaffected. 5.4.MODEREGISTERSET TheMODEREGISTERSETcommandisusedtoloadtheModeRegistersoftheGDDR5SGRAM.Thebank addressinputsBA0BA3selecttheModeRegister,andaddressputsA0A11(A12)determinetheopcode tobeloaded.SeeMODEREGISTERforaregisterdefinition.TheMODEREGISTERSETcommandcan onlybeissuedwhenallbanksareidleandnoburstsareinprogress,andasubsequentexecutablecom mandcannotbeissueduntiltMRDismet. ModeRegisterSet CK# CK CKE# LOW CS# RAS# CAS# WE# A8A11(A12) A0,A1,A6,A7 BA0BA3 A2A5 CO A8,9,10,11,(12) CO A0,1,6,7 BA BA0,1,2,3 CO A2,3,4,5 RA=RowAddress DONTCARE CO=Opcode BA=BankAddress ENAP=EnableAutoPrecharge DISAP=DisableAut oPrecharge Figure 36. MRS Command This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 65 H5GQ1H24AFR CK# CK CMD NOP PRE ALL NOP tRP OldSetting MRS NOP tMRD UpdatingSetting NewSetting A.C. NOP A.C.=anycommandallowedinbankidlestate Figure 37. Mode Register Set Timings 5.5.ACTIVATION BeforeanyREADorWRITEcommandscanbeissuedtoabankintheGDDR5SGRAM,arowinthatbank mustbe"opened".ThisisaccomplishedbytheACTIVEcommand(seeFigure38):BA0BA3selectthe bank,andA0A11(A12)selecttherowtobeactivated.Oncearowisopen,aREADorWRITEcommand couldbeissuedtothatrow,subjecttothetRCDspecification. AsubsequentACTIVEcommandtoanotherrowinthesamebankcanonlybeissuedaftertheprevious rowhasbeenclosed(precharged).TheminimumtimeintervalbetweentwosuccessiveACTIVEcom mandsonthesamebankisdefinedbytRC.Aminimumtime,tRAS,musthaveelapsedbetweenopening andclosingarow. AsubsequentACTIVEcommandtoanotherbankcanbeissuedwhilethefirstbankisbeingaccessed, whichresultsinareductionoftotalrowaccessoverhead.Theminimumtimeintervalbetweentwosuc cessiveACTIVEcommandsondifferentbankstodifferentbankgroupsisdefinedbytRRDS.Withbank groupsenabled,theminimumtimeintervalbetweentwosuccessiveACTIVEcommandstodifferent banksinthesamebankgroupisdefinedbytRRDL.InallothercasestheintervalisdefinedbytRRDS. FigureshowsthetRCDandtRRDdefinition. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 66 H5GQ1H24AFR TherowremainsactiveuntilaPRECHARGEcommand(orREADorWRITEcommandwithAutoPre charge)isissuedtothebank. RowActivation CK# CK CKE# LOW CS# RAS# CAS# WE# A8A11(A12) A0,A1,A6,A7 BA0BA3 A2A5 RA A8,9,10,11,(12) RA A0,1,6,7 BA BA0,1,2,3 RA A2,3,4,5 RA=RowAddress CA=ColumnAddress BA=BankAddress DONTCARE Figure 38. Active Command T0 CK# CK CMD ADDR NOP T1 T2 Ta0 Ta1 Tb0 Tb1 Tc0 Tc1 ACT BA RA RA NOP RD/WR NOP PRE* BA NOP ACT BA RA RA NOP BA CA tRCD tRAS tRP tRC (*)=couldalsobePREALL BA=bankaddress;RA=rowaddress;CA=columnaddress tRCD=tRCDRD,tRCDWR,tRCDRTR,tRCDWTRortRCDLTR,dependingoncommand DontCare Figure 39. Bank Activation Command Cycle This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 67 H5GQ1H24AFR 5.6.BANKRESTRICTIONS Theremaybeaneedtolimitthenumberofactivatesinarollingwindowtoensurethattheinstantaneous currentsupplyingcapabilityofthedevicesisnotexceeded.Toreflecttheshorttermcapabilityofthe GDDR5SGRAMcurrentsupply,theparametertFAW(fouractivatewindow)isdefined.Nomorethan4 banksmaybeactivatedinarollingtFAWwindow.ConvertingtoclocksisdonebydividingtFAW(ns)by tCK(ns)androundinguptonextintegervalue.Asanexampleoftherollingwindow,if(tFAW/tCK)rounds upto10clocks,andanactivatecommandisissuedatclockN,nomorethanthreefurtheractivatecom mandsmaybeissuedatclocksN+1throughN+9asillustratedinFigure40. ToreflectalongertermGDDR5SGRAMcurrentsupplycapability,theparametert32AW(thirtytwoacti vatewindow)isdefined.Nomorethan32banksmaybeactivatedinarollingt32AWwindow.Converting toclocksisdonebydividingt32AW(ns)bytCK(ns)androundinguptonextintegervalue.Theuseofa shorterandlongerrollingactivationwindowallowstheGDDR5SGRAMdesigntobeoptimizedtohandle higherinstantaneouscurrentswithinashorterwindowwhilestilllimitingthecurrentstrainoveralonger periodoftime.Thismeansthatingeneralt32AWwillbegreaterthanorequalto8*tFAWasshownin Figure41. ItispreferablethatGDDR5SGRAMshavenorollingactivationwindowrestrictions(tFAW=4*tRRD). CK# CK CMD ACT tRRD ACT ACT ACT ACT ACT ACT ACT tRRD tRRD tFAW tFAW + 3 * t RRD tRRD tRRD tRRD tRRD=tRRDLortRRDSdependingonBankGroupson/offsettingandaccessedbanks Figure 40. tRRD and tFAW This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 68 H5GQ1H24AFR A.)t32AW>8*tFAW tFAW tFAW tFAW tFAW tFAW tFAW tFAW tFAW tFAW t32AW B.)t32AW=8*tFAW tFAW tFAW tFAW tFAW t32AW tFAW tFAW tFAW tFAW tFAW Figure 41. t32AW This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 69 H5GQ1H24AFR 5.7.WRITE(WOM) WRITEburstsareinitiatedwithaWRITEcommandasshowninFigure42.Thebankandcolumn addressesareprovidedwiththeWRITEcommandandautoprechargeiseitherenabledordisabledfor thataccesswiththeA8pin.Ifautoprechargeisenabled,therowbeingaccessedisprechargedatthecom pletionoftheburstaftertRAS(min)hasbeenmet.ThelengthoftheburstinitiatedwithaWRITEcommand iseightandthecolumnaddressisuniqueforthisburstofeight.Thereisnointerruptionnortruncationof WRITEbursts. WRITE CK# CK CKE# CS# RAS# CAS# WE# A10,A11 A0,A6 A9(A12) A1 A8 A7 BA0BA3 A2A5 ENAP DISAP LOW 0,0 CA CA BA CA BA=BankAddress;CA=ColumnAddress ENAP=EnableAutoPrecharge;DISAP=DisableAutoPrecharge Figure 42. WRITE Command DuringWRITEbursts,thefirstvaliddatainelementmustbeavailableattheinputlatchaftertheWrite Latency(WL).TheWriteLatencyisdefinedasWLmrs*tCK+tWCK2CKPIN+tWCK2CK+tWCK2DQI,where WLmrsisthenumberofclockcyclesprogramedinMR0,tWCK2CKPINisthephaseoffsetbetweenWCK andCKatthepinswhenphasealignedatphasedetector,tWCK2CKisthealignmenterrorbetweenWCK andCKattheGDDR5SGRAMphasedetector,andtWCK2DQIistheWCKtoDQ/DBI#offsetasmeasured attheDRAMpinstoensureconcurrentarrivalatthelatch.Thetotaldelayisrelativetothedataeyecenter averagedoveronedoublebyte.ThemaximumskewwithinadoublebyteisdefinedbytDQDQI. Thedatainputvalidwindow,tDIVW,definesthetimeregionwheninputdatamustbevalidforreliable datacaptureatthereceiverforanyoneworstcasechannel.Itaccountsforjitterbetweendataandclockat thelatchingpointintroducedinthepathbetweentheDRAMpadsandthelatchingpoint.Anyadditional jitterintroducedintothesourcesignals(i.e.withinthesystembeforetheDRAMpad)mustbeaccounted forinthefinaltimingbudgettogetherwiththechosenPLLmodeandbandwidth.tDIVWismeasuredat thepins.tDIVWisdefinedforthePLLoffandonmodeseparately.InthecaseofPLLon,tDIVWmustbe specifiedforeachsupportedbandwidth.IngeneraltDIVWissmallerthantDIPW. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 70 H5GQ1H24AFR Thedatainputpulsewidth,tDIPW,definestheminimumpositiveornegativeinputpulsewidthforany oneworstcasechannelrequiredforproperpropagationofanexternalsignaltothereceiver.tDIPWismea suredatthepins.tDIPWisindependentofthePLLmode.IngeneraltDIPWislargerthantDIVW. Uponcompletionofaburst,assumingnootherWRITEdataisexpectedonthebustheGDDR5SGRAM DQandDBI#pinswillbedrivenaccordingtotheODTstate.Anyadditionalinputdatawillbeignored. DataforanyWRITEburstmaynotbetruncatedwithasubsequentWRITEcommand. DatafromanyWRITEburstmaybeconcatenatedwithdatafromasubsequentWRITEcommand.Acon tinuousflowofdatacanbemaintained.Thefirstdataelementfromthenewburstfollowsthelastelement ofacompletedburst.ThenewWRITEcommandshouldbeissuedafterthepreviousWRITEcommand accordingtothetCCDtiming.IfthatWRITEcommandistoanotherbankthenanACTIVEcommandmust precedetheWRITEcommandandtRCDWRalsomustbemet. AREADcanbeissuedanytimeafteraWRITEcommandaslongastheinternalturnaroundtimetWTRis met.IfthatREADcommandistoanotherbank,thenanACTIVEcommandmustprecedetheREADcom mandandtRCDRDalsomustbemet. APRECHARGEcanalsobeissuedtotheGDDR5SGRAMwiththesametimingrestrictionasthenew WRITEcommandiftRASismet.AfterthePRECHARGEcommand,asubsequentcommandtothesame bankcannotbeissueduntiltRPismet. ThedatainversionflagisreceivedontheDBI#pintoidentifywhethertostorethetrueorinverteddata.If DBI#isLOW,thedatawillbestoredafterinversioninsidetheGDDR5SGRAMandnotinvertedifDBI#is HIGH.WRITEDataInversioncanbeenabled(A9=0)ordisabled(A9=1)usingWDBIinMR1. WhenenabledbytheWRCRCflaginMR4,EDCdataarereturnedtothecontrollerwithalatencyof (WLmrs+CRCWL)*tCK+tWCK2CKPIN+tWCK2CK+tWCK2DQO,whereCRCWListheCRCWritelatency programmedinMR4andtWCK2DQOistheWCKtoDQ/DBI#/EDCphaseoffsetattheDRAMpins. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 71 H5GQ1H24AFR WLmrs CK# CK tCH tCL tCK tWCK2CKPIN+tWCK2CK WCK WCK# Case1:NegativetWCK2DQI tWCK2DQI DQ/DBI# (mean) DQ/DBI# (firstbit) DQ/DBI# (lastbit) D0 D1 D2 D3 D4 D5 D6 D7 tDQDQI(min) D0 D1 D2 D3 D4 D5 D6 D7 tDQDQI(max) D0 D1 D2 D3 D4 D5 D6 D7 Case2:PositivetWCK2DQI DQ/DBI# (mean) DQ/DBI# (firstbit) DQ/DBI# (lastbit) tWCK2DQI D0 D1 D2 D3 D4 D5 D6 D7 tDQDQI(min) D0 D1 D2 D3 D4 D5 D6 D7 tDQDQI(max) D0 D1 D2 D3 D4 D5 D6 D7 DontCare 1) WLmrsistheWRITElatencyprogrammedinModeRegisterMR0. 2) TimingsareshownwithpositivetWCK2CKPINandtWCK2CKvalues.SeeWCK2CKtimingsfor tWCK2CKPINandtWCK2CKranges. 3) tWCK2DQIparametervaluescouldbenegativeorpositivenumbers,dependingonPLLonorPLLoffmode operationanddesignimplementation.TheyalsovaryacrossPVT.Datatrainingisrequiredtodetermine theactualtWCK2DQIvalueforstableWRITEoperation. 4) tDQDQIdefinestheminimumtomaximumvariationoftWCK2DQIwithinadoublebyte(x32mode)or asinglebyte(x16mode). 5) DataReadtimingsareusedforCRCreturntimingfromWRITEcommandswithCRCenabled. Figure 43. WRITE Timings This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 72 H5GQ1H24AFR T0 T1 T2 T3 T3n T4 T4n T5 T6 T7 T8 CK# CK COMMAND WRITE NOP NOP NOP NOP NOP NOP NOP NOP ADDRESS Banka, Coln Coln WL=WLmrs=3 WCK WCK# DQ DO n DO n+7 DBI# DBI n DBI n+7 EDC EDCHoldPattern DONTCARE TRANSITIONINGDATA Notes: 1.WLmrs=3isshownasanexample.ActualsupportedvalueswillbefoundintheMRandACtimingssections. 2.WCKandCKareshownaligned(tWCK2CKPIN=0,tWCK2CK=0)forillustrationpurposes.WCK2CKtrainingdeterminestheneededoffsetbetweenWCKandCK. 3.ForWRITEoperationsitisimportantthatthelatchingpointmeetthedatavalidwindowrequirements,whichmayormaynotbecenteralignedatthepins. 4.BeforetheWRITEcommands,anACTIVE(ACT)commandisrequiredtobeissuedtotheGDDR5SGRAMandtRCDWRmustbemet. 5.tWCK2DQI=0isshownforillustrationpurposes. Figure 44. Single WRITE without EDC This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 73 H5GQ1H24AFR T0 CK# CK T1 T2 T3 T3n T4 T4n T5 (( )) (( )) T11 T12 T13 COMMAND WRITE NOP NOP NOP NOP NOP (( )) ( ( NOP )) (( )) (( )) NOP NOP ADDRESS Banka, Coln Coln WL=WLmrs=3 WCK WCK# DQ DO n DO n+7 (( )) (( )) (( )) DBI# DBI n DBI n+7 (( )) EDC EDCHoldPattern (( )) (( )) EDC n EDC n+7 EDCHold Pattern CRCWL=8 DONTCARE TRANSITIONINGDATA Notes: 1.WLmrs=3andCRCWL=8isshownasanexample.ActualsupportedvalueswillbefoundintheMRandACtimingssections. 2.WCKandCKareshownaligned(tWCK2CKPIN=0,tWCK2CK=0)forillustrationpurposes.WCK2CKtrainingdeterminestheneededoffsetbetweenWCKandCK. 3.ForWRITEoperationsitisimportantthatthelatchingpointmeetthedatavalidwindowrequirements,whichmayormaynotbecenteralignedatthepins. 4.BeforetheWRITEcommands,anACTIVE(ACT)commandisrequiredtobeissuedtotheGDDR5SGRAMandtRCDWRmustbemet. 5.tWCK2DQI,tWCKDQO=0isshownforillustrationpurposes. Figure 45. Single WRITE with EDC This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 74 H5GQ1H24AFR T0 CK# CK T1 T2 (( )) (( )) T5 T5n T6 T6n T7 (( )) (( )) (( )) (( )) (( )) (( )) T10 T10n T11 T11n T12 COMMAND WRITE NOP ACT (( )) WRITE (( )) (( ) ) Bankb, ( ( Coln )) tRCDWR NOP NOP NOP NOP NOP ADDRESS Banka, Colm Colm Bankb, Row Row Coln WL=WLmrs=5 WCK WCK# DQ WL=WLmrs=5 (( )) (( )) (( )) (( )) (( )) DO m DO m+7 (( )) DO n DO n+7 DBI# (( )) DBI m DBI m+7 (( )) DBI n DBI n+7 DONTCARE TRANSITIONINGDATA Notes: 1.WLmrs=5andtRCDWR=3isshownasanexample.ActualsupportedvalueswillbefoundintheMRandACtimingssections. 2.WCKandCKareshownaligned(tWCK2CKPIN=0,tWCK2CK=0)forillustrationpurposes.WCK2CKtrainingdeterminestheneededoffsetbetweenWCKandCK. 3.EDCmaybeonoroff.SeeFigure4forEDCTiming. 4.ForWRITEoperationsitisimportantthatthelatchingpointmeetthedatavalidwindowrequirements,whichmayormaynotbecenteralignedatthepins. 5.BeforetheWRITEcommands,anACTIVE(ACT)commandisrequiredtobeissuedtotheGDDR5SGRAMandtRCDWRmustbemet. 6.tWCK2DQI=0isshownforillustrationpurposes. Figure 46. Non-Gapless WRITEs This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 75 H5GQ1H24AFR T0 CK# CK T1 T2 T2n T3 T3n T4 T4n T5 T5n T6 T7 T8 COMMAND WRITE NOP WRITE NOP NOP NOP NOP NOP NOP tCCD ADDRESS Banka, Colm Colm Banka, Coln Coln WL=WLmrs=2 WCK WCK# DQ WL=WLmrs=2 DO m DO m+7 DO n DO n+7 DBI# DBI m DBI m+7 DBI n DBI n+7 DONTCARE TRANSITIONINGDATA Notes: 1.WLmrs=2isshownasanexample.ActualsupportedvalueswillbefoundintheMRandACtimingssections. 2.WCKandCKareshownaligned(tWCK2CKPIN=0,tWCK2CK=0)forillustrationpurposes.WCK2CKtrainingdeterminestheneededoffsetbetweenWCKandCK. 3.EDCmaybeonoroff.SeeFigure4forEDCTiming. 4.tCCD=tCCDSwhenbankgroupsisdisabledorthesecondWRITEistoadifferentbankgroup,otherwisetCCD=tCCDL. 5.ForWRITEoperationsitisimportantthatthelatchingpointmeetthedatavalidwindowrequirements,whichmayormaynotbecenteralignedatthepins. 6.BeforetheWRITEcommands,anACTIVE(ACT)commandisrequiredtobeissuedtotheGDDR5SGRAMandtRCDWRmustbemet. 7.tWCK2DQI=0isshownforillustrationpurposes. Figure 47. Gapless WRITEs This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 76 H5GQ1H24AFR T0 CK# CK WRITE NOP T1 (( )) (( )) (( )) (( )) (( )) (( )) T3 T3n T4 T4n T5 (( )) (( )) (( )) (( )) (( )) (( )) Ta0 (( )) (( )) Ta6 Ta6n Ta7 Ta8 COMMAND NOP NOP NOP READ (( )) NOP (( )) (( )) (( )) NOP NOP ADDRESS Banka, Colm Colm Bankb, Coln Coln WL=WLmrs=3 WCK WCK# DQ (( )) (( )) (( )) DO m DO m+7 tWTR CL=CLmrs=6 (( )) (( )) (( )) (( )) (( )) (( )) DO n DO n+7 DBI# (( )) DBI m DBI m+7 (( )) (( )) DBI n DBI n+7 DONTCARE TRANSITIONINGDATA Notes: 1.WLmrs=3andCLmrs=6isshownasanexample.ActualsupportedvalueswillbefoundintheMRandACtimingssections. 2.WCKandCKareshownaligned(tWCK2CKPIN=0,tWCK2CK=0)forillustrationpurposes.WCK2CKtrainingdeterminestheneededoffsetbetweenWCKandCK. 3.EDCmaybeonoroff.SeeFigure4forEDCTiming. 4.tWTR=tWTRLwhenbankgroupsisenabledandbothWRITEandREADaccessbanksinthesamebankgroup,otherwisetWTR=tWTRS. 5.ForWRITEoperationsitisimportantthatthelatchingpointmeetthedatavalidwindowrequirements,whichmayormaynotbecenteralignedatthepins. 6.BeforetheREADandWRITEcommands,anACTIVE(ACT)commandisrequiredtobeissuedtotheGDDR5SGRAMandtRCDRDortRCDWR respectivelymustbemet. 7.tWCK2DQI,tWCKDQO=0isshownforillustrationpurposes. Figure 48. WRITE to READ This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 77 H5GQ1H24AFR T0 CK# CK T1 T2 T3 T3n T4 T4n T5 T6 (( )) (( )) (( )) (( )) (( )) (( )) Ta0 Ta1 COMMAND WRITE NOP NOP NOP NOP NOP NOP PRE NOP tWR ADDRESS Banka, Coln Coln tRP Banka, orall WL=WLmrs=3 WCK WCK# DQ DO n DO n+7 (( )) (( )) (( )) DBI# DBI n DBI n+7 (( )) DONTCARE TRANSITIONINGDATA Notes: 1.WLmrs=3isshownasanexample.ActualsupportedvalueswillbefoundintheMRandACtimingssections. 2.WCKandCKareshownaligned(tWCK2CKPIN=0,tWCK2CK=0)forillustrationpurposes.WCK2CKtrainingdeterminestheneededoffsetbetweenWCKandCK. 3.EDCmaybeonoroff.SeeFigure4forEDCTiming. 4.ForWRITEoperationsitisimportantthatthelatchingpointmeetthedatavalidwindowrequirements,whichmayormaynotbecenteralignedatthepins. 5.BeforetheWRITEcommand,anACTIVE(ACT)commandisrequiredtobeissuedtotheGDDR5SGRAMandtRCDWRmustbemet. 6.tWCK2DQI=0isshownforillustrationpurposes. Figure 49. WRITE to PRECHARGE This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 78 H5GQ1H24AFR 5.8.WRITEDATAMASK(DM) ThetraditionalmethodofusingaDMpinforWRITEdatamaskmustbeabandonedforanewmethod. DuetothehighdatarateofGDDR5SGRAMs,biterrorsareexpectedontheinterfaceandarenotrecover ablewhentheyoccuronthetraditionalDMpin. InGDDR5theDMissenttotheSGRAMovertheaddressfollowingthebank/columnaddresscycleassoci atedwiththecommand,duringtheNOP/DESELECTcommandsbetweentheWRITEcommandandthe nextcommand.TheDMisusedtomaskthecorrespondingdataaccordingtothefollowingtable. Table17:DMState FUNCTION WriteEnable WriteInhibit DM Value 0 1 DQ Valid X TwoadditionalWRITEcommandsthataugmentthetraditionalWRITEWithoutMask(WOM)are requiredforproperDMsupport: * WDM:WRITEWithDoublebyteMask: 2cyclecommandwherethe1stcyclecarriesaddressinformationandthe2ndcyclecarriesdatamask information(2bytegranularity); This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 79 H5GQ1H24AFR WDM CK# CK CKE# CS# LOW RAS# CAS# WE# A9(A12) A1 A10,A11 A0,A6 A8 A7 BA0BA3 A2A5 CA DM DM 0,1 CA DM DM ENAP DISAP DM DM BA CA DM DM BA=BankAddress;CA=ColumnAddress;DM=DataMask ENAP=EnableAutoPrecharge;DISAP=DisableAutoPrecharge Note:NOPshownasanexampleonly Figure 50. WRITE-With-Doublebyte-Mask Command This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 80 H5GQ1H24AFR T0 CK# CK T1 T2 T2n T3 T3n T4 T4n T5 T5n T6 T7 T8 COMMAND WDM NOP WDM NOP NOP NOP NOP NOP NOP tCCD ADDRESS Banka, Colm Colm DMm DMm Banka, Coln Coln DMn DMn WL=WLmrs=2 WCK WCK# DQ WL=WLmrs=2 DO m DO m+7 DO n DO n+7 DBI# DBI m DBI m+7 DBI n DBI n+7 DONTCARE TRANSITIONINGDATA Notes: 1.WLmrs=2isshownasanexample.ActualsupportedvalueswillbefoundintheMRandACtimingssections. 2.WCKandCKareshownaligned(tWCK2CKPIN=0,tWCK2CK=0)forillustrationpurposes.WCK2CKtrainingdeterminestheneededoffsetbetweenWCKandCK. 3.EDCmaybeonoroff.SeeFigure4forEDCTiming. 4.tCCD=tCCDSwhenbankgroupsisdisabledorthesecondWRITEistoadifferentbankgroup,otherwisetCCD=tCCDL. 5.ForWRITEoperationsitisimportantthatthelatchingpointmeetthedatavalidwindowrequirements,whichmayormaynotbecenteralignedatthepins. 6.BeforetheWRITEcommands,anACTIVE(ACT)commandisrequiredtobeissuedtotheGDDR5SGRAMandtRCDWRmustbemet. 7.tWCK2DQI=0isshownforillustrationpurposes. Figure 51. WDM Timing This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 81 H5GQ1H24AFR * WSM:WRITEWithSinglebyteMask: 3cyclecommandwherethe1stcyclecarriesaddressinformation,the2ndand3rdcyclecarrydatamask information WSM CK# CK CKE# CS# LOW RAS# CAS# WE# A9(A12) A1 A10,A11 A0,A6 A8 A7 BA0BA3 A2A5 CA DM DM DM DM 0,1 CA DM DM DM DM ENAP DISAP DM DM DM DM BA CA DM DM DM DM BA=BankAddress;CA=ColumnAddress;DM=DataMask ENAP=EnableAutoPrecharge;DISAP=DisableAutoPrecharge Note:NOPshownasanexampleonly Figure 52. WRITE-With-Singlebyte-Mask Command This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 82 H5GQ1H24AFR T0 CK# CK T1 T2 (( )) (( )) T5 T5n T6 T6n T7 (( )) (( )) T10 T10n T11 T11n T12 COMMAND WSM NOP NOP (( )) WSM (( )) (( ) ) Bankb, ( ( Coln )) NOP NOP (( )) NOP (( )) (( NOP NOP ADDRESS Banka, Colm Colm DMm DMm DMm DMm Coln DMn DMn DMn DMn ) ) (( )) WL=WLmrs=5 WCK WCK# DQ (( )) (( )) (( )) DO m WL=WLmrs=5 (( )) (( )) DO m+7 (( ) ) DO n DO n+7 DBI# (( )) DBI m DBI m+7 (( ) ) DBI n DBI n+7 DONTCARE TRANSITIONINGDATA Notes: 1.WLmrs=5andtRCDWR=3isshownasanexample.ActualsupportedvalueswillbefoundintheMRandACtimingssections. 2.WCKandCKareshownaligned(tWCK2CKPIN=0,tWCK2CK=0)forillustrationpurposes.WCK2CKtrainingdeterminestheneededoffsetbetweenWCKandCK. 3.EDCmaybeonoroff.SeeFigure4forEDCTiming. 4.ForWRITEoperationsitisimportantthatthelatchingpointmeetthedatavalidwindowrequirements,whichmayormaynotbecenteralignedatthepins. 5.BeforetheWRITEcommands,anACTIVE(ACT)commandisrequiredtobeissuedtotheGDDR5SGRAMandtRCDWRmustbemet. 6.tWCK2DQI=0isshownforillustrationpurposes. Figure 53. WSM Timing This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 83 H5GQ1H24AFR Table 18WDMMappingformirrored&nonmirroredx32Mode ByteandBurstPositionMaskedduringWDM ADR A10 A9 BA0 BA3 BA2 BA1 A11 A8 ADRCKRisingEdge Byte DQ[15:0] DQ[15:0] DQ[15:0] DQ[15:0] DQ[31:16] DQ[31:16] DQ[31:16] DQ[31:16] Burst 0 1 2 3 0 1 2 3 ADR A0 A1 A2 A3 A4 A5 A6 A7 ADRCK#RisingEdge Byte DQ[15:0] DQ[15:0] DQ[15:0] DQ[15:0] DQ[31:16] DQ[31:16] DQ[31:16] DQ[31:16] Burst 4 5 6 7 4 5 6 7 Table 19WDMMappingfornonmirroredx16Mode ByteandBurstPositionMaskedduringWDM ADRCKRisingEdge ADR A10 A9 BA0 BA3 BA2 BA1 A11 A8 Byte DQ[7:0] DQ[7:0] DQ[7:0] DQ[7:0] DQ[23:16] DQ[23:16] DQ[23:16] DQ[23:16] Burst 0 1 2 3 0 1 2 3 ADR A0 A1 A2 A3 A4 A5 A6 A7 ADRCK#RisingEdge Byte DQ[7:0] DQ[7:0] DQ[7:0] DQ[7:0] DQ[23:16] DQ[23:16] DQ[23:16] DQ[23:16] Burst 4 5 6 7 4 5 6 7 Table 20WDMMappingformirroredx16Mode ByteandBurstPositionMaskedduringWDM ADRCKRisingEdge ADR A10 A9 BA0 BA3 BA2 BA1 A11 A8 Byte DQ[15:8] DQ[15:8] DQ[15:8] DQ[15:8] DQ[31:24] DQ[31:24] DQ[31:24] DQ[31:24] Burst 0 1 2 3 0 1 2 3 ADR A0 A1 A2 A3 A4 A5 A6 A7 ADRCK#RisingEdge Byte DQ[15:8] DQ[15:8] DQ[15:8] DQ[15:8] DQ[31:24] DQ[31:24] DQ[31:24] DQ[31:24] Burst 4 5 6 7 4 5 6 7 This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 84 H5GQ1H24AFR Table 21WSMMappingformirroredandnonmirroredx32Mode ByteandBurstPositionMaskedDuringWSM ADRCK1strisingEdge ADR A10 A9 BA0 BA3 BA2 BA1 A11 A8 Byte DQ[7:0] DQ[7:0] DQ[7:0] DQ[7:0] DQ[23:16] DQ[23:16] DQ[23:16] DQ[23:16] Burst 0 1 2 3 0 1 2 3 ADRCK#1strisingEdge ADR A0 A1 A2 A3 A4 A5 A6 A7 Byte DQ[7:0] DQ[7:0] DQ[7:0] DQ[7:0] DQ[23:16] DQ[23:16] DQ[23:16] DQ[23:16] Burst 4 5 6 7 4 5 6 7 ADRCK2ndrisingEdge ADR A10 A9 BA0 BA3 BA2 BA1 A11 A8 Byte DQ[15:8] DQ[15:8] DQ[15:8] DQ[15:8] DQ[31:24] DQ[31:24] DQ[31:24] DQ[31:24] Burst 0 1 2 3 0 1 2 3 ADRCK#2ndrisingEdge ADR A0 A1 A2 A3 A4 A5 A6 A7 Byte DQ[15:8] DQ[15:8] DQ[15:8] DQ[15:8] DQ[31:24] DQ[31:24] DQ[31:24] DQ[31:24] Burst 4 5 6 7 4 5 6 7 Table 22WSMMappingfornonmirroredx16Mode ByteandBurstPositionMaskedDuringWSM ADRCK1strisingEdge ADR A10 A9 BA0 BA3 BA2 BA1 A11 A8 Byte DQ[7:0] DQ[7:0] DQ[7:0] DQ[7:0] DQ[23:16] DQ[23:16] DQ[23:16] DQ[23:16] Burst 0 1 2 3 0 1 2 3 ADRCK#1strisingEdge ADR A0 A1 A2 A3 A4 A5 A6 A7 Byte DQ[7:0] DQ[7:0] DQ[7:0] DQ[7:0] DQ[23:16] DQ[23:16] DQ[23:16] DQ[23:16] Burst 4 5 6 7 4 5 6 7 ADRCK2ndrisingEdge Byte Burst 0 1 2 3 0 1 2 3 ADRCK#2ndrisingEdge Byte Burst 4 5 6 7 4 5 6 7 Table 23WSMMappingformirroredx16Mode ByteandBurstPositionMaskedDuringWSM ADRCK1strisingEdge Byte Burst 0 1 2 3 0 1 2 3 ADRCK#1strisingEdge Byte Burst 4 5 6 7 4 5 6 7 ADRCK2ndrisingEdge ADR A10 A9 BA0 BA3 BA2 BA1 A11 A8 Byte DQ[15:8] DQ[15:8] DQ[15:8] DQ[15:8] DQ[31:24] DQ[31:24] DQ[31:24] DQ[31:24] Burst 0 1 2 3 0 1 2 3 ADRCK#2ndrisingEdge ADR A0 A1 A2 A3 A4 A5 A6 A7 Byte DQ[15:8] DQ[15:8] DQ[15:8] DQ[15:8] DQ[31:24] DQ[31:24] DQ[31:24] DQ[31:24] Burst 4 5 6 7 4 5 6 7 This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 85 H5GQ1H24AFR 5.9.READ AREADburstisinitiatedwithaREADcommandasshowninFigure54.Thebankandcolumnaddresses areprovidedwiththeREADcommandandautoprechargeiseitherenabledordisabledforthataccess withtheA8address.Ifautoprechargeisenabled,therowbeingaccessedisprechargedatthecompletion oftheburstaftertRAS(min)hasbeenmet.ThelengthoftheburstinitiatedwithaREADcommandiseight andthecolumnaddressisuniqueforthisburstofeight.ThereisnointerruptionnortruncationofREAD bursts. READ CK# CK CKE# CS# RAS# CAS# WE# A10,A11 A0,A6 A9(A12) A1 A8 A7 BA0BA3 A2A5 ENAP DISAP LOW 0,0 CA CA BA CA BA=BankAddress;CA=ColumnAddress ENAP=EnableAutoPrecharge;DISAP=DisableAutoPrecharge Figure 54. READ Command DuringREADbursts,thefirstvaliddataoutelementwillbeavailableaftertheCASlatency(CL).TheCAS LatencyisdefinedasCLmrs*tCK+tWCK2CKPIN+tWCK2CK+tWCK2DQO,whereCLmrsisthenumberof clockcyclesprogramedinMR0,tWCK2CKPINisthephaseoffsetbetweenWCKandCKatthepinswhen phasealignedatphasedetector,tWCK2CKisthealignmenterrorbetweenWCKandCKattheGDDR5 SGRAMphasedetector,andtWCK2DQOistheWCKtoDQ/DBI#/EDCoffsetasmeasuredattheDRAM pins.Thetotaldelayisrelativetothedataeyeinitialedgeaveragedoveronedoublebyte.Themaximum skewwithinadoublebyteisdefinedbytDQDQO. Uponcompletionofaburst,assumingnootherREADcommandhasbeeninitiated,allDQandDBI#pins willdriveavalueof1andtheODTwillbeenabledatamaximumof1tCKlater.Thedrivevalueandter minationvaluemaybedifferentduetoseparatelydefinedcalibrationoffsets.IftheODTisdisabled,the pinswilldriveHiZ. DatafromanyREADburstmaybeconcatenatedwithdatafromasubsequentREADcommand.Acontin uousflowofdatacanbemaintained.Thefirstdataelementfromthenewburstfollowsthelastelementof acompletedburst.ThenewREADcommandshouldbeissuedafterthepreviousREADcommandaccord ingtothetCCDtiming.IfthatREADcommandistoanotherbankthenanACTIVEcommandmustpre cedetheREADcommandandtRCDRDalsomustbemet. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 86 H5GQ1H24AFR AWRITEcanbeissuedanytimeafteraREADcommandaslongasthebusturnaroundtimetRTWismet. IfthatWRITEcommandistoanotherbank,thenanACTIVEcommandmustprecedethesecondWRITE commandandtRCDWRalsomustbemet. APRECHARGEcanalsobeissuedtotheGDDR5SGRAMwiththesametimingrestrictionasthenew READcommandiftRASismet.AfterthePRECHARGEcommand,asubsequentcommandtothesame bankcannotbeissueduntiltRPismet. ThedatainversionflagisdrivenontheDBI#pintoidentifywhetherthedataistrueorinverteddata.If DBI#isHIGH,thedataisnotinverted,andifLOWitisinverted.READDataInversioncanbeenabled (A8=0)ordisabled(A8=1)usingRDBIinMR1. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 87 H5GQ1H24AFR WhenenabledbytheRDCRCflaginMR4,EDCdataisreturnedtothecontrollerwithalatencyof(CLmrs +CRCRL)*tCK+tWCK2CKPIN+tWCK2CK+tWCK2DQO,whereCRCRListheCRCReadlatencypro grammedinMR4. CLmrs CK# CK tWCK2CKPIN+tWCK2CK WCK WCK# Case1:NegativetWCK2DQO tWCK2DQO DQ/DBI#/EDC (mean) DQ/DBI#/EDC (firstbit) DQ/DBI#/EDC (lastbit) D0 D1 D2 D3 D4 D5 D6 D7 tDQDQO(min) D0 D1 D2 D3 D4 D5 D6 D7 tDQDQO(max) D0 D1 D2 D3 D4 D5 D6 D7 tCH tCL tCK Case2:PositivetWCK2DQO DQ/DBI#/EDC (mean) DQ/DBI#/EDC (firstbit) DQ/DBI#/EDC (lastbit) tWCK2DQO D0 D1 D2 D3 D4 D5 D6 D7 tDQDQO(min) D0 D1 D2 D3 D4 D5 D6 D7 tDQDQO(max) D0 D1 D2 D3 D4 D5 D6 D7 DontCare 1) CLmrsistheCASlatencyprogrammedinModeRegisterMR0. 2) TimingsareshownwithpositivetWCK2CKPINandtWCK2CKvalues.SeeWCK2CKtimingsfor tWCK2CKPINandtWCK2CKranges. 3) tWCK2DQOparametervaluescouldbenegativeorpositivenumbers,dependingonPLLonorPLLoffmode operationanddesignimplementation.TheyalsovaryacrossPVT.Datatrainingisrequiredtodetermine theactualtWCK2DQOvalueforstableREADoperation. 4) tDQDQOdefinestheminimumtomaximumvariationoftWCK2DQOwithinadoublebyte(x32mode)or asinglebyte(x16mode). 5) tDQDQOalsoappliesforCRCdatafromWRITEandREADcommandswithCRCenabled,theEDChold pattern,andthedatastrobeinRDQSmode. Figure 55. READ Word Lane Timing This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 88 H5GQ1H24AFR T0 CK# CK COMMAND READ NOP NOP T1 T2 (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) T5 T6 T6n T7 T7n T8 T9 T10 NOP NOP NOP NOP NOP NOP ADDRESS Banka, Coln Coln CL=CLmrs=6 WCK WCK# DQ DO n DO n+7 DBI# DBI n DBI n+7 ODT ODTEnabled (( )) (( )) (( )) (( )) ODTDisabled ODTEnabled EDC EDCHoldPattern DONTCARE TRANSITIONINGDATA Notes: 1.CLmrs=6isshownasanexample.ActualsupportedvalueswillbefoundintheMRandACtimingssections. 2.WCKandCKareshownaligned(tWCK2CKPIN=0,tWCK2CK=0)forillustrationpurposes.WCK2CKtrainingdeterminestheneededoffsetbetweenWCKandCK. 3.BeforetheREADcommand,anACTIVE(ACT)commandisrequiredtobeissuedtotheGDDR5SGRAMandtRCDRDmustbemet. 4.tWCK2DQO=0isshownforillustrationpurposes. Figure 56. Single READ without EDC This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 89 H5GQ1H24AFR T0 CK# CK T1 (( )) (( )) (( )) (( )) (( )) (( )) T6 T6n T7 T7n T8 T9 T10 T10n T11 T11n T12 COMMAND READ NOP NOP NOP NOP NOP NOP NOP NOP ADDRESS Banka, Coln Coln CL=CLmrs=6 WCK WCK# DQ (( )) (( )) (( )) DO n DO n+7 DBI# (( )) DBI n DBI n+7 EDC (( )) (( )) EDCHoldPattern EDC n EDC n+7 EDCHold Pattern CRCRL=4 DONTCARE TRANSITIONINGDATA Notes: 1.CLmrs=6andCRCRL=4areshownasexamples.ActualsupportedvalueswillbefoundintheMRandACtimingssections. 2.WCKandCKareshownaligned(tWCK2CKPIN=0,tWCK2CK=0)forillustrationpurposes.WCK2CKtrainingdeterminestheneededoffsetbetweenWCKandCK. 3.BeforetheREADcommand,anACTIVE(ACT)commandisrequiredtobeissuedtotheGDDR5SGRAMandtRCDRDmustbemet. 4.tWCK2DQO=0isshownforillustrationpurposes. Figure 57. Single READ with EDC This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 90 H5GQ1H24AFR T0 CK# CK NOP T1 (( )) (( )) (( )) (( )) (( )) (( )) T3 (( )) (( )) T6 T6n T7 T7n T8 T9 T9n T10 T10n T11 COMMAND READ READ tCCD ADDRESS Banka, Colm Colm (( )) NOP (( )) (( )) (( )) NOP NOP NOP NOP NOP Bankb, Coln Coln CL=CLmrs=6 WCK WCK# DQ CL=CLmrs=6 (( )) (( )) (( )) (( )) (( )) (( )) DO m DO m+7 DO n DO n+7 DBI# (( )) (( )) DBI m DBI m+7 DBI n DBI n+7 DONTCARE TRANSITIONINGDATA Notes: 1.CLmrs=6isshownasanexample.ActualsupportedvalueswillbefoundintheMRandACtimingssections. 2.WCKandCKareshownaligned(tWCK2CKPIN=0,tWCK2CK=0)forillustrationpurposes.WCK2CKtrainingdeterminestheneededoffsetbetweenWCKandCK. 3.EDCmaybeonoroff.SeeFigure4forEDCTiming. 4.tCCD=tCCDLwhenbankgroupsareenabledandbothREADsaccessbanksinthesamebankgroup;otherwisetCCD=tCCDS. 5.BeforetheREADcommands,anACTIVE(ACT)commandisrequiredtobeissuedtotheGDDR5SGRAMandtRCDRDmustbemet. 6.tWCK2DQI=0isshownforillustrationpurposes. Figure 58. Non-Gapless READs This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 91 H5GQ1H24AFR T0 CK# CK READ NOP READ NOP T1 T2 T3 (( )) (( )) (( )) (( )) (( )) (( )) T6 T6n T7 T7n T8 T8n T9 T9n T10 COMMAND NOP NOP NOP NOP NOP tCCD ADDRESS Banka, Colm Colm Bankb, Coln Coln CL=CLmrs=6 WCK WCK# DQ (( )) (( )) (( )) DO m DO m+7 DO n DO n+7 DBI# (( )) DBI m DBI m+7 DBI n DBI n+7 DONTCARE TRANSITIONINGDATA Notes: 1.CLmrs=6isshownasanexample.ActualsupportedvalueswillbefoundintheMRandACtimingssections. 2.WCKandCKareshownaligned(tWCK2CKPIN=0,tWCK2CK=0)forillustrationpurposes.WCK2CKtrainingdeterminestheneededoffsetbetweenWCKandCK. 3.EDCmaybeonoroff.SeeFigure4forEDCTiming. 4.tCCD=tCCDSwhenbankgroupsaredisabledorthesecondREADistoadifferentbankgroup;otherwisetCCD=tCCDL. 5.BeforetheREADcommands,anACTIVE(ACT)commandisrequiredtobeissuedtotheGDDR5SGRAMandtRCDRDmustbemet. 6.tWCK2DQI=0isshownforillustrationpurposes. Figure 59. Gapless READs This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 92 H5GQ1H24AFR T0 CK# CK T1 (( )) (( )) (( )) (( )) (( )) (( )) T6 T6n T7 T7n T8 T9 T10 T10n T11 T11n T12 COMMAND READ NOP NOP WRITE NOP NOP NOP NOP NOP tRTW ADDRESS Banka, Colm Colm Bankb, Coln Coln CL=CLmrs=6 WCK WCK# DQ (( )) (( )) (( )) DO m WL=WLmrs=3 DO m+7 DO n DO n+7 DBI# (( )) DBI m DBI m+7 DBI n DBI n+7 DONTCARE TRANSITIONINGDATA Notes: 1.WLmrs=3andCLmrs=6isshownasanexample.ActualsupportedvalueswillbefoundintheMRandACtimingssections. 2.WCKandCKareshownaligned(tWCK2CKPIN=0,tWCK2CK=0)forillustrationpurposes.WCK2CKtrainingdeterminestheneededoffsetbetweenWCKandCK. 3.EDCmaybeonoroff.SeeFigure4forEDCTiming. 4.tWTR=tWTRLwhenbankgroupsisenabledandbothWRITEandREADaccessbanksinthesamebankgroup,otherwisetWTR=tWTRS. 5.ForWRITEoperationsitisimportantthatthelatchingpointmeetthedatavalidwindowrequirements,whichmayormaynotbecenteralignedatthepins. 6.BeforetheREADandWRITEcommands,anACTIVE(ACT)commandisrequiredtobeissuedtotheGDDR5SGRAMandtRCDRDortRCDWR respectivelymustbemet. 7.tWCK2DQI,tWCKDQO=0isshownforillustrationpurposes. Figure 60. READ to WRITE This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 93 H5GQ1H24AFR T0 CK# CK T1 T2 T3 T4 T5 T6 T6n T7 T7n T8 COMMAND READ NOP PRE NOP NOP NOP NOP NOP NOP tRTP ADDRESS Banka, Coln Coln Banka, orall tRP CL=CLmrs=6 WCK WCK# DQ DO n DO n+7 DBI# DBI n DBI n+7 DONTCARE TRANSITIONINGDATA Notes: 1.CLmrs=6isshownasanexample.ActualsupportedvalueswillbefoundintheMRandACtimingssections. 2.WCKandCKareshownaligned(tWCK2CKPIN=0,tWCK2CK=0)forillustrationpurposes.WCK2CKtrainingdeterminestheneededoffsetbetweenWCKandCK. 3.EDCmaybeonoroff.SeeFigure4forEDCTiming. 4.tRTP=tRTPLwhenbankgroupsareenabledandthePRECHARGEcommandaccessesthesamebank;otherwisetRTP=tRTPS. 5.BeforetheREADcommands,anACTIVE(ACT)commandisrequiredtobeissuedtotheGDDR5SGRAMandtRCDRDmustbemet. 6.tWCK2DQO=0isshownforillustrationpurposes. Figure 61. READ to PRECHARGE This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 94 H5GQ1H24AFR 5.10.DQPREAMBLE DQpreambleisafeatureforGDDR5SGRAMsthatisusedforREADdata.DQpreambleconditionsthe DQsforbettersignalintegrityontheinitialdataofaburst. Onceenabledbybit5inMR7,theDQpreamblewillprecedeallREADbursts,includingnonconsecutive READburstswithaminimumgapof1tCK,asshowninFigure58.Whenenabled,theDQpreamblepat ternappliestoallDQandDBI#pinsinabyte,andthesamepatternisusedforallbytesasshownin Figure62.DQpreambleisenabledordisabledforallbytes.TheEDCpinineachbyteisnotincludedinthe DQpreamble.IfODTisenabled,theODTisdisabled1tCKbeforethestartofthepreamblepatternas showninFigure63. ThepreamblepatternontheDBI#pinisonlyenablediftheMRforRDBIisenabled(MR1A8bit).During thepreambletheDBI#pinistreatedasanotherDQpinandthepreamblepatternontheDQsisnot encodedwithRDBI.IfRDBIisdisabled,thentheDBI#pindrivesODT. Byte0 DQ7 DQ6 DQ5 DQ4 DQ3 DQ2 DQ1 DQ0 DBI0# Byte1 DQ15 DQ14 DQ13 DQ12 DQ11 DQ10 DQ9 DQ8 DBI1# Byte2 DQ23 DQ22 DQ21 DQ20 DQ19 DQ18 DQ17 DQ16 DBI2# Byte3 DQ31 DQ30 DQ29 DQ28 DQ27 DQ26 DQ25 DQ24 DBI3# Max0's 1 1 1 1 1 1 1 1 1 0 Idle 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 5 Preamble 1 0 1 0 1 0 1 0 1 4 0 1 0 1 0 1 0 1 0 5 1 0 1 0 1 0 1 0 1 4 x x x x x x x x x 4 x x x x x x x x x 4 x x x x x x x x x 4 Burst x x x x x x x x x 4 x x x x x x x x x 4 x x x x x x x x x 4 x x x x x x x x x 4 x x x x x x x x x 4 Time Notes: 1)ThenumberofMax0'sintheburstis4onlyifRDBIisenabled.Max0`sisonaperbytebasisanddoesnotincludetheEDCpin. 2)x=ValidData Figure 62. DQ Preamble Pattern This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 95 H5GQ1H24AFR T0 CK# CK COMMAND READ NOP T1 (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) (( )) T4 T5 T5n T6 T6n T7 T7n T8 T9 T10 NOP NOP NOP NOP NOP NOP NOP ADDRESS Banka, Coln Coln CL=CLmrs=6 WCK WCK# DQ6 DO n DO n+7 DQ7 DO n DO n+7 DBI# DBI n DBI n+7 ODT ODTEnabled (( )) (( )) ODTDisabled ODTEnabled DONTCARE TRANSITIONINGDATA Notes: 1.CLmrs=6isshownasanexample.ActualsupportedvalueswillbefoundintheMRandACtimingssections. 2.WCKandCKareshownaligned(tWCK2CKPIN=0,tWCK2CK=0)forillustrationpurposes.WCK2CKtrainingdeterminestheneededoffsetbetweenWCKandCK. 3.EDCmaybeonoroff.SeeFigure4forEDCTiming. 4.DQ6,DQ7andtheDBI#pinareshowntoillustratetheDQpreamblepattern.RDBIisEnabled(MR1A8=0). 5.BeforetheREADcommands,anACTIVE(ACT)commandisrequiredtobeissuedtotheGDDR5SGRAMandtRCDRDmustbemet. 6.tWCK2DQO=0isshownforillustrationpurposes. Figure 63. Preamble Timing Diagram This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 96 H5GQ1H24AFR 5.11.READandWRITEDATABUSINVERSION(DBI) TheGDDR5SGRAMDataBusInversion(DBIdc)reducestheDCpowerconsumptionondatapins,asthe numberofDQlinesdrivingalowlevelcanbelimitedto4withinabyte.DBIdcisevaluatedperbyte. ThereisoneDBI#pinperbyte:DBI0#isassociatedwithDQ0DQ7,DBI1#withDQ8DQ15,DBI2#with DQ16DQ23andDBI3#withDQ24DQ31. TheDBI#pinsarebidirectionalactiveLowdoubledatarate(DDR)signals.ForWrites,theyaresampled bytheGDDR5SGRAMalongwiththeDQofthesamebyte.ForReads,theyaredrivenbytheGDDR5 SGRAMalongwiththeDQofthesamebyte. OnceenabledbythecorrespondingRDBIModeRegisterbit,theGDDR5SGRAMinvertsreaddataand setsDBI#Low,whenthenumberof'0'databitswithinabyteisgreaterthan4;otherwisetheGDDR5 SGRAMdoesnotinvertthereaddataandsetsDBI#High,asshowninFigure64. OnceenabledbythecorrespondingWDBIModeRegisterbit,theGDDR5SGRAMinvertswritedata receivedontheDQinputsincaseDBI#wassampledLow,orleavesthedatanoninvertedincaseDBI# wassampledHigh,asshowninFigure65. from DRAM core 8 8 DQ '0' count >4 fromModeRegister: 0=enabled 1=disabled DBI# Figure 64. Example of Data Bus Inversion Logic for READs 8 DQ DBI# 8 to DRAM core fromModeRegister: 0=enabled 1=disabled Figure 65. Example of Data Bus Inversion Logic for WRITEs TheflowdiagraminFigure66illustratestheDBIdcoperation.Inanycase,thetransmitter(thecontroller forWRITEs,theGDDR5SGRAMforREADs)decideswhethertoinvertornotinvertthedataconveyedon theDQs.Thereceiver(theGDDR5SGRAMforWRITEs,thecontrollerforREADs)hastoperformthe reverseoperationbasedonthelevelontheDBI#pin.Datainputandoutputtimingparametersareonly validwithDBIbeingenabledandamaximumof4datalinesperbytedrivenLow. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 97 H5GQ1H24AFR Transmitter Logical outputdata Determine'0'count indatabyte No DBI#='H' Don'tinvert databyte '0'count >4? Yes DBI#='L' Invert databyte DBI#='H' Don'tinvert databyte DBI#='L' Invert databyte Receiver Logical inputdata Figure 66. DBI Flow Diagram DBI#PinSpecialFunctionOverview TheDBI#pinhasspecialbehaviorcomparedtoDQpinsbecauseoftheabilitytoenableanddisableitvia MRS.ForeitherWRITEorREADDBI#pintraining,bothDBIREADandDBIWRITEinMRSmustbe enabled.ThebehavioroftheDBI#pininvariousmoderegistersettingsissummarizedbelow: IfbothDBIREADandDBIWRITEareenabled: * PindrivesDBIFIFOdatawithRDTRcommand * DBI#pinFIFOacceptsWRTRdatawiththeWRTRcommand IfonlyDBIREADisenabled: * DBI#pindrivesODTwhennotREADorRDTR IfonlyDBIWRITEisenabled: * PinalwaysdrivesODT(unlessRESET) IfbothDBIREADandDBIWRITEaredisabled: * DBI#pindrivesODT(unlessRESET) This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 98 H5GQ1H24AFR 5.12.ERRORDETECTIONCODE(EDC) TheGDDR5SGRAMprovideserrordetectiononthedatabustoimprovesystemreliability.Thedevice generatesachecksumperbytelaneforbothREADandWRITEdataandreturnsthechecksumtothecon troller.Basedonthechecksum,thecontrollercandecideifthedata(orthereturnedCRC)wastransmitted inerrorandretrytheREADorWRITEcommand.TheGDDR5SGRAMitselfdoesnotperformanyerror correction.ThefeaturesoftheEDCare: * 8bitchecksumon72bits(9channelsx8bitburst) * dedicatedEDCtransferpinper9channels(4xperGDDR5SGRAM) * asymmetricallatenciesonEDCtransferforReadsandWrites TheCRCpolynomialusedbytheGDDR5SGRAMisanATM8HEC,X^8+X^2+X^1+1.Thestartingseed valueissetinhardwareat"zero".Table24showstheerrortypesthataredetectableandthedetectionrate. Table 24ErrorCorrectionDetails ErrorType RandomSingleBit RandomDoubleBit RandomOddCount Burst<=8 DetectionRate 100% 100% 100% 100% ThebitorderingcalculationfortheCRCerrordetectionisoptimizedforerrorsinthetimeburstdirection. Figure67showsthebitorientationonabytelanebasis. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 99 H5GQ1H24AFR CRCDataInput DQ/DBI#bitordering DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DBI0# T0 0 0 8 16 24 32 40 48 56 64 Burst8Ordering(2tCK) 1 1 9 17 25 33 41 49 57 65 2 2 10 18 26 34 42 50 58 66 3 3 11 19 27 35 43 51 59 67 4 4 12 20 28 36 44 52 60 68 5 5 13 21 29 37 45 53 61 69 6 6 14 22 30 38 46 54 62 70 7 7 15 23 31 39 47 55 63 71 T0+8U.I. CRCPolynomial X8+X2+X+1=0x83=(X+1)(X7+X6+X5+X4+X3+X2+1) CRCDataOutput EDCbitordering T0 Burst8Ordering(2tCK) X0 X1 X2 X3 X4 X5 X6 X7 T0+8U.I. Figure 67. EDC Calculation matrix TheCRCcalculationisembeddedintotheWRITEandREADdatastreamasshowninFigure16: * forWRITEs,theCRCchecksumiscalculatedontheDQandDBI#inputdatabeforedecodingwithDBI * forREADs,theCRCchecksumiscalculatedontheDQandDBI#outputdataafterencodingwithDBI Thebitorderingisoptimizedforerrorsinthetimeburstdirection.Figure67showsthebitorientationona bytelanebasis.All1sareassumedinthecalculationfortheDBI#inburstincaseDBIisdisabledfor WRITEsorREADsintheModeRegister. TheCRCcalculationisalsonotaffectedbyanydatamasksentalongwithWDM,WDMA,WSMorWSMA commands. TheEDClatencyisbasedontheCASlatencyforREADdataandtheWRITElatencyforWRITEdata. Table25showsthe2timingparametersassociatedwiththeEDCscheme. ModeRegister4isusedtodeterminethefunctionalityoftheEDCpin.RegisterbitsA9andA10controlthe GDDR5SGRAM'sCRCcalculationindependentlyforREADsandWRITEs.WithEDCoff,thecalculated CRCpatternwillbereplacedbytheEDCholdpatterndefinedinModeRegisterbitsA0A3.See"Mode Registersonpage39"sectionformoredetails. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 100 H5GQ1H24AFR Table 25EDCTiming Description EDCREADLatency EDCWRITELatency Parameter tEDCRL tEDCWL Value CL+CRCRL WL+CRCWL Units tCK tCK This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 101 H5GQ1H24AFR EDCPinSpecialFunctionOverview TheEDCpinisusedformanydifferentfunctions.ThebehavioroftheEDCpininvariousmodesissum marizedinTable26. Table 26EDCPinBehavior DeviceStatus Condition RESET#=LOW DevicePowerup RESET#=HIGH;noWCKclocks RESET#=HIGH;stableWCKclocks WCK2CKTraining WCKissampledHigh WCKissampledLow EDC13invMR4A11=0 Idle EDC13invMR4A11=1 WRCRCon WRCRCoff RDCRCon RDCRCoff WRCRC+RDCRCbothonorbothoff WCKenabled(MR5A1=0) PowerDown SelfRefresh ReadBurstinRDQSMode WCKdisabledduringPowerDown usingMR5A1=1 MR3A5=1 HiZ High EDCholdpattern(default='1111') EDCholdpattern('1111') InvertedEDCholdpattern('0000') EDCholdpattern EDC0,EDC2:EDCholdpattern EDC1,EDC3:invertedEDCholdpattern CRCdata EDCholdpattern CRCdata EDCholdpattern EDCholdpattern EDCholdpattern EDCholdpattern High High Fixed'1010'strobepatternwith4U.I. preamble EDC0,EDC2:Fixed'1010'strobepattern with4U.I.preamble EDC1,EDC3:Fixed'0101'strobepattern with4U.I.preamble EDC0EDC3PinStatus WRITEBurst READorRDTRburst LDFF WRTRburst READburstinRDQSModewith MR3A5=1;EDC13invMR4A11=1 RDQSpseudodifferential This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 102 H5GQ1H24AFR 5.13.PRECHARGE ThePRECHARGEcommand(seeFigure68)isusedtodeactivatetheopenrowinaparticularbank(PRE) ortheopenrowinallbanks(PREALL).Thebank(s)willbeavailableforasubsequentrowaccessaspeci fiedtime(tRP)afterthePRECHARGEcommandisissuedasillustratedinFigure39. InputA8determineswhetheroneorallbanksaretobeprecharged.Incasewhereonlyonebankistobe precharged,inputsBA0BA3selectthebank.OtherwiseBA0BA3aretreatedas"Don'tCare". Onceabankhasbeenprecharged,itisintheidlestateandmustbeactivatedpriortoanyREADorWRITE commandbeingissued.APRECHARGEcommandwillbetreatedasaNOPifthereisnoopenrowinthat bank,orifthepreviouslyopenrowisalreadyintheprocessofprecharging.SequencesofPRECHARGE commandsmustbespacedbyatleasttPPDasshowninFigure69. Precharge CK# CK CKE# CS# LOW RAS# CAS# WE# A9A11(A12) A0,A1,A6,A7 A8 A7 BA0BA3 A2A5 PREALL PRE BA BA=BankAddress(ifA8isLOW; otherwiseDontCare) Figure 68. PRECHARGE command T0 CK# CK CMD ADDR tRAS BAx,y=bankaddressx,y T1 T2 T3 T4 NOP PRE BAx NOP PRE BAy NOP tPPD tRP DontCare Figure 69. Precharge to Precharge Timings This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 103 H5GQ1H24AFR 5.14.AUTOPRECHARGE AutoPrechargeisafeaturewhichperformsthesameindividualbankprechargefunctionasdescribed above,butwithoutrequiringanexplicitcommand.ThisisaccomplishedbyusingA8(A8=High),to enableAutoPrechargeinconjunctionwithaspecificREADorWRITEcommand.Aprechargeofthebank /rowthatisaddressedwiththeREADorWRITEcommandisautomaticallyperformeduponcompletion ofthereadorwriteburst.AutoPrechargeisnonpersistentinthatitiseitherenabledordisabledforeach individualREADorWRITEcommand. AutoPrechargeensuresthataprechargeisinitiatedattheearliestvalidstagewithinaburst.Theuser mustnotissueanothercommandtothesamebankuntiltheprechargetime(tRP)iscompleted.Thisis determinedasifanexplicitPRECHARGEcommandwasissuedattheearliestpossibletime,asdescribed foreachbursttypeintheOPERATIONsectionofthisspecification. 5.15.REFRESH TheREFRESHcommandisusedduringnormaloperationoftheGDDR5SGRAM.Thecommandisnon persistent,soitmustbeissuedeachtimearefreshisrequired.AminimumtimetRFCisrequiredbetween twoREFRESHcommands.Thesameruleappliestoanyaccesscommandaftertherefreshoperation.All banksmustbeprechargedpriortotheREFRESHcommand. Therefreshaddressingisgeneratedbytheinternalrefreshcontroller.ThismakestheaddressbitsDont CareduringaREFRESHcommand.TheGDDR5SGRAMrequiresREFRESHcyclesatanaverageperi odicintervaloftREFI(max).ThevaluesoftREFIfordifferentdensitiesarelistedinTable6.Toallowfor improvedefficiencyinschedulingandswitchingbetweentasks,someflexibilityintheabsoluterefresh intervalisprovided.AmaximumofeightREFRESHcommandscanbepostedtotheGDDR5SGRAM,and themaximumabsoluteintervalbetweenanyREFRESHcommandandthenextREFRESHcommandis9* tREFI. DuringREFRESH,andwhenbitA2inMR5issetto0,WRTR,RDTR,andLDFFcommandsareallowedat timetREFTRaftertheREFRESHcommand,whichenable(incremental)datatrainingtooccurinparallel withtheinternalrefreshoperationandthuswithoutlossofperformanceontheinterface.SeeREADTrain ingandWRITETrainingfordetails. AsimpedanceupdatesfromtheautocalibrationenginemayoccurwithanyREFRESHcommand,itissafe toonlyissueNOPcommandsduringtKOperiodtopreventfalsecommand,addressordatalatching resultingfromimpedanceupdates. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 104 H5GQ1H24AFR Refresh CK# CK CKE# CS# LOW RAS# CAS# WE# A9A11(A12) A0,A1,A6 A8 A7 BA0BA3 A2A5 Figure 70. REFRESH command T0 CK# CK CMD PRE ALL T1 Ta0 Ta1 Tb0 Tb1 Tb2 Tb3 Tb4 Tb5 Tc0 NOP tRP REF NOP tREFTR WRTR NOP NOP tRFC NOP NOP NOP ACT ADDR tKO WCK WCK# DQ D0 D1 D2 D3 D4 D5 D6 D7 BA RA WL=3 BA=bankaddress;RA=rowaddress WRTRandRDTRcommandsareallowedduringrefreshunlessdisabledintheModeRegister DontCare WCKandCKareshownaligned(tWCK2CKPIN=0,tWCK2CK=0)forillustrationpurposes.WCK2CKtrainingdetermines theneededoffsetbetweenWCKandCK. Figure 71. Refresh Timings This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 105 H5GQ1H24AFR 5.16.SELFREFRESH SelfRefreshcanbeusedtoretaindataintheGDDR5SGRAM,eveniftherestofthesystemispowered down.WhenintheSelfRefreshmode,theGDDR5SGRAMretainsdatawithoutexternalclocking.The SELFREFRESHENTRYcommand(seeFigure72)isinitiatedlikeaREFRESHcommandexceptthatCKE# ispulledHIGH.SELFREFRESHENTRYisonlyallowedwhenallbanksareprechargedwithtRPsatisfied, andwhenthelastdataelementorCRCdataelementfromaprecedingREADorWRITEcommandhave beenpushedout(tRDSRE).NOPcommandsarerequireduntiltCKSREismetaftertheenteringSelfRefresh. ThePLLisautomaticallydisableduponenteringSelfRefreshandisautomaticallyenabledandresetupon exitingSelfRefresh.IftheGDDR5SGRAMentersSelfRefreshwiththePLLdisabled,itwillexitSelf RefreshwiththePLLdisabled. OncetheSELFREFRESHENTRYcommandisregistered,CKE#mustbeheldHIGHtokeepthedevicein SelfRefreshmode.WhenthedevicehasenteredtheSelfRefreshmode,allexternalcontrolsignals,except CKE#andRESET#are"Don'tcare".ForproperSelfRefreshoperation,allpowersupplyandreference pins(VDD,VDDQ,VSS,VSSQ,VREFC,VREFD)mustbeatvalidlevels.TheGDDR5SGRAMinitiatesa minimumofoneinternalrefreshwithintCKEperiodonceitentersSelfRefreshmode.Theaddress,com mand,dataandWCKpinsareinODTstate,andtheEDCpinsdriveaHIGH. TheclockisinternallydisabledduringSelfRefreshoperationtosavepower.Theminimumtimethatthe GDDR5SGRAMmustremaininSelfRefreshmodeistCKE.Theusermaychangetheexternalclockfre quencyorhalttheexternalCKandWCKclockstCKSREafterSelfRefreshentryisregistered.However,the clocksmustberestartedandstabletCKSRXbeforethedevicecanexitSelfRefreshoperation. TheprocedureforexitingSelfRefreshrequiresasequenceofevents.First,theCKandWCKclocksmust bestablepriortoCKE#goingbackLOW.AdelayofatleasttXSNRWmustbesatisfiedbeforeavalidcom mandnotrequiringalockedPLLcanbeissuedtothedevicetoallowforcompletionofanyinternal refreshinprogress.BeforeacommandrequiringalockedPLLcanbeapplied,adelayofatleasttXSRW mustbesatisfied. DuringSelfRefreshtheondietermination(ODT)anddriverwillnotbeautocalibrated.Therefore,itis recommendedthattheODTanddriverberecalibratedbythecontrolleruponexitingSelfRefresh.Alter natively,ifchangesinvoltageandtemperaturearetrackedorknowntobeboundedthentheprovided VoltageandTemperatureVariationtablesmaybeconsultedtodetermineifrecalibrationisnecessary. UponexitfromSelfRefresh,theGDDR5SGRAMcanbeputbackintoSelfRefreshmodeafterwaitingat leasttXSNRWperiodandissuingoneextraREFRESHcommand. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 106 H5GQ1H24AFR SelfRefresh CK# CK HIGH CKE# CS# RAS# CAS# WE# A9A11(A12) A0,A1,A6 A8 A7 BA0BA3 A2A5 Figure 72. SELF REFRESH Entry Command T0 CK# CK CKE# T1 T2 Ta0 Tb0 Tb1 Tb2 Tc0 Td0 tCKSRE tRDSREortWRSRE tRP tCKSRX tCMDS tXSRW tXSNRW tCPDED NOP NOP NOP CMD ADDR DQ NOP SRE SRX PREA Valid EnterSelfRefreshMode ExitSelfRefreshMode DontCare SelfrefreshexitrequiresWCK2CKtrainingpriortoanyWRITEorREADoperation AtleastoneREFRESHcommandshallbeissuedaftertXSNRWforoutputdriverandterminationimpedanceupdates. Figure 73. Self Refresh Entry and Exit Note: 1.Clock(CKandCK#)mustbestablebeforeexitingselfrefreshmode. 2.Devicemustbeintheallbanksidlestatepriortoenteringselfrefreshmode. 3.tXSNRWisrequiredbeforeanynonREADorWRITEcommandcanbeapplied,andtXSRWisrequiredbeforeaREADorWRITEcommandcanbe applied. 4.REF=REFRESHcommand. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 107 H5GQ1H24AFR Table 27PinStatesDuringSelfRefresh Pin EDC DQ/DBI# ADR/CMD CKE# WCK/WCK# State High ODT ODT ODT(DrivenHighbyController) ODT This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 108 H5GQ1H24AFR 5.17.POWERDOWN GDDR5SGRAMsrequiresCKE#tobeLOWatalltimesanaccessisinprogress:fromtheissuingofa READorWRITEcommanduntilcompletionoftheburst.ForREADs,aburstcompletionisdefinedas whenthelastdataelementincludingCRChasbeentransmittedontheDQoutputs,forWRITEs,aburst completionisdefinedaswhenthelastdataelementhasbeenwrittentothememoryarrayandCRCdata hasbeenreturnedtothecontroller. POWERDOWNisenteredwhenCKE#isregisteredHIGH.IfPOWERDOWNoccurswhenallbanksare idle,thismodeisreferredtoasprechargePOWERDOWN;ifPOWERDOWNoccurswhenthereisarow activeinanybank,thismodeisreferredtoasactivePOWERDOWN.EnteringPOWERDOWNdeacti vatestheinputandoutputbuffers,excludingCK,CK#,WCK,WCK#,EDCpinsandCKE#. Formaximumpowersavings,theuserhastheoptionofdisablingthePLLpriortoenteringPOWER DOWN.Inthatcase,onexitingPOWERDOWN,WCK2CKtrainingisrequiredtosettheinternalsynchro nizerswhichwillincludetheenablingofthePLL,PLLreset,andtLKclockcyclesmustoccurbeforeany READorWRITEcommandcanbeissued. Whileinpowerdown,CKE#HIGHandstableCKandWCKsignalsmustbemaintainedatthedevice inputs.TheEDCpinscontinuouslydrivetheEDCholdpattern;ifthecontrollerdoesnotrequireCDR, usersmayprogramtheEDCholdpatternto'1111'priortoenteringpowerdownmode.POWERDOWN durationislimitedbytherefreshrequirementsofthedevice. ThePOWERDOWNstateissynchronouslyexitedwhenCKE#isregisteredLOW(inconjunctionwitha NOPorDESELECTcommand).AvalidexecutablecommandmaybeappliedtXPNcycleslater.Themin. powerdowndurationisspecifiedbytPD. T0 CK# CK CKE# T1 T2 T3 T4 Ta0 Ta1 Ta2 Tb0 tRDSREortWRSRE tCPDED tPD NOP NOP NOP PDX tXPN Valid CMD WCK WCK# NOP PDE EnterPowerDownMode ExitPowerDownMode DontCare Figure 74. Power-Down Entry and Exit Note: 1.MinimumCKE#pulsewidthmustsatisfytCKE. 2.AfterissuingPowerDowncommand,twomoreNOPsshouldbeissued. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 109 H5GQ1H24AFR Table 28PinStatesDuringPowerDown Pin EDC DQ/DBI# ADR/CMD CKE# WCK/WCK# LP2 WCK noWCK x x x x State `Hold' High ODT ODT ODT(DrivenHighbyController) ODT 5.18.COMMANDTRUTHTABLES Table 29TruthTable-CKE# CKE#n1 H H H H L L L L CKE#n H H L L H H H L CURRENT STATE PowerDown SelfRefresh PowerDown SelfRefresh AllBanksIdle Bank(s)Active AllBanksIdle X X COMMANDn ACTIONn MaintainPowerDown MaintainSelfRefresh ExitPowerDown ExitSelfRefresh PrechargePowerDownEntry ActivePowerDownEntry SelfRefreshEntry NOTES DESELECTorNOP DESELECTorNOP DESELECTorNOP DESELECTorNOP REFRESH SeeTable30and Table31 5 1,2,3 Notes: 1.CKE#nisthelogicstateofCKE#atclockedgen;CKE#n1wasthestateofCKE#atthepreviousclockedge. 2.CurrentstateisthestateoftheGDDR5SGRAMimmediatelypriortoclockedgen. 3.COMMANDnisthecommandregisteredatclockedgen,andACTIONnisaresultofCOMMANDn. 4.Allstatesandsequencesnotshownareillegalorreserved. 5.DESELECTorNOPcommandsshouldbeissuedonanyclockedgesoccurringduringthetXSRWperiod.AminimumoftLKis neededforthePLLtolockbeforeapplyingaREADorWRITEcommandifthePLLwasdisabled. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 110 H5GQ1H24AFR Table 30TruthTable-CurrentStateBankn-CommandToBankn CURRENT STATE Any CS# H L L L L L RAS# CAS# X H L L L H H L H H L H H L X H H L L L L H L L H L L H WE# X H H H L H L L H L L H L L COMMAND/ACTION DESELECT(NOP/continuepreviousoperation) NOOPERATION(NOP/continuepreviousoperation) ACTIVE(selectandactivaterow) REFRESH MODEREGISTERSET READ(selectcolumnandstartREADburst) WRITE(selectcolumnandstartWRITEburst) (WOM,WSMorWDM) PRECHARGE(deactivaterowinbankorbanks) READ(selectcolumnandstartnewREADburst) WRITE(selectcolumnandstartWRITEburst) (WOM,WSMorWDM) PRECHARGE(onlyaftertheREADburstiscomplete READ(selectcolumnandstartREADburst) WRITE(selectcolumnandstartnewWRITEburst) (WOM,WSMorWDM) PRECHARGE(onlyaftertheWRITEburstiscomplete) NOTES Idle 4 4 6 6 5 6 6,8 5 6,7 6 5,7 RowActive L L Read (Auto Precharge Disabled) Write (Auto Precharge Disabled) (WOM,WSM orWDM) L L L L L L Notes 1.ThistableapplieswhenCKE#n1wasLOWandCKE#nisLOW(seeTable29)andaftertXSNRhasbeenmet(iftheprevious statewasselfrefresh). 2.Thistableisbankspecific,exceptwherenoted(i.e.,thecurrentstateisforaspecificbankandthecommandsshownarethose allowedtobeissuedtothatbankwheninthatstate).Exceptionsarecoveredinthenotesbelow. 3.Currentstatedefinitions: Idle:Thebankhasbeenprecharged,andtRPhasbeenmet. RowActive:Arowinthebankhasbeenactivated,andtRCDhasbeenmet.Nodatabursts/accessesandnoregisteraccessesare inprogress. Read:AREADbursthasbeeninitiated,withautoprechargedisabled. Write:AWRITEbursthasbeeninitiated,withautoprechargedisabled. 4.Thefollowingstatesmustnotbeinterruptedbyacommandissuedtothesamebank.DESELECTorNOPcommands,orallowable commandstotheotherbankshouldbeissuedonanyclockedgeoccurringduringthesestates.Allowablecommandstotheother bankaredeterminedbyitscurrentstateandTable30,andaccordingtoTable31. Precharging:StartswithregistrationofaPRECHARGEcommandandendswhentRPismet.OncetRPismet,thebankwillbein theidlestate. RowActivating:StartswithregistrationofanACTIVEcommandandendswhentRCDismet.OncetRCDismet,thebankwillbe inthe"rowactive"state. Readw/AutoPrechargeEnabled:StartswithregistrationofaREADcommandwithautoprechargeenabledandendswhentRP hasbeenmet.OncetRPismet,thebankwillbeintheidlestate. Writew/AutoPrechargeEnabled:StartswithregistrationofaWRITEcommandwithautoprechargeenabledandendswhentRP hasbeenmet.OncetRPismet,thebankwillbeintheidlestate. 5.Thefollowingstatesmustnotbeinterruptedbyanyexecutablecommand;DESELECTorNOPcommandsmustbeappliedoneach positiveclockedgeduringthesestates. Refreshing:StartswithregistrationofaREFRESHcommandandendswhentRCismet.OncetRCismet,theGDDR5SGRAMwill beintheallbanksidlestate. AccessingModeRegister:StartswithregistrationofaMODEREGISTERSETcommandandendswhentMRDhasbeenmet.Once tMRDismet,theGDDR5SGRAMwillbeintheallbanksidlestate. PrechargingAll:StartswithregistrationofaPRECHARGEALLcommandandendswhentRPismet.OncetRPismet,allbanks willbeintheidlestate. READorWRITE:StartswiththeregistrationoftheACTIVEcommandandendsthelastvaliddatanibble. 6.Allstatesandsequencesnotshownareillegalorreserved. 7.Notbankspecific;requiresthatallbanksareidle,andburstsarenotinprogress. 8.Mayormaynotbebankspecific;ifmultiplebanksaretobeprecharged,eachmustbeinavalidstateforprecharging. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 111 H5GQ1H24AFR 9.ReadsorWriteslistedintheCommand/ActioncolumnincludeReadsorWriteswithautoprechargeenabledandReadsorWrites withautoprechargedisabled. 10.AWRITEcommandmaybeappliedafterthecompletionoftheREADburst Table 31TruthTable-CurrentStateBankn-CommandToBankm CURRENT STATE Any Idle RowActivating, Active,or Precharging CS# H L X L L L L RAS# X H X L H H L L H H L L H H L L H H L L H H L CAS# X H X H L L H H L L H H L L H H L L H H L L H WE# X H X H H L L H H L L H H L L H H L L H H L L COMMAND/ACTION DESELECT(NOP/continuepreviousoperation) NOOPERATION(NOP/continuepreviousoperation) AnyCommandOtherwiseAllowedtoBankm ACTIVE(selectandactivaterow) READ(selectcolumnandstartREADburst) WRITE(selectcolumnandstartWRITEburst) (WOM,WSMorWDM) PRECHARGE ACTIVE(selectandactivaterow) READ(selectcolumnandstartnewREADburst) WRITE(selectcolumnandstartWRITEburst) (WOM,WSMorWDM) PRECHARGE ACTIVE(selectandactivaterow) READ(selectcolumnandstartREADburst) WRITE(selectcolumnandstartnewWRITEburst) (WOM,WSMorWDM) PRECHARGE ACTIVE(selectandactivaterow) READ(selectcolumnandstartnewREADburst) WRITE(selectcolumnandstartWRITEburst) (WOM,WSMorWDM) PRECHARGE ACTIVE(selectandactivaterow) READ(selectcolumnandstartREADburst) WRITE(selectcolumnandstartnewWRITEburst) (WOM,WSMorWDM) PRECHARGE NOTES 6 6 Read (AutoPrecharge Disabled) L L L L 6 6 Write (AutoPrecharge Disabled) L L L L 6,7 6 Read (WithAuto Precharge) L L L L 6 6 Write (WithAuto Precharge) L L L L 6 6 Notes 1.ThistableapplieswhenCKE#n1wasLOWandCKE#nisLOW(seeTable30)andaftertXSNRhasbeenmet(iftheprevious statewasselfrefresh). 2.WRITEinthistablereferstobothWOM/WOMA,WSM/WSMAandWDM/WDMAcommands 3.Thistabledescribesalternatebankoperation,exceptwherenoted(i.e.,thecurrentstateisforbanknandthecommandsshownare thoseallowedtobeissuedtobankm,assumingthatbankmisinsuchastatethatthegivencommandisallowable).Exceptions arecoveredinthenotesbelow. 4.Currentstatedefinitions: Idle:Thebankhasbeenprecharged,andtRPhasbeenmet. RowActive:Arowinthebankhasbeenactivated,andtRCDhasbeenmet.Nodatabursts/accessesandnoregisteraccessesare inprogress. Read:AREADbursthasbeeninitiated,withautoprechargedisabled. Write:AWRITEbursthasbeeninitiated,withautoprechargedisabled. ReadwithAutoPrechargeEnabled:Seefollowingtext WritewithAutoPrechargeEnabled:Seefollowingtext 4a.Thereadwithautoprechargeenabledorwritewithautoprechargeenabledstatescaneachbebrokenintotwoparts:theaccess periodandtheprechargeperiod.Forreadwithautoprecharge,theprechargeperiodisdefinedasifthesameburstwas This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 112 H5GQ1H24AFR executedwithautoprechargedisabledandthenfollowedwiththeearliestpossiblePRECHARGEcommandthatstillaccesses allofthedataintheburst.Forwritewithautoprecharge,theprechargeperiodbeginswhentWRends,withtWRmeasuredasif autoprechargewasdisabled.Theaccessperiodstartswithregistrationofthecommandandendswheretheprechargeperiod (ortRP)begins.Duringtheprechargeperiodofthereadwithautoprechargeenabledorwritewithautoprechargeenabled states,ACTIVE,PRECHARGE,READandWRITEcommandstotheotherbankmaybeapplied.Ineithercase,allotherrelated limitationsapply(e.g.,contentionbetweenreaddataandwritedatamustbeavoided). 4b.TheminimumdelayfromaREADorWRITEcommandwithautoprechargeenabled,toacommandtoadifferentbankis summarizedbelow. 5.REFRESHandMODEREGISTERSETcommandsmayonlybeissuedwhenallbanksareidle. 6.Allstatesandsequencesnotshownareillegalorreserved. 7.READsorWRITEslistedintheCommand/ActioncolumnincludeREADsorWRITEswithautoprechargeenabledandREADsor WRITEswithautoprechargedisabled. Table 32MinimumDelayBetweenCommandstoDifferentBankswithAutoPrechargeEnabled FromCommand ToCommand READorREADwithAUTOPRECHARGE WRITE withAUTO PRECHARGE (WOMA) WRITEorWRITEwithAUTOPRECHARGE (WOM/WOMA,WSM/WSMAorWDM/WDMA) PRECHARGE ACTIVE READorREADwithAUTOPRECHARGE WRITE withAUTO PRECHARGE (WDMA) WRITEorWRITEwithAUTOPRECHARGE (WOM/WOMA,WSM/WSMAorWDM/WDMA) PRECHARGE ACTIVE READorREADwithAUTOPRECHARGE WRITE withAUTO PRECHARGE (WSMA) WRITEorWRITEwithAUTOPRECHARGE (WOM/WOMA,WSM/WSMAorWDM/WDMA) PRECHARGE ACTIVE READorREADwithAUTOPRECHARGE READ withAUTO PRECHARGE WRITEorWRITEwithAUTOPRECHARGE (WOM/WOMA,WSM/WSMAorWDM/WDMA) PRECHARGE ACTIVE Minimumdelay (withconcurrentautoprecharge) [WLmrs+(BL/4)]tCK+tWTRL*** 2*tCK 1tCK 1tCK [WL+(BL/4)]tCK+tWTR*** 2*tCK 2tCK 2tCK [WL+(BL/4)]tCK+tWTR*** 3*tCK 3tCK 3tCK 2*tCK [CLmrs+(BL/4)+2WL]*tCK*** 1tCK 1tCK *** CL=CASlatency(CL) BL=Burstlength WL=WRITElatency tWTR=tWTRLifBankGroupsenabledandaccesstothesamebankotherwisetWTR=tWTRS This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 113 H5GQ1H24AFR 5.19.RDQSMODE FordeviceoperationatlowerclockfrequenciestheGDDR5SGRAMmaybesetintoRDQSmodeinwhich aREADDATASTROBE(RDQS)inthestyleofGDDR4willbesentontheEDCpinsalongwiththeREAD data.ThecontrollerwillusetheRDQStolatchtheREADdata. RDQSmodeisenteredbysettingtheRDQSModebitA5inModeRegister3(MR3).Whenthebitisset,the GDDR5SGRAMwillasynchronouslyterminateanyEDCholdpatternanddrivealogicHIGHaftertMRD atthelatest.AllfeaturescontrolledbyMR4areignoredbyRDQSmode. READcommandsareexecutedasinnormalmoderegardingcommandtodataoutdelayandpro grammedREADlatencies.AfixedclocklikepatternasshowninFigure75isdrivenonEDCpinsinphase (edgealigned)withtheDQ.Priortothefirstvaliddataelement,thisfixedclocklikepatternorREADpre ambleisdrivenfor2tWCK. NoCRCiscalculatedinRDQSmode,neitherforREADsnorforWRITEs.TheCRCengineiseffectively disabled,andthecorrespondingWRCRCandRDCRCModeRegisterbitsareignored.ThePLLmaybeon oroffwithRDQSmode,dependingonsystemconsiderationsandthePLL'sminimumclockfrequency. ThereisnoequivalentWDQSmode;WRITEcommandstotheGDDR5SGRAMarenotaffectedbyRDQS mode. RDQSmodeisexitedbyresettingtheRDQSModebit.InthiscasetheGDDR5SGRAMwillasynchro nouslystartdrivingtheEDCholdpatternaftertMRD. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 114 H5GQ1H24AFR TheWCK2CKtrainingshouldbeperformedpriortoenteringRDQSmode.NoWCK2CKtrainingcanbe donewhentheRDQSmodeisactive. T0 CK# CK CMD ADDR MRS NOP READ BA CA CLmrs NOP NOP NOP NOP NOP MRS NOP NOP T1 Ta0 Ta1 Tb0 Tb1 Tb2 Tb3 Tb4 Tb5 Tc0 MRAMRA MRAMRA tMRD WCK WCK# DQ EDC EDC Hold EnterRDQSMode tMRD D0 D1 D2 D3 D4 D5 D6 D7 EDC Hold ExitRDQSMode DontCare 1.MRA=ModeRegisteraddressandopcode;BA=bankaddress;CA=columnaddress 2.WCKandCKareshownaligned(tWCK2CKPIN=0,tWCK2CK=0)forillustrationpurposes.WCK2CKtrainingdeterminestheneededoffsetbetweenWCKandCK. 3.BeforetheREADcommand,anACTIVE(ACT)commandisrequiredtobeissuedtotheGDDR5SGRAMandtRCDRDmustbemet. 4.tWCK2DQO=0isshownforillustrationpurposes. Figure 75. RDQS Mode Timings EDC1andEDC3canbetreatedaspseudodifferentialtoEDC0andEDC2respectively,bysettingthe EDC13Invfield,bitA11inMR4,asshowninTable34. Table 33EDCpinbehaviorinRDQSmodeincludingpseudodifferentialRDQS NOP MRSSet READ/RDTR (except RD/RDTR/ PDN/SRF) EDC0123 Output 1111 1111 POWER DOWN/SELF REFRESH EDC0123 Output High High RDQSMode WCK2CK Training EDC13Invert Off EDC02 Output RDQS RDQS EDC13 Output RDQS Inverted RDQS On Off On This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 115 H5GQ1H24AFR 5.20.CLOCKFREQUENCYCHANGESEQUENCE Step1)Waituntilallcommandshavefinished,allbanksareidle. Step2)SendNOPorDESELECT(mustmeetsetup/holdrelativetoclockwhileclockischanging)to GDDR5SGRAMfortheentiresequenceunlessstatedtodootherwise.Theusermusttakecareofrefresh requirements. Step3)IfthenewdesiredclockfrequencyisbelowtheminfrequencysupportedbyPLLonmode,turnthe PLLoffviaanMRScommand. Step4)Changetheclockfrequencyandwaituntilclockisstabilized. Step5)IfthenewclockfrequencyiswithinthePLLonrangeandthePLLonstateisdesired,enablethe PLLviaanMRSCommandifitisnotalreadyenabled. Step6)Performaddresstrainingifrequired. Step7)PerformWCK2CKtraining.AsdefinedintheWCK2CKtrainingprocess,ifthePLLisenabled, thencompletesteps7aand7b: 7a)ResetthePLLbywritingtotheMRSregister. 7b)WaittLKclockcyclesbeforeissuinganycommandstotheGDDR5SGRAM. Step8)ExitWCK2CKtraining. Step9)PerformREADandWRITEtraining,ifrequired. Step10)GDDR5SGRAMisreadyfornormaloperationafteranynecessaryinterfacetraining. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 116 H5GQ1H24AFR 5.21.DYNAMICVOLTAGESWITCHING(DVS) GDDR5SGRAM'sallowthesupplyvoltagetobechangedduringthecourseofnormaloperationusingthe GDDR5DynamicVoltageSwitching(DVS)feature.ByusingDVStheGDDR5SGRAM'spowerconsump tioncanbereducedwheneveronlyafractionofthemaximumavailablebandwidthisrequiredbythecur rentworkload. DVSrequirestheGDDR5SGRAMtobeproperlyplacedintoselfrefreshbeforethevoltageischanged fromtheexisingstablevoltage,VoriginaltothenewdesiredvoltageVnew.TheDVSproceduremayalso requirechangestotheVDDRangemoderegisterusingMR7bitsA8andA9,dependingonwhetherthe featureissupported.ThedatasheetshallbeconsultedregardingthesupportedsupplyvoltagesforDVS, andanydependenciesofACtimingparametersontheselectedsupplyvoltage. Clockfrequencychangescanalsotakeplacebeforeorafterenteringselfrefreshmodeusingthestandard ClockFrequencyChangeprocedure.AclockfrequencychangeinconjunctionwithDVSisrequirediftCK islessthantCKminsupportedbyVnew.Inthiscasenormaldeviceoperationincludingselfrefreshexitis notguaranteedwithoutafrequencychange.Changingthefrequencywhileinselfrefreshisthemostsafe procedure. Onceselfrefreshisentered,tCKSREmustbemetbeforethesupplyvoltageisallowedtotransitionfrom VoriginaltoVnew.AfterVDDandVDDQarestableatVnew,tVSmustbemettoallowforinternalvoltages intheGDDR5SGRAMtostabilizebeforeselfrefreshmodemaybeexited.Duringthevoltagetransition thevoltagemustnotgobelowVminofthelowervoltageofeitherVoriginalorVnewinordertopreventfalse chipreset.VministheminimumvoltageallowedbyVDDorVDDQintheDCoperatingconditionstable. VREFshallcontinuetotrackVDDQ. DVSProcedure Step1)Completealloperationsandprechargeallbanks. Step2)IssueanMRScommandtosetVDDRangetopropervaluesforVnew.ThisstepisonlyrequiredwhentheVDD RangemoderegisterfieldissupportedbytheGDDR5SGRAM. Step3)Enterselfrefreshmode.Selfrefreshentryproceduremustbemet. Step4)WaitrequiredtimetCKSREbeforechangingvoltagetoVnew. Step5)ChangeVDDandVDDQtoVnew. Step6)WaitrequiredtimetVSforvoltagestabilization. Step7)Exitselfrefresh.Theselfrefreshexitproceduremustbemet. Step8)IssueMRScommandstoadjustmoderegistersettingsasdesired(e.g.latencies,PLLon/off,CRCon/off,RDQS modeon/off). Step9)Performanyinterfacetrainingasrequired. Step10)Continuenormaloperation. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 117 H5GQ1H24AFR T0 VDD, VDDQ VSS,VSSQ T1 T2 Ta0 Voriginal Vnew Tb0 Tb1 Tb2 Tc0 Td0 Voltageramp tVS CK# CK CKE# tRDSREortWRSRE tRP CMD NOP SRE tCKSRE tCKSRX tXSRW tXSNRW NOP NOP SRX PREA Valid tCPDED NOP EnterSelfRefreshMode ExitSelfRefreshMode DontCare SelfrefreshexitrequiresWCK2CKtrainingpriortoanyWRITEorREADoperation AtleastoneREFRESHcommandshallbeissuedaftertXSNRWforoutputdriverandterminationimpedanceupdates Voriginal>Vnewshownasanexampleofavoltagechange Figure 76. DVS Sequence This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 118 H5GQ1H24AFR 5.22.TEMPERATURESENSOR GDDR5SGRAMsincorporateatemperaturesensorwithdigitaltemperaturereadoutfunction.Thisfunc tionallowsthecontrollertomonitortheGDDR5SGRAMdie'sjunctiontemperatureandusethisinforma tiontomakesurethedeviceisoperatedwithinthespecifiedtemperaturerangeortoadjustinterface timingsrelativetotemperaturechangesovertime. ThetemperaturesensorisenabledbybitA6inModeRegister7(MR7).Inthiscasethetemperatureread outisvalidaftertTSEN.Hynixapplies10ustotTSEN. ThetemperaturereadoutusestheDRAMInfomodefeature.Thedigitalvalueisdrivenasynchronously ontheDQbusfollowingtheMRScommandtoModeRegister3(MR3)thatsetsbitA7to1andbitA6to0. ThetemperaturereadoutwillbecontinuouslydrivenuntilanMRScommandsetsbothbitsto0. TheGDDR5SGRAM'sjunctiontemperatureislinearlyencodedasshowninTable35.Hynixhastheread outtoasubsetofsixdigitalcodesoutofTable35,correspondingtosixtemperaturethresholds. Table 34TemperatureSensorReadoutPattern BinaryTemperatureReadout Temperature[C] 45 55 65 75 85 95 95 MF=0: DQ[5:0] MF=1: DQ[31:26] 000000 000001 000011 000111 001111 011111 111111 This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 119 H5GQ1H24AFR 5.23.DUTYCYCLECORRECTOR(DCC) AsGDDR5SGRAMscanoperatewiththePLLoffduringnormaloperation,theuseofaDutyCycleCor rector(DCC)cancorrectforthedutycycleoftheWCK.DCCcanbeusedatanytime,however,risingand fallingedgesofWCKcanbeshiftedaccordingtotheDCCtype.TheDCCshouldbeenabledbeforeWCK trainingandshouldberunfortDCCinordertoeffectivelycorrectanyerror. Table 35DCCTimings Parameter Requiredtimefordutycyclecorrector Symbol tDCC Min 150 Max Unit tCK DCCcancorrectthedutycycleerrorwithintherangeof 100ps. WCK# WCK CK# CK CMD NOP NOP MRS NOP NOP NOP NOP MRS MRS A.C. tWCKTMRS tMRD tWCKTTR tDCC tLK tMRD DCCreset EnterWCK2CK Training(resetWCK dividebycircuits) StartWCK2CKPhase Training PLLReset EnterWCK2CK Training(setsdata synchronizers,resets FIFOpointers) DCCstart DCCstopornot Figure 77. Timing Diagram of DCC Control Signals DCCcontrolsignals * DCCreset:TheDCCresetisusedtoinitializetheDCCcodeandshouldbeissuedanytimebeforetheWCK enables(MRS7A11:1,A10:0) * DCCstart:TheDCCstartisusedtoupdatetheDCCcodeandshouldbeissuedanytimeaftertheWCKisstable (MRS7A11:0,A10:1) * DCCstop:TheDCCstopisusedtomakeitstoptoupdatetheDCCcodewhiletheDCCcodeisheld.Thisshould beissuedafterenoughtimefromDCCstartifneeds(MRS7A11:0,A10:0) This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 120 H5GQ1H24AFR Table 36DCCControlSignals A11 0 0 1 1 A10 0 1 0 1 DCC noDCC&DCCstop DCCstart DCCreset RFU This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 121 H5GQ1H24AFR 6.OPERATINGCONDITIONS 6.1.ABSOLUTEMAXIMUMRATINGS VoltageonVddSupply RelativetoVss...................................................0.5Vto+2.0V VoltageonVddQSupply RelativetoVss..................................................0.5Vto+2.0V VoltageonVrefandInputs RelativetoVss..................................................0.5Vto+2.0V VoltageonI/OPins RelativetoVss..................................................0.5VtoVddQ+0.5V StorageTemperature(plastic)............................55Cto+150C ShortCircuitOutputCurrent.............................50mA *Stressesgreaterthanthoselistedmaycausepermanentdamagetothedevice.Thisisastressratingonly,andfunctionaloperationof thedeviceattheseoranyotherconditionsabovethoseindicatedintheoperationalsectionsofthisspecificationisnotimplied. Exposuretoabsolutemaximumratingconditionsforextendedperiodsmayaffectreliability. Table 37Capacitance PARAMETER DeltaInput/OutputCapacitance:DQs,DBI#,EDC, WCK,WCK# DeltaInputCapacitance:CommandandAddress DeltaInputCapacitance:CK,CK# Input/OutputCapacitance:DQs,DBI#,EDC,WCK, WCK# InputCapacitance:CommandandAddress InputCapacitance:CK,CK#,WCK,WCK# InputCapacitance:CKE# SYMBOL DCio DCi1 DCi2 Cio Ci1 Ci2 Ci3 MIN 0 0 0 1.2 0.9 0.9 0.9 MAX 0.5 0.5 0.3 1.9 1.6 1.6 1.6 UNITS pF pF pF pF pF pF pF NOTES Table 38ThermalCharacteristics Parameter Description Value 45 1s Theta_JA 2s2p Theta_JB Theta_JC o Units C/W 1,2,4,5 Notes Thermalresistancejunctiontoambient 33 30 oC/W oC/W o 1,4,5(atTc115oC) 1,2,4,5 1,3 1,6 Thermalresistancejunctiontoboard Thermalresistancejunctiontocase 12 3 C/W oC/W Notes: 1.MeasurementproceduresforeachparametermustfollowstandardproceduresdefinedinthecurrentJEDECJESD51standard. 2.Theta_JAmeasuredwiththelowandhighthermalconductivitytestboarddefinedinJESD519 This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 122 H5GQ1H24AFR 3.Theta_JBmeasuredwiththespecialboundaryconditiondefinedinJESD518 4.Theta_JAshouldonlybeusedforcomparingthethermalperformanceofsinglepackageandnotforsystemrelatedjunction. 5.Theta_JAisthenaturalconvectionjunctiontoambientairthermalresistancemeasuredinonecubicfootsealedenclosure asdecribedinJESD512. Theenvironmentissometimesreferedtoas"stillair"althoughnaturalconvectioncausestheairtomove. 6.Theta_JCcasesurfaceisdefinedasthe"outsidesurfaceofthepackage(case)closesttothechipmountingareawhenthat samesurfaceisproperlyhearsunk"soastominimizetemperaturevariationacrossthatsurface. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 123 H5GQ1H24AFR 6.2.AC&DCCHARACTERISTICS AllGDDR5SGRAMsaredesignedfor1.5Vtypicalvoltagesupplies.TheinterfaceofGDDR5with1.5V VDDQwillfollowthePOD15specification.AllACandDCvaluesaremeasuredattheball. Table 39DCOperatingConditions Parameter DeviceSupplyVoltage OutputSupplyVoltage DeviceSupplyVoltage OutputSupplyVoltage ReferenceVoltageforDQandDBI#pins ReferenceVoltageforDQandDBI#pins ExternalReferenceVoltageforaddressand command DCInputLogicHIGHVoltageforaddressand command DCInputLogicLOWVoltageforaddressand command DCInputLogicHIGHVoltageforDQandDBI# pinswithVREFD DCInputLogicLOWVoltageforDQandDBI# pinswithVREFD DCInputLogicHIGHVoltageforDQandDBI# pinswithVREFD2 DCInputLogicLOWVoltageforDQandDBI# pinswithVREFD2 InputLogicHIGHVoltageforRESET#,SEN,MF InputLogicLOWVoltageforRESET#,SEN,MF InputlogicHIGHvoltagefor EDC1/2(x16modedetect) InputlogicLOWvoltagefor EDC1/2(x16modedetect) InputLeakageCurrent AnyInput0V<=VIN<=VDDQ (Allotherpinsnotundertest=0V) OutputLeakageCurrent (DQsaredisabled;0V<=Vout<=VDDQ) OutputLogicLOWVoltage Symbol VDD VDDQ VDD VDDQ VREFD VREFD2 VREFC VIHA(DC) VILA(DC) VIHD(DC) VILD(DC) VIHD2 (DC) VILD2(DC) VIHR VILR VIHX VILX Il Ioz VOL(DC) Min 1.452 1.452 1.455 1.455 0.69*VDDQ 0.49*VDDQ 0.69*VDDQ VREFC+0.15 Typ 1.6 1.6 1.5 1.5 Max 1.648 1.648 1.545 1.545 0.71*VDDQ 0.51*VDDQ 0.71*VDDQ Unit V V V V V V V V Note 1 1 2 2 3,4 3,4,5 6 VREFC0.15 VREFD+0.10 VREFD0.10 VREFD2+0.30 VREFD20.30 VDDQ0.50 0.30 VDDQ0.3 0.30 10 10 0.62 V V V V V V V V V A A V 9 9 Notes: 1.VDD/VDDQ1.6Visfor6Gbps 2.GDDR5SGRAMsaredesignedtotoleratePCBdesignswithseparateVDDandVDDQpowerregulators. 3.ACnoiseinthesystemisestimatedat50mVpkpkforthepurposeofDRAMdesign. 4.SourceofReferenceVoltageandcontrolofReferenceVoltageforDQandDBI#pinsisdeterminedbyVREFD,HalfVREFD,Auto VREFD,VREFDMERGEandVREFDOffsetsmoderegisters. 5.VREFDOffsetsarenotsupportedwithVREFD2. 6.ExternalVREFCistobeprovidedbythecontrollerasthereisnootheralternativesupply. 7.DQ/DBI#inputslewratemustbegreaterthanorequalto3V/ns.TheslewrateismeasuredbetweenVREFDcrossingandVIHD(AC) orVILD(AC)orVREFD2crossingandVIHD2(AC)orVILD2(AC). 8.ADR/CMDinputslewratemustbegreaterthanorequalto3V/ns.TheslewrateismeasuredbetweenVREFCcrossingand VIHA(AC)orVILA(AC). 9.VIHXandVILXdefinethevoltagelevelsforthereceiverthatdetectsx32orx16modewithRESET#goingHigh. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 124 H5GQ1H24AFR Table 40ACOperatingConditions POD15 Parameter ACInputLogicHIGHVoltagefor addressandcommand ACInputLogicLOWVoltagefor addressandcommand ACInputLogicHIGHVoltagefor DQandDBI#pinswithVREFD ACInputLogicLOWVoltagefor DQandDBI#pinswithVREFD ACInputLogicHIGHVoltagefor DQandDBI#pinswithVREFD2 ACInputLogicLOWVoltagefor DQandDBI#pinswithVREFD2 Symbol VIHA(AC) VILA(AC) VIHD(AC) VILD(AC) VIHD2(AC) VILD2(AC) Min VREFC+0.20 Typ Max Unit V Note VREFC0.20 VREFD+0.15 VREFD0.15 VREFD2+0.40 VREFD20.40 V V V V V VDDQ VOH SystemNoiseMargin(Power/Ground, Crosstalk,SignalIntegrityAttenuation) VIH(AC) VIH(DC) VREF+ACNoise VREF+DCNoise VREFDCNoise VREFACNoise VIL(DC) VIL(AC) VIN(AC)Providesmargin betweenVOL(MAX)and VIL(AC) VOL(MAX) Note:VREF,VIH,VILreferto whicheverVREFxx(VREFD, VREFD2,orVREFC)isbeingused. Output Input Figure 78. Voltage Waveform This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 125 H5GQ1H24AFR Table 41ClockInputOperatingConditions POD15 Parameter ClockInputMidPointVoltage;CKandCK# ClockInputDifferentialVoltage;CKandCK# ClockInputDifferentialVoltage;CKandCK# ClockInputDifferentialVoltage;WCKandWCK# ClockInputDifferentialVoltage;WCKandWCK# ClockInputVoltageLevel;CK,CK#,WCKandWCK# singleended CK/CK#Singleendedslewrate WCK/WCK#Singleendedslewrate ClockInputCrossingPointVoltage;CKandCK# ClockInputCrossingPointVoltage;WCKandWCK# AllowedtimebeforeringbackofCK/WCKbelow VIDCK/WCK(AC) Symbol VMP(DC) VIDCK(DC) VIDCK(AC) VIDWCK(DC) VIDWCK(AC) VIN CKslew WCKslew VIXCK(AC) VIXWCK(AC) tDVAC Min VREFC0.10 0.22 0.40 0.20 0.30 0.30 3 3 VREFC0.12 VREFD0.10 Max VREFC+0.10 Unit V V V V Note 1,6 4,6 2,4,6 5,7 2,5,7 VDDQ+0.30 V/ns V/ns VREFC+0.12 VREFD+0.10 V V ps 9 10 2,3,6 2,3,7, 8 11,12, 13 Notes: 1.Thisprovidesaminimumof0.9Vtoamaximumof1.2V,andisnominally70%ofVDDQwithPOD15.DRAMtimingsrelativeto CKcannotbeguaranteediftheselimitsareexceeded. 2.ForACoperations,allDCclockrequirementsmustbesatisfiedaswell. 3.ThevalueofVIXCKandVIXWCKisexpectedtoequal70%VDDQforthetransmittingdeviceandmusttrackvariationsintheDC levelofthesame. 4.VIDCKisthemagnitudeofthedifferencebetweentheinputlevelinCKandtheinputlevelonCK#.Theinputreferencelevelfor signalsotherthanCKandCK#isVREFC. 5.VIDWCKisthemagnitudeofthedifferencebetweentheinputlevelinWCKandtheinputlevelonWCK#.Theinputreferencelevel forsignalsotherthanWCKandWCK#iseitherVREFD,VREFD2ortheinternalVREFD. 6.TheCKandCK#inputreferencelevel(fortimingreferencedtoCKandCK#)isthepointatwhichCKandCK#cross.Pleaserefer totheapplicabletimingsintheACtimingstable(Table44). 7.TheWCKandWCK#inputreferencelevel(fortimingreferencedtoWCKandWCK#)isthepointatwhichWCKandWCK#cross. PleaserefertotheapplicabletimingsintheACTimingstable(Table44). 8.VREFDiseitherVREFD,VREFD2ortheinternalVREFD. 9.TheslewrateismeasuredbetweenVREFCcrossingandVIXCK(AC). 10.TheslewrateismeasuredbetweenVREFDcrossingandVIXWCK(AC). 11.Figure illustratestheexactrelationshipbetween(CKCK#)or(WCKWCK#)andVID(AC),VID(DC)andtDVAC 12.RingbackbelowVID(DC)isnotallowed. 13.tDVACisnotmeasuredinandofitselfasacompliancespecification,butisrelieduponinmeasurementofclockoperating conditionsandclockrelatedparameters. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 126 H5GQ1H24AFR MaximumClockLevel CK VMP(DC) VIX(AC) VID(DC) VID(AC) CK# MinimumClockLevel Figure 79. Clock Waveform This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 127 H5GQ1H24AFR tDVAC DifferentialInputVoltage(i.e.WCKWCK#,CKCK#) VID(AC)MIN VID(DC)MIN 0 halfcycle (VID(DC)MIN) (VID(AC)MIN) tDVAC time Figure 80. Definition of differential ac-swing and "time above ac-level" tDVAC This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 128 H5GQ1H24AFR Table 42IDDSpecificationsandTestConditions PARAMETER/CONDITION OneBankActivatePrechargeCurrent:tCK=tCK(min);tWCK=tWCK(min);tRC=tRC(min);CKE#= LOW;DQ,DBI#areHIGH;randombankandrowaddresses(4addressinputssetLOW)withACT command OneBankActivateReadPrechargeCurrent:tCK=tCK(min);tWCK=tWCK(min); tRC=tRC(min);CKE#=LOW;onebankactivated;singlereadburstwith50%datatoggleoneachdata transfer,with4outputsperdatabytedrivenLOW;otherwiseDQ,DBI#areHIGH;randombank,row andcolumnaddresses(4addressinputssetLOW)withACTandREADcommands;IOUT=0mA PrechargePowerdownCurrent:tCK=tCK(min);tWCK=tWCK(min);allbanksidle; CKE#=HIGH;allotherinputsareHIGH;PLLsareoff PrechargeStandbyCurrent:tCK=tCK(min);tWCK=tWCK(min);allbanksidle; CKE#=LOW;allotherinputsareHIGH ActivePowerdownCurrent:tCK=tCK(min);tWCK=tWCK(min);onebankactive; CKE#=HIGH;allotherinputsareHIGH ActiveStandbyCurrent:tCK=tCK(min);tWCK=tWCK(min);onebankactive; CKE#=LOW;allotherinputsareHIGH ReadBurstCurrent:tCK=tCK(min);tWCK=tWCK(min);CKE#=LOW;onebankineachofthe4bank groupsactivated;continuousreadburstacrossbankgroupswith50%datatoggleoneachdata transfer,with4outputsperdatabytedrivenLOW;randombankandcolumnaddresses(4address inputssetLOW)withREADcommand;IOUT=0mA WriteBurstCurrent:tCK=tCK(min);tWCK=tWCK(min);CKE#=LOW;onebankineachofthe4bank groupsactivated;continuouswriteburstacrossbankgroupswith50%datatoggleoneachdata transfer,with4inputsperdatabytesetLOW;randombankandcolumnaddresses(4addressinputs setLOW)withWRITEcommand;nodatamask RefreshCurrent:tCK=tCK(min);tWCK=tWCK(min);tRFC=tRFC(min);CKE#=LOW; DQ,DBI#areHIGH;addressinputsareHIGH SelfRefreshCurrent:CKE#=HIGH;allotherinputsareHIGH FourBankInterleaveReadCurrent:tCK=tCK(min);tWCK=tWCK(min);CKE#=LOW; onebankineachofthe4bankgroupsactivatedandprechargedattRC(min);continuousreadburst acrossbankgroupswith50%datatoggleoneachdatatransfer,with4outputsperdatabytedriven LOW;randombank,rowandcolumnaddresses(4addressinputssetLOW)withACTandREAD/ READAcommands;IOUT=0mA SYMBOL IDD0 NOTES 1 IDD1 1 IDD2P IDD2N IDD3P IDD3N IDD4R IDD4W IDD5 IDD6 1 IDD7 NOTE: MintRCortRFCforIDDmeasurementsisthesmallestmultipleoftCKthatmeetstheminimumoftheabsolutevalueforthe respectiveparameter. CommonTestconditions: 1) 2) 3) 4) 5) 6) 7) 8) 9) Deviceisconfiguredtox32mode ABIandDBIareenabled AllODTsareenabledwithZQ/2 PLLsareenabledunlessotherwisenoted CRCisenabledforREADsandWRITEs,andtheEDCholdpatternisprogrammedto'1010' BankgroupsareenabledifrequiredfordeviceoperationattCK(min) AddressinputsincludeABI#pin EachdatabyteconsistsofeightDQsandoneDBI#pin DESELECTconditionduringidlecommandcycles This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 129 H5GQ1H24AFR Table 43. IDD SPECIFICATIONS AND CONDITIONS 1. x 32 Mode IDD Symbol IDD0 IDD1 IDD2P IDD2N IDD3P IDD3N IDD4W IDD4R IDD5 IDD6 IDD7 4.0Gbps 550 590 240 260 385 540 1300 1370 545 60 900 4.5Gbps 590 630 260 280 405 580 1430 1500 580 60 1000 5.0Gbps 630 670 280 300 425 620 1560 1630 615 60 1100 5.5Gbps 670 710 300 320 445 660 1690 1760 650 60 1200 6.0Gbps 710 750 320 340 465 700 1820 1890 685 60 1300 Units mA mA mA mA mA mA mA mA mA mA mA 2. x 16 Mode IDD Symbol IDD0 IDD1 IDD2P IDD2N IDD3P IDD3N IDD4W IDD4R IDD5 IDD6 IDD7 4.0Gbps 370 390 170 190 250 350 830 850 350 60 660 4.5Gbps 400 420 175 200 260 370 910 930 370 60 710 5.0Gbps 420 450 185 210 275 390 990 1010 390 60 770 5.5Gbps 450 480 195 230 290 420 1070 1090 420 60 840 6.0Gbps 490 520 210 250 310 450 1160 1080 450 60 910 Units mA mA mA mA mA mA mA mA mA mA mA Rev. 1.0 /Nov. 2009 130 H5GQ1H24AFR Table 44. AC Timings (@1.5V) 6.0Gbps PARAMETER a, b SYMBOL MIN CK and WCK Timings PLL on CK Clock cycle time PLL off CK Clock high-level width CK Clock low-level width Min CK Clock half period Max CK Clock frequency with bank groups disabled Max CK Clock frequency with bank groups enabled and tCCDL=3tCK Max CK Clock frequency with WCK2CK alignment at pins Max CK Clock frequency in RDQS Mode Max CK Clock frequency for device operation with VREFD2 Max CK Clock frequency for WCK-to-CK auto synchronization in WCK2CK training mode Max CK Clock frequency for device operation with Low Frequency Mode enabled PLL on WCK Clock cycle time PLL off WCK Clock high-level width WCK Clock low-level width Min WCK Clock half period tWCKH tWCKL tWCKHP tWCK 0.333 0.470 0.470 0.470 10 0.530 0.530 0.364 0.470 0.470 0.470 10 0.530 0.530 tWCK tWCK tWCK k,l k,l tCH tCL tHP fCKBG fCKBG4 tCK 0.667 0.470 0.470 0.470 20 0.530 0.530 1500 1500 0.727 0.470 0.470 0.470 20 0.530 0.530 1375 1375 tCK tCK tCK MHz MHz d d C C 0.667 2 0.727 2 ns 5.5Gbps UNIT NOTES MIN MAX MAX fCKPIN fCKRDQS fCKVREFD2 - 1500 TBD TBD - 1375 TBD TBD MHz MHz MHz e f g fCKAUTOSYNC - 1500 - 1375 MHz h fCKLF 0.333 900 1 0.364 900 1 MHz i ns j Command and Address Input Timings Command input setup time Command input hold time Command input pulse width Address input setup time Address input hold time Address input pulse width tCMDS tCMDH tCMDPW tAS tAH tAPW 0.25 0.25 0.60 0.1 0.1 0.3 0.25 0.25 0.65 0.1 0.1 0.32 ns ns ns ns ns ns m,n m,n m,n,o m,n,p m,n,p m,n,o,p Rev. 1.0 /Nov. 2009 131 H5GQ1H24AFR Table 44. AC Timings (@1.5V) 6.0Gbps PARAMETER a, b SYMBOL MIN WCK2CK Timings WCK stop to MRS delay for entering WCK2CK training MRS to WCK restart delay after entering WCK2CK training WCK start to WCK phase movement delay WCK phase change to phase detector out delay WCK Clock high-level width during WCK2CK training WCK Clock low-level width during WCK2CK training PLL on;MR6A0=0 (at phase detector) WCK2CK offset when zero offset at phase detector or at pins PLL on;MR6A0=1 (at pins) tWCK2CKPIN PLL off;MR6A0=0 (at phase detector) PLL off;MR6A0=1 (at pins) MR6A0=0 (at phase detector) tWCK2CKSYNC MR6A0=1 (at pins) MR6A0=0 (at phase detector) WCK2CK phase offset MR6A0=1 (at pins) tWCK2CK -0.4 0.4 -0.4 0.4 ns -0.25 0.25 -0.25 0.25 ns -0.2 0.2 -0.2 0.2 tWCK2MRS 3 3 ns 5.5Gbps UNIT NOTES MIN MAX MAX tMRSTWCK tWCK2TR tWCK2PH tWCKHTR 10 10 5 0.42 0.58 10 10 5 0.42 0.58 ns tCK ns tWCK q k,l,r tWCKLTR 0.42 0.58 0.42 0.58 tWCK k,l,r -0.2 0.2 -0.2 0.2 -0.2 0.2 -0.2 0.2 ns s -0.2 0.2 -0.2 0.2 -0.25 0.25 -0.25 0.25 tCK t WCK2CK phase offset upon WCK2CK training exit -0.4 0.4 -0.4 0.4 tCK u PLL Input and Output Timings WCK to DQ/DBI# offset for input data WCK to DQ/DBI#/EDC/ offset for output data DQ/DBI# input pulse width PLL on tWCK2DQI PLL off PLL on tWCK2DQO PLL off tDIPW 1.1 0.15 2.2 1.1 0.164 2.2 ns y,z,aa 0.7 1.1 1.7 2.2 0.7 1.1 1.7 2.2 ns w,x 0.7 1.7 0.7 1.7 ns v Rev. 1.0 /Nov. 2009 132 H5GQ1H24AFR Table 44. AC Timings (@1.5V) 6.0Gbps PARAMETER a, b PLL on tDIVW PLL off tDQDQI tDQDQO 0.1 -0.1 -0.125 0.1 0.125 0.11 -0.1 -0.125 0.1 0.125 ns ns ac ad 5.5Gbps UNIT NOTES MIN 0.11 SYMBOL MIN MAX - MAX ns y,z,ab DQ/DBI# data input valid window 0.1 DQ/DBI# input skew within double byte DQ/DBI#/EDC output skew within double byte Row Access Timings Active to Active command period Active to PRECHARGE command period Active to READ command delay Active to WRITE command delay Active to RDTR command delay Active to WRTR command delay Active to LDFF command delay REFRESH to RDTR or WRTR command delay Active bank A to Active bank B command delay same bank group Active bank A to Active bank B command delay different bank groups Four bank activate window Thirty two bank activate window READ to PRECHARGE command delay same bank with bank groups enabled READ to PRECHARGE command delay same bank with bank groups disabled PRECHARGE to PRECHARGE command delay PRECHARGE command period WRITE recovery time Auto precharge write recovery + precharge time tRC tRAS tRCDRD tRCDWR tRCDRTR tRCDWTR tRCDLTR tREFTR tRRDL 40 28 12 10 10 10 10 10 5.5 9*tREFI 40 28 12 10 10 10 10 10 5.5 9*tREFI ns ns ns ns ns ns ns ns ns af ae tRRDS tFAW t32AW tRTPL 5.5 23 184 2 - 5.5 23 184 2 - ns ns ns tCK ag ah ai aj tRTPS tPPD tRP tWR tDAL 2 1 12 12 24 - 2 1 12 12 24 - tCK ns ns ns tCK ak al Column Access Timings RD/WR bank A to RD/WR bank B command delay same bank group RD/WR bank A to RD/WR bank B command delay different bank groups Rev. 1.0 /Nov. 2009 tCCDL 3 3 tCK af,am tCCDS 2 - 2 - tCK ag,an 133 H5GQ1H24AFR Table 44. AC Timings (@1.5V) 6.0Gbps PARAMETER a, b LDFF to LDFF command cycle time LDFF(111) to LDFF command cycle time LDFF(111) to RDTR command cycle delay READ or RDTR to LDFF command delay WRITE to LDFF command delay WRTR to RDTR command delay 5.5Gbps UNIT NOTES MIN 4 4 4 4 WL+5 WLtWLmin WL+tCR CWL+2 5 SYMBOL MIN tLTLTR tLTL7TR tLTRTR tRDTLT tWRTLT tWTRTR 4 4 4 4 WL+5 WLtWLmin WL+tCR CWL+2 5 MAX - MAX tCK tCK tCK tCK tCK tCK ao WRITE to WRTR command delay Internal WRITE to READ command delay same bank group Internal WRITE to READ command delay different bank groups READ or RDTR to WRITE or WRTR command delay Write Latency tWRWTR - - tCK tWTRL - - ns af tWTRS 5 [CLmrs+(BL /4)+2WLmrs]*tC K - 5 [CLmrs+(BL /4)+2WLmrs]*tC K - ns ag tRTW - - tCK ap tWL 4 7 4 7 tCK aq Power-Down and Refresh Timings CKE# min high and low pulse width Valid CK Clock required after self refresh entry Valid CK Clock required before self refresh exit READ to SELF REFRESH ENTRY or POWER DOWN ENTRY command delay WRITE to SELF REFRESH ENTRY or POWER DOWN ENTRY command delay REFRESH command period Exit self refresh to non-READ/WRITE command delay Exit self refresh to READ/WRITE command delay Refresh period Average periodic refresh interval Min Power down entry to exit time Rev. 1.0 /Nov. 2009 8k rows tREFI 16k rows tPD 16 1.9 14 1.9 tCK 134 tCKE tCKSRE tCKSRX tRDSRE 16 16 16 CL+2tCK 14 14 14 CL+2tCK tCK tCK tCK tCK ar tWRSRE tRFC tXSNRW TBD 65 tRFC tRFC+ tRCD - - TBD 65 tRFC tRFC+ tRCD - - tCK ns ns as tXSRW tREF 32 3.9 32 3.9 tCK ms us at au H5GQ1H24AFR Table 44. AC Timings (@1.5V) 6.0Gbps PARAMETER a, b NOP/DESELECT commands required upon powerdown and self refresh entry Power down exit time 5.5Gbps UNIT NOTES MIN 3 15 SYMBOL MIN tCPDED tXPN 4 17 MAX - MAX tCK tCK Miscellaneous Timings MODE REGISTER SET command period PLL enabled to PLL lock delay PLL standby time DVS voltage stabilization time REFRESH to calibration update complete delay Active termination setup time Active termination hold time READ to data out delay in address training mode tMRD tLK tSTDBTY tVS tKO tATS tATH tADR 4 TBD 10 10 0.5*tCK+ 0 10 5000 TBD 40 0.5*tCK+ 10 0.5*tCK+ 10 11 11 4 TBD 10 10 0.5*tCK+ 0 10 5000 TBD 40 0.5*tCK+ 10 0.5*tCK+ 10 11 11 tCK tCK us us ns ns ns tCK q ax Address training exit to DQ in ODT state delay Vendor ID on Venodr ID off Temperature sensor enable delay tADZ tWRIDON tWRIDOFF tTSEN ns ns ns us Rev. 1.0 /Nov. 2009 135 H5GQ1H24AFR Table 44. AC Timings (@1.5V) 5.0Gbps PARAMETER a, b SYMBOL MIN CK and WCK Timings PLL on CK Clock cycle time PLL off CK Clock high-level width CK Clock low-level width Min CK Clock half period Max CK Clock frequency with bank groups disabled Max CK Clock frequency with bank groups enabled and tCCDL=3tCK Max CK Clock frequency with WCK2CK alignment at pins Max CK Clock frequency in RDQS Mode Max CK Clock frequency for device operation with VREFD2 Max CK Clock frequency for WCK-to-CK auto synchronization in WCK2CK training mode Max CK Clock frequency for device operation with Low Frequency Mode enabled PLL on WCK Clock cycle time PLL off WCK Clock high-level width WCK Clock low-level width Min WCK Clock half period tWCKH tWCKL tWCKHP tWCK 0.4 0.470 0.470 0.470 10 0.530 0.530 0.444 0.470 0.470 0.470 10 0.530 0.530 tWCK tWCK tWCK k,l k,l tCH tCL tHP fCKBG fCKBG4 tCK 0.8 0.470 0.470 0.470 20 0.530 0.530 1250 1250 0.89 0.470 0.470 0.470 20 0.530 0.530 1125 1125 tCK tCK tCK MHz MHz d d C C 0.8 2 0.89 2 ns 4.5Gbps UNIT NOTES MIN MAX MAX fCKPIN fCKRDQS fCKVREFD2 - 1250 TBD TBD - 1125 TBD TBD MHz MHz MHz e f g fCKAUTOSYNC - 1250 - 1125 MHz h fCKLF 0.4 900 1 0.444 900 1 MHz i ns j Command and Address Input Timings Command input setup time Command input hold time Command input pulse width Address input setup time Address input hold time Address input pulse width tCMDS tCMDH tCMDPW tAS tAH tAPW 0.25 0.25 0.7 0.1 0.1 0.36 0.25 0.25 0.7 0.125 0.125 0.4 ns ns ns ns ns ns m,n m,n m,n,o m,n,p m,n,p m,n,o,p Rev. 1.0 /Nov. 2009 136 H5GQ1H24AFR Table 44. AC Timings (@1.5V) 5.0Gbps PARAMETER a, b SYMBOL MIN WCK2CK Timings WCK stop to MRS delay for entering WCK2CK training MRS to WCK restart delay after entering WCK2CK training WCK start to WCK phase movement delay WCK phase change to phase detector out delay WCK Clock high-level width during WCK2CK training WCK Clock low-level width during WCK2CK training PLL on;MR6A0=0 (at phase detector) WCK2CK offset when zero offset at phase detector or at pins PLL on;MR6A0=1 (at pins) tWCK2CKPIN PLL off;MR6A0=0 (at phase detector) PLL off;MR6A0=1 (at pins) MR6A0=0 (at phase detector) tWCK2CKSYNC MR6A0=1 (at pins) MR6A0=0 (at phase detector) WCK2CK phase offset MR6A0=1 (at pins) tWCK2CK -0.4 0.4 -0.4 0.4 ns -0.25 0.25 -0.25 0.25 ns -0.2 0.2 -0.2 0.2 tWCK2MRS 3 3 ns 4.5Gbps UNIT NOTES MIN MAX MAX tMRSTWCK tWCK2TR tWCK2PH tWCKHTR 10 10 5 0.42 0.58 10 10 5 0.42 0.58 ns tCK ns tWCK q k,l,r tWCKLTR 0.42 0.58 0.42 0.58 tWCK k,l,r -0.2 0.2 -0.2 0.2 -0.2 0.2 -0.2 0.2 ns s -0.2 0.2 -0.2 0.2 -0.25 0.25 -0.25 0.25 tCK t WCK2CK phase offset upon WCK2CK training exit -0.4 0.4 -0.4 0.4 tCK u PLL Input and Output Timings WCK to DQ/DBI# offset for input data WCK to DQ/DBI#/EDC/ offset for output data DQ/DBI# input pulse width PLL on tWCK2DQI PLL off PLL on tWCK2DQO PLL off tDIPW 1.1 0.18 2.2 1.1 0.197 2.2 ns y,z,aa 0.7 1.1 1.7 2.2 0.7 1.1 1.7 2.2 ns w,x 0.7 1.7 0.7 1.7 ns v Rev. 1.0 /Nov. 2009 137 H5GQ1H24AFR Table 44. AC Timings (@1.5V) 5.0Gbps PARAMETER a, b PLL on tDIVW PLL off tDQDQI tDQDQO 0.12 -0.1 -0.125 0.1 0.125 0.13 -0.1 -0.125 0.1 0.125 ns ns ac ad 4.5Gbps UNIT NOTES MIN 0.13 SYMBOL MIN MAX - MAX ns y,z,ab DQ/DBI# data input valid window 0.12 DQ/DBI# input skew within double byte DQ/DBI#/EDC output skew within double byte Row Access Timings Active to Active command period Active to PRECHARGE command period Active to READ command delay Active to WRITE command delay Active to RDTR command delay Active to WRTR command delay Active to LDFF command delay REFRESH to RDTR or WRTR command delay Active bank A to Active bank B command delay same bank group Active bank A to Active bank B command delay different bank groups Four bank activate window Thirty two bank activate window READ to PRECHARGE command delay same bank with bank groups enabled READ to PRECHARGE command delay same bank with bank groups disabled PRECHARGE to PRECHARGE command delay PRECHARGE command period WRITE recovery time Auto precharge write recovery + precharge time tRC tRAS tRCDRD tRCDWR tRCDRTR tRCDWTR tRCDLTR tREFTR tRRDL 40 28 12 10 10 10 10 10 5.5 9*tREFI 40 28 12 10 10 10 10 10 5.5 9*tREFI ns ns ns ns ns ns ns ns ns af ae tRRDS tFAW t32AW tRTPL 5.5 23 184 2 - 5.5 23 184 2 - ns ns ns tCK ag ah ai aj tRTPS tPPD tRP tWR tDAL 2 1 12 12 24 - 2 1 12 12 24 - tCK ns ns ns tCK ak al Column Access Timings RD/WR bank A to RD/WR bank B command delay same bank group RD/WR bank A to RD/WR bank B command delay different bank groups Rev. 1.0 /Nov. 2009 tCCDL 3 3 tCK af,am tCCDS 2 - 2 - tCK ag,an 138 H5GQ1H24AFR Table 44. AC Timings (@1.5V) 5.0Gbps PARAMETER a, b LDFF to LDFF command cycle time LDFF(111) to LDFF command cycle time LDFF(111) to RDTR command cycle delay READ or RDTR to LDFF command delay WRITE to LDFF command delay WRTR to RDTR command delay 4.5Gbps UNIT NOTES MIN 4 4 4 4 WL+5 WLtWLmin WL+tCR CWL+2 5 SYMBOL MIN tLTLTR tLTL7TR tLTRTR tRDTLT tWRTLT tWTRTR 4 4 4 4 WL+5 WLtWLmin WL+tCR CWL+2 5 MAX - MAX tCK tCK tCK tCK tCK tCK ao WRITE to WRTR command delay Internal WRITE to READ command delay same bank group Internal WRITE to READ command delay different bank groups READ or RDTR to WRITE or WRTR command delay Write Latency tWRWTR - - tCK tWTRL - - ns af tWTRS 5 [CLmrs+(BL /4)+2WLmrs]*tC K - 5 [CLmrs+(BL /4)+2WLmrs]*tC K - ns ag tRTW - - tCK ap tWL 3 7 3 7 tCK aq Power-Down and Refresh Timings CKE# min high and low pulse width Valid CK Clock required after self refresh entry Valid CK Clock required before self refresh exit READ to SELF REFRESH ENTRY or POWER DOWN ENTRY command delay WRITE to SELF REFRESH ENTRY or POWER DOWN ENTRY command delay REFRESH command period Exit self refresh to non-READ/WRITE command delay Exit self refresh to READ/WRITE command delay Refresh period Average periodic refresh interval Min Power down entry to exit time Rev. 1.0 /Nov. 2009 8k rows tREFI 16k rows tPD 12 1.9 11 1.9 tCK 139 tCKE tCKSRE tCKSRX tRDSRE 12 12 12 CL+2tCK 11 11 11 CL+2tCK tCK tCK tCK tCK ar tWRSRE tRFC tXSNRW TBD 65 tRFC tRFC+ tRCD - - TBD 65 tRFC tRFC+ tRCD - - tCK ns ns as tXSRW tREF 32 3.9 32 3.9 tCK ms us at au H5GQ1H24AFR Table 44. AC Timings (@1.5V) 5.0Gbps PARAMETER a, b NOP/DESELECT commands required upon powerdown and self refresh entry Power down exit time 4.5Gbps UNIT NOTES MIN 3 11 SYMBOL MIN tCPDED tXPN 3 13 MAX - MAX tCK tCK Miscellaneous Timings MODE REGISTER SET command period PLL enabled to PLL lock delay PLL standby time DVS voltage stabilization time REFRESH to calibration update complete delay Active termination setup time Active termination hold time READ to data out delay in address training mode tMRD tLK tSTDBTY tVS tKO tATS tATH tADR 4 TBD 10 10 0.5*tCK+ 0 10 5000 TBD 40 0.5*tCK+ 10 0.5*tCK+ 10 11 11 4 TBD 10 10 0.5*tCK+ 0 10 5000 TBD 40 0.5*tCK+ 10 0.5*tCK+ 10 11 11 tCK tCK us us ns ns ns tCK q ax Address training exit to DQ in ODT state delay Vendor ID on Venodr ID off Temperature sensor enable delay tADZ tWRIDON tWRIDOFF tTSEN ns ns ns us Rev. 1.0 /Nov. 2009 140 H5GQ1H24AFR Table 44. AC Timings (@1.5V) 4.0Gbps PARAMETER a, b SYMBOL MIN CK and WCK Timings PLL on CK Clock cycle time PLL off CK Clock high-level width CK Clock low-level width Min CK Clock half period Max CK Clock frequency with bank groups disabled Max CK Clock frequency with bank groups enabled and tCCDL=3tCK Max CK Clock frequency with WCK2CK alignment at pins Max CK Clock frequency in RDQS Mode Max CK Clock frequency for device operation with VREFD2 Max CK Clock frequency for WCK-to-CK auto synchronization in WCK2CK training mode Max CK Clock frequency for device operation with Low Frequency Mode enabled PLL on WCK Clock cycle time PLL off WCK Clock high-level width WCK Clock low-level width Min WCK Clock half period tWCKH tWCKL tWCKHP tWCK 0.5 0.470 0.470 0.470 10 0.530 0.530 tWCK tWCK tWCK k,l k,l tCH tCL tHP fCKBG fCKBG4 tCK 1 0.470 0.470 0.470 20 0.530 0.530 1000 1000 tCK tCK tCK MHz MHz d d C C 1 2 ns UNIT NOTES MIN MAX MAX fCKPIN fCKRDQS fCKVREFD2 - 1000 TBD TBD MHz MHz MHz e f g fCKAUTOSYNC - 100 MHz h fCKLF 0.5 800 1 MHz i ns j Command and Address Input Timings Command input setup time Command input hold time Command input pulse width Address input setup time Address input hold time Address input pulse width tCMDS tCMDH tCMDPW tAS tAH tAPW 0.25 0.25 0.7 0.125 0.125 0.45 ns ns ns ns ns ns m,n m,n m,n,o m,n,p m,n,p m,n,o,p Rev. 1.0 /Nov. 2009 141 H5GQ1H24AFR Table 44. AC Timings (@1.5V) 4.0Gbps PARAMETER a, b SYMBOL MIN WCK2CK Timings WCK stop to MRS delay for entering WCK2CK training MRS to WCK restart delay after entering WCK2CK training WCK start to WCK phase movement delay WCK phase change to phase detector out delay WCK Clock high-level width during WCK2CK training WCK Clock low-level width during WCK2CK training PLL on;MR6A0=0 (at phase detector) WCK2CK offset when zero offset at phase detector or at pins PLL on;MR6A0=1 (at pins) tWCK2CKPIN PLL off;MR6A0=0 (at phase detector) PLL off;MR6A0=1 (at pins) MR6A0=0 (at phase detector) tWCK2CKSYNC MR6A0=1 (at pins) MR6A0=0 (at phase detector) WCK2CK phase offset MR6A0=1 (at pins) tWCK2CK -0.4 0.4 ns -0.25 0.25 ns -0.2 0.2 tWCK2MRS 3 ns UNIT NOTES MIN MAX MAX tMRSTWCK tWCK2TR tWCK2PH tWCKHTR 10 10 5 0.42 0.58 ns tCK ns tWCK q k,l,r tWCKLTR 0.42 0.58 tWCK k,l,r -0.2 0.2 -0.2 0.2 ns s -0.2 0.2 -0.25 0.25 tCK t WCK2CK phase offset upon WCK2CK training exit -0.4 0.4 tCK u PLL Input and Output Timings WCK to DQ/DBI# offset for input data WCK to DQ/DBI#/EDC/ offset for output data DQ/DBI# input pulse width PLL on tWCK2DQI PLL off PLL on tWCK2DQO PLL off tDIPW 1.1 0.225 2.2 ns y,z,aa 0.7 1.1 1.7 2.2 ns w,x 0.7 1.7 ns v Rev. 1.0 /Nov. 2009 142 H5GQ1H24AFR Table 44. AC Timings (@1.5V) 4.0Gbps PARAMETER a, b PLL on tDIVW PLL off tDQDQI tDQDQO 0.15 -0.1 -0.125 0.1 0.125 ns ns ac ad UNIT NOTES MIN MAX ns y,z,ab SYMBOL MIN MAX 0.15 DQ/DBI# data input valid window DQ/DBI# input skew within double byte DQ/DBI#/EDC output skew within double byte Row Access Timings Active to Active command period Active to PRECHARGE command period Active to READ command delay Active to WRITE command delay Active to RDTR command delay Active to WRTR command delay Active to LDFF command delay REFRESH to RDTR or WRTR command delay Active bank A to Active bank B command delay same bank group Active bank A to Active bank B command delay different bank groups Four bank activate window Thirty two bank activate window READ to PRECHARGE command delay same bank with bank groups enabled READ to PRECHARGE command delay same bank with bank groups disabled PRECHARGE to PRECHARGE command delay PRECHARGE command period WRITE recovery time Auto precharge write recovery + precharge time tRC tRAS tRCDRD tRCDWR tRCDRTR tRCDWTR tRCDLTR tREFTR tRRDL 40 28 12 10 10 10 10 10 5.5 9*tREFI ns ns ns ns ns ns ns ns ns af ae tRRDS tFAW t32AW tRTPL 5.5 23 184 2 - ns ns ns tCK ag ah ai aj tRTPS tPPD tRP tWR tDAL 2 1 12 12 24 - tCK ns ns ns tCK ak al Column Access Timings RD/WR bank A to RD/WR bank B command delay same bank group RD/WR bank A to RD/WR bank B command delay different bank groups Rev. 1.0 /Nov. 2009 tCCDL 3 tCK af,am tCCDS 2 - tCK ag,an 143 H5GQ1H24AFR Table 44. AC Timings (@1.5V) 4.0Gbps PARAMETER a, b LDFF to LDFF command cycle time LDFF(111) to LDFF command cycle time LDFF(111) to RDTR command cycle delay READ or RDTR to LDFF command delay WRITE to LDFF command delay WRTR to RDTR command delay UNIT NOTES MIN MAX tCK tCK tCK tCK tCK tCK ao SYMBOL MIN tLTLTR tLTL7TR tLTRTR tRDTLT tWRTLT tWTRTR 4 4 4 4 WL+5 WLtWLmin WL+tCR CWL+2 5 MAX - WRITE to WRTR command delay Internal WRITE to READ command delay same bank group Internal WRITE to READ command delay different bank groups READ or RDTR to WRITE or WRTR command delay Write Latency tWRWTR - tCK tWTRL - ns af tWTRS 5 [CLmrs+(BL /4)+2WLmrs]*tC K - ns ag tRTW - tCK ap tWL 3 7 tCK aq Power-Down and Refresh Timings CKE# min high and low pulse width Valid CK Clock required after self refresh entry Valid CK Clock required before self refresh exit READ to SELF REFRESH ENTRY or POWER DOWN ENTRY command delay WRITE to SELF REFRESH ENTRY or POWER DOWN ENTRY command delay REFRESH command period Exit self refresh to non-READ/WRITE command delay Exit self refresh to READ/WRITE command delay Refresh period Average periodic refresh interval Min Power down entry to exit time Rev. 1.0 /Nov. 2009 8k rows tREFI 16k rows tPD 10 1.9 tCK 144 tCKE tCKSRE tCKSRX tRDSRE 10 10 10 CL+2tCK tCK tCK tCK tCK ar tWRSRE tRFC tXSNRW TBD 65 tRFC tRFC+ tRCD - - tCK ns ns as tXSRW tREF 32 3.9 tCK ms us at au H5GQ1H24AFR Table 44. AC Timings (@1.5V) 4.0Gbps PARAMETER a, b NOP/DESELECT commands required upon powerdown and self refresh entry Power down exit time UNIT NOTES MIN MAX tCK tCK SYMBOL MIN tCPDED tXPN 2 10 MAX - Miscellaneous Timings MODE REGISTER SET command period PLL enabled to PLL lock delay PLL standby time DVS voltage stabilization time REFRESH to calibration update complete delay Active termination setup time Active termination hold time READ to data out delay in address training mode tMRD tLK tSTDBTY tVS tKO tATS tATH tADR 4 TBD 10 10 0.5*tCK+ 0 10 5000 TBD 40 0.5*tCK+ 10 0.5*tCK+ 10 11 11 tCK tCK us us ns ns ns tCK q ax Address training exit to DQ in ODT state delay Vendor ID on Venodr ID off Temperature sensor enable delay tADZ tWRIDON tWRIDOFF tTSEN ns ns ns us Rev. 1.0 /Nov. 2009 145 H5GQ1H24AFR Table 44. AC Timings (@1.35V) 3.2Gbps PARAMETER a, b SYMBOL MIN CK and WCK Timings PLL on CK Clock cycle time PLL off CK Clock high-level width CK Clock low-level width Min CK Clock half period Max CK Clock frequency with bank groups disabled Max CK Clock frequency with bank groups enabled and tCCDL=3tCK Max CK Clock frequency with WCK2CK alignment at pins Max CK Clock frequency in RDQS Mode Max CK Clock frequency for device operation with VREFD2 Max CK Clock frequency for WCK-to-CK auto synchronization in WCK2CK training mode Max CK Clock frequency for device operation with Low Frequency Mode enabled PLL on WCK Clock cycle time PLL off WCK Clock high-level width WCK Clock low-level width Min WCK Clock half period tWCKH tWCKL tWCKHP tWCK 0.625 0.470 0.470 0.470 10 0.530 0.530 tWCK tWCK tWCK k,l k,l tCH tCL tHP fCKBG fCKBG4 tCK 1.25 0.470 0.470 0.470 20 0.530 0.530 800 800 tCK tCK tCK MHz MHz d d C C 1.25 2 ns UNIT NOTES MIN MAX MAX fCKPIN fCKRDQS fCKVREFD2 - 800 TBD TBD MHz MHz MHz e f g fCKAUTOSYNC - 800 MHz h fCKLF 0.625 700 1 MHz i ns j Command and Address Input Timings Command input setup time Command input hold time Command input pulse width Address input setup time Address input hold time Address input pulse width tCMDS tCMDH tCMDPW tAS tAH tAPW 0.3 0.3 1.0 0.15 0.15 0.55 ns ns ns ns ns ns m,n m,n m,n,o m,n,p m,n,p m,n,o,p Rev. 1.0/Nov. 2009 146 H5GQ1H24AFR Table 44. AC Timings (@1.35V) 3.2Gbps PARAMETER a, b SYMBOL MIN WCK2CK Timings WCK stop to MRS delay for entering WCK2CK training MRS to WCK restart delay after entering WCK2CK training WCK start to WCK phase movement delay WCK phase change to phase detector out delay WCK Clock high-level width during WCK2CK training WCK Clock low-level width during WCK2CK training PLL on;MR6A0=0 (at phase detector) WCK2CK offset when zero offset at phase detector or at pins PLL on;MR6A0=1 (at pins) tWCK2CKPIN PLL off;MR6A0=0 (at phase detector) PLL off;MR6A0=1 (at pins) MR6A0=0 (at phase detector) tWCK2CKSYNC MR6A0=1 (at pins) MR6A0=0 (at phase detector) WCK2CK phase offset MR6A0=1 (at pins) tWCK2CK -0.4 0.4 ns -0.25 0.25 ns -0.2 0.2 tWCK2MRS 3 ns UNIT NOTES MIN MAX MAX tMRSTWCK tWCK2TR tWCK2PH tWCKHTR 10 10 5 0.42 0.58 ns tCK ns tWCK q k,l,r tWCKLTR 0.42 0.58 tWCK k,l,r -0.2 0.2 -0.2 0.2 ns s -0.2 0.2 -0.25 0.25 tCK t WCK2CK phase offset upon WCK2CK training exit -0.4 0.4 tCK u PLL Input and Output Timings WCK to DQ/DBI# offset for input data WCK to DQ/DBI#/EDC/ offset for output data DQ/DBI# input pulse width PLL on tWCK2DQI PLL off PLL on tWCK2DQO PLL off tDIPW 1.1 0.295 2.2 ns y,z,aa 0.7 1.1 1.7 2.2 ns w,x 0.7 1.7 ns v Rev. 1.0/Nov. 2009 147 H5GQ1H24AFR Table 44. AC Timings (@1.35V) 3.2Gbps PARAMETER a, b PLL on tDIVW PLL off tDQDQI tDQDQO 0.19 -0.1 -0.125 0.1 0.125 ns ns ac ad UNIT NOTES MIN MAX ns y,z,ab SYMBOL MIN MAX 0.19 DQ/DBI# data input valid window DQ/DBI# input skew within double byte DQ/DBI#/EDC output skew within double byte Row Access Timings Active to Active command period Active to PRECHARGE command period Active to READ command delay Active to WRITE command delay Active to RDTR command delay Active to WRTR command delay Active to LDFF command delay REFRESH to RDTR or WRTR command delay Active bank A to Active bank B command delay same bank group Active bank A to Active bank B command delay different bank groups Four bank activate window Thirty two bank activate window READ to PRECHARGE command delay same bank with bank groups enabled READ to PRECHARGE command delay same bank with bank groups disabled PRECHARGE to PRECHARGE command delay PRECHARGE command period WRITE recovery time Auto precharge write recovery + precharge time tRC tRAS tRCDRD tRCDWR tRCDRTR tRCDWTR tRCDLTR tREFTR tRRDL 48 32 16 14 16 14 14 14 12 9*tREFI ns ns ns ns ns ns ns ns ns af ae tRRDS tFAW t32AW tRTPL 7 30 245 2 - ns ns ns tCK ag ah ai aj tRTPS tPPD tRP tWR tDAL 2 1 16 16 32 - tCK ns ns ns tCK ak al Column Access Timings RD/WR bank A to RD/WR bank B command delay same bank group RD/WR bank A to RD/WR bank B command delay different bank groups Rev. 1.0/Nov. 2009 tCCDL 3 tCK af,am tCCDS 2 - tCK ag,an 148 H5GQ1H24AFR Table 44. AC Timings (@1.35V) 3.2Gbps PARAMETER a, b LDFF to LDFF command cycle time LDFF(111) to LDFF command cycle time LDFF(111) to RDTR command cycle delay READ or RDTR to LDFF command delay WRITE to LDFF command delay WRTR to RDTR command delay UNIT NOTES MIN MAX tCK tCK tCK tCK tCK tCK ao SYMBOL MIN tLTLTR tLTL7TR tLTRTR tRDTLT tWRTLT tWTRTR 4 4 4 4 WL+5 WLtWLmin WL+tCR CWL+2 5 MAX - WRITE to WRTR command delay Internal WRITE to READ command delay same bank group Internal WRITE to READ command delay different bank groups READ or RDTR to WRITE or WRTR command delay Write Latency tWRWTR - tCK tWTRL - ns af tWTRS 5 [CLmrs+(BL /4)+2WLmrs]*tC K - ns ag tRTW - tCK ap tWL 3 7 tCK aq Power-Down and Refresh Timings CKE# min high and low pulse width Valid CK Clock required after self refresh entry Valid CK Clock required before self refresh exit READ to SELF REFRESH ENTRY or POWER DOWN ENTRY command delay WRITE to SELF REFRESH ENTRY or POWER DOWN ENTRY command delay REFRESH command period Exit self refresh to non-READ/WRITE command delay Exit self refresh to READ/WRITE command delay Refresh period Average periodic refresh interval Min Power down entry to exit time Rev. 1.0/Nov. 2009 8k rows tREFI 16k rows tPD 11 1.9 tCK 149 tCKE tCKSRE tCKSRX tRDSRE 11 11 11 CL+2tCK tCK tCK tCK tCK ar tWRSRE tRFC tXSNRW TBD 120 tRFC tRFC+ tRCD - - tCK ns ns as tXSRW tREF 32 3.9 tCK ms us at au H5GQ1H24AFR Table 44. AC Timings (@1.35V) 3.2Gbps PARAMETER a, b NOP/DESELECT commands required upon powerdown and self refresh entry Power down exit time UNIT NOTES MIN MAX tCK tCK SYMBOL MIN tCPDED tXPN 2 10 MAX - Miscellaneous Timings MODE REGISTER SET command period PLL enabled to PLL lock delay PLL standby time DVS voltage stabilization time REFRESH to calibration update complete delay Active termination setup time Active termination hold time READ to data out delay in address training mode tMRD tLK tSTDBTY tVS tKO tATS tATH tADR 4 TBD 10 10 0.5*tCK+ 0 10 5000 TBD 40 0.5*tCK+ 10 0.5*tCK+ 10 11 11 tCK tCK us us ns ns ns tCK q ax Address training exit to DQ in ODT state delay Vendor ID on Venodr ID off Temperature sensor enable delay tADZ tWRIDON tWRIDOFF tTSEN ns ns ns us a. All parameters assume proper device initialization. b. Tests for AC timing may be considered at norminal supply voltage levels, but the related specification and device operation are guaranteed for the full voltage and temperature range specified. c. CK and CK# single-ended input slew rate must be greater than or equal to 3V/ns. The slew rate is measured between VREFC crossing and VIXCK(AC) d. Parameter fCKBG4 is required for those devices supporting both 3*tCK and 4*tCK setting for bank groups. Devices supporting only 3*tCK or 4*tCK need only to specify fCKBG. e. Parameter fCKPIN applies when the alignment point in MR6, bit A0 is set to "at pins", the phase difference between the WCK and CK clocks at the DRAM pins is within tWCK2CKSYNC or tWCK2CK for pin mode and no phase search in WCK2CK training is performed. f. Parameter fCKRDQS applies when RDQS mode is enabled in AR3, bit A5. g. Parameter fCKBREFD2 applies when the data input reference voltage in MR7, bit A7 (Half VREFD) is set to VREFD2. h. Parameter fCKAUTOSYNC applies when WCK2CK Auto Synchronization is enabled in MR7, bit A4. i. Parameter fCKLF applies when Low Frequency Mode is enabled in MR7, bit A3. j. By definition the norminal WCK clock cycle time always is 1/2 of the CK clock cycle time (not including jitter). k. WCK and WCK# single-ended input slew rate must be greater than or equal to 3V/ns. The slew rate is measured between VREFD crossing and VIXWCK(AC). Rev. 1.0/Nov. 2009 150 H5GQ1H24AFR l. The phase relationship between WCK/WCK# and CK/CK# clocks must meet the tWCK2CK specification. m. Command and address input timings are referenced to VREFC. n. Command and address input slew rate must be greater than or equal to 3V/ns. The slew rate is measured between VREFC crossing and VIHA(AC) or VILA(AC). o. Command and address input pulse widths are design targets. The value will be characterized but not tested on each device. p. Address input timings are only valid with ABI beging enabled and a maximum of 4 address input driven LOW. q. Parameter may be specified as a combination of tCK and ns. r. Parameters tWCKHTR and tWCKLTR specify the max. allowed WCK clock-to-clock phase shift during WCK2CK training. For READ and WRITE bursts use tWCKH and tWCKL. s. Parameter tWCK2CKPIN defines the WCK2CK phase offset range at the CK and WCK pins for ideal (phase=0 ) clock alignment at the GDDR5 SGRAM's phase detector (when the alignment point in MR6, bit A0 is set to "at phase detector"), or at the WCK and CK pins (when the alignment in MR6, bit A0 is set to "at pins"). The minimum and maximum values could be negative or positive numbers, depending on the selected WCK2CK alignment point, PLL-on or PLL-off mode and design implementation. t. Parameter tWCK2CKSYNC defines the max. phase offset from the ideal (phase = 0 ) clock alignment at the GDDR5 SGRAM's phase detector (when the alignment point in MR6, bit A0 is set to "at the phase detector"), or at the WCK and CK pins (when the alignment point in MR6, bit A0 is set to "at pins"), where the internal logic synchronizes the CK and WCK clocks; it is expected to be a fraction of tWCK2CK. u. Parameter tWCK2CK defines the max. phase offset from the ideal (phase = 0 ) clock alignment at the GDDR5 SGRAM's phase detector (when the alignment point in MR6, bit A0 is set to "at phase detector") or at the WCK and CK pins (when the alignment point in MR6, bit A0 is set to "at pins"), for stable device operation. v. Parameter tWCK2DQI defines the WCK to DQ/DBI# time delay range for WRITEs for PLL-on and PLL-off mode. The minimum and maximum values could be negative or positive numbers, depending on design implementation and PLL-on or PLL-off mode. They also vary across PVT. Data training is required to determine the actual tWCK2DQI value for reliable WRITE operation. w. Parameter tWCK2DQO defines the WCK to DQ/DBI# time delay range for READs for PLL-on and PLL-off mode. The minimum and maxium values could be negative or positive numbers, depending on design implementation and PLL-on or PLL-off mode. They also vary across PVT. Data training is required to determind the actual tWCK2DQO value for reliable READ operation. x. Outputs measured with equivalent load terminated with 60 Ohms to VDDQ y. DQ/DBI# input timings are valid only with DBI being enabled and a maximum of 4 data inputs per byte driven LOW. z. Data input slew rate must be greater than or equal to 3V/ns. The slew rate is measured between VREFD crossing and VIHD(AC) or VILD(AC). aa. The data input pulse width, tDIPW, defines the minimum positive or negative input pulse width for any worst-case channel required for proper propagation of an external signal to the receiver. tDIPW is measured at the pins. tDIPW is independent of the PLL mode. In general tDIPW is larger than tDIVW ab. The data input valid width, tDIVW, defines the time region where input data must be valid for reliable data capture at the receiver for any one worst case channel. It accounts for jitter between data and clock at the latching point introduced in the path between DARM pads and the latching point. Any additional jitter introduced into the source signals (e.g. within the system before the DRAM pad) must be accounted for in the final timing budget together with the chosen PLL mode and bandwidth. tDIVW is measured at the pins. tDIVW is defined for PLL off and on mode separately. In the case of PLL on, tDIVW must be specified for each supported bandwidth. In general, tDIVW is smaller than tDIPW. ac. tDQDQI defines the maximum skew among all DQ/DBI# inputs of a double byte (when configured to x 32 mode) or a single byte (when configured to x 16 mode) under worst case conditions. Parameter tWCK2DQI defines the mean value of the earliest and latest DQ/DBI# pin, tDQDQI(min) the negative offset to tWCK2DQI for the earliest DQ/DBI# pin and tDQDQI(max) the positive offset to tWCK2DQI for the latest DQ/DBI# pin. ad. tDQDQO defines the maximum skew among all DQ/DBI# outputs of a double byte (when configured to x 32mode) or a single byte (when configured to x 16 mode) under worst case conditions. Parameter tWCK2DQO defines the mean value of of the earliest and latest DQ/DBI# /EDC pin, tDQDQO(min) the negative offset to tWCK2DQO for earliest DQ/DBI#/EDC pin and tDQDQO(max) the positive offset to tWCK2DQO for the latest DQ/DBI#/EDC pin. ae. For READs and WRITEs with AUTO PRECHARGE enabled the device will hold off the internal PRECHARGE until tRAS(min) has been satisfied. af. Parameter applies when bank groups are enabled and consecutive commands access the same bank group. ag. Parameter applies when bank groups are disabled or consecutive commands access different bank group. ah. Not more than 4 ACTIVE commands are allowed within period. ai. Not more than 32 ACTIVE commands are allowed within t32AW period. The parameter need not to be specified in case t32AW(min) would not be greater than 8*tFAW(min). aj. Parameter applies when bank groups are enabled and READ and PRECHARGE commands access the same bank. ak. Parameter applies when bank groups are disabled or READ and PRECHARGE commands access the same bank. al. tDAL = (tWR/tCK) + ( tRP/tCK). For each of the terms, if not already an integer, round up to the next integer. am. tCCDL is either for gapless consecutive READ or gapless consecutive WRITE commands an. tCCDS is either for gapless consecutive READ or RDTR (any combination), gapless consecutive WRITE, or gapless consecutive WRTR commands. ao. The min. value does not exceed 8 tCK ap. tRTW is not a device limit but determined by the system bus turnaround time. The difference between tWCK2DQO and tWCK2DQI shall be considered in the calculation of the bus turnaround time. Rev. 1.0 /Nov. 2009 151 H5GQ1H24AFR aq. The WRITE latency WLmrs cna be set to 3 to 7 clocks. When the WRITE latency is set to small values (3 ~ 4 clocks), the input buffers are always on, reducing the latency but adding power. When the WRITE latency is set to larger values (5 ~ 7 clocks), the input buffers are turned on with the WRITE command, thus saving power. ar. Read data including CRC data must have been clocked out before entering self refresh or power down mode. as. Write data must have been written to the memory core and CRC data must have been clocked out before entering self refresh or power down mode. at. Time for WCK2CK training and data training not included. au. A maximum of 8 consecutive REFRESH commands can be posted to a GDDR5 SGRAM device, meaning that the maximum absolute interval between any REFRESH command and the next REFRESH command is 9*tREFI. av. Replaces parameter tLK when PLL Fast Lock has been neabled prior to the PLL enable or reset. aw. Replaces parameter tLK when PLL Standby has been enabed and the WCK clock frequency has not charged while in standby mode. ax. The PLL standby time tSTDBY ismeasured from self refresh entry until after self refresh exit a subsequent PLL reset is given (with PLL Standby enabled) Rev. 1.0 /Nov. 2009 152 H5GQ1H24AFR 6.3 CLOCK-TO-DATA TIMING SENSITIVITY Theavailabilityofclocktodata(WCK2DQ)timingsensitivityinformationprovidesthecontrollerthe opportunitytoanticipatetheimpacttotimingsfromvariationsinenvironmentalconditions(suchas changesinvoltageortemperature)allowingthecontrollertotakecorrectiveactionifnecessary(e.g. realigningWCKandDQ). VariationsinrelativetimingbetweenWCKanddataarereportedforREADandWRITEpaths.Thisspeci ficationcallsoutonezoneeachforVDDQ,VDD,andTcasetemperatureoveraspecifiedrange.Vendors maychoosetoprovideinformationforadditionalzonescovering,intotal,awiderrangeorafinergranu larityorboth. However,withinagivenzoneifanapproximatedvalue(i.e.thespecifiedslope)deviatesfromthecharac terizedslopetosuchadegreethattheapproximatedWCKtoDQtimedelaywouldbeinerrorbymore than5%ofoneUIrelativetothecharacterizeddelaythenthesplittingofthiszoneintomorethanonezone isrequired. Allzonesandtheirassociatedspecifiedslopesmustformacontinuouspiecewiselinearcurvesuchthat, aftercalibrationduringnormaloperation,traversingtheapproximatedcurve(i.e.thesetofspecified slopes)doesnotleadtotimedelayerrorsinexcessofthe5%ofoneUI. Tables45,46,and47belowdescribetheminimumsetofdefinedzones. Table 45. VDDQ Voltage Zone VDDQHigh Zone_VQ1 VDDQmax VDDQLow VDDQmin Notes a a.VDDQ(max)isthemaximumspecifiedoperatingvoltage.VDDQ(min)istheminimumspecifiedoperating voltage. Table 46. VDD Voltage Zone VDDHigh Zone_VD1 VDDmax VDDLow VDDmin Notes a a.VDD(max)isthemaximumspecifiedoperatingvoltage.VDD(min)istheminimumspecifiedoperating voltage. Table 47. Tcase Temperature Zone TcaseHigh Zone_T1 Tcasemax TcaseLow 10C Notes a a.Tcase(max)isthemaximumspecifiedoperatingtemperature. Asnoted,variationsinrelativetimingarereportedforREADandWRITEpaths.Tables48,49and50below provideinformationforREADtimingswhileTables51,52and53provideinformationforWRITEtimings Rev. 1.0 /Nov. 2009 153 H5GQ1H24AFR Table 48. WCK-to-Data READ Timing Sensitivity to VDDQ Parameter WCK2DQOSensitivitytovariationsinVDDQfor zone_VQ1 PLLon PLLoff Symbol Values TBD ps/V TBD Units Notes ab tO2VQSensZ1 , a.CalculationoftO2VQSensZ1isperformedasfollows: tO2VQSensZ1equalsthequantity(tWCK2DQO(Zone_VQ1(max))tWCK2DQO(Zone_VQ1(min))) dividedby(VDDQ(Zone_VQ1(max))VDDQ(Zone_VQ1(min))) =(tWCK2DQO(VDDQ(max))tWCK2DQO(VDDQ(min)))/(VDDQ(max)VDDQ(min)). b.VDD(typ),Tcase=85C,worstcaseprocesscorner. Table 49. WCK-to-Data READ Timing Sensitivity to VDD Parameter PLLon WCK2DQOSensitivitytovariationsinVDDforzone_VD1 PLLoff Symbol Values TBD ps/V TBD Units Notes a,b tO2VDSensZ1 a.CalculationoftO2VDSensZ1isperformedasfollows: tO2VDSensZ1equalsthequantity(tWCK2DQO(Zone_VD1(max))tWCK2DQO(Zone_VD1(min))) dividedby(VDD(Zone_VD1(max))VDD(Zone_VD1(min))) =(tWCK2DQO(VDD(max))tWCK2DQO(VDD(min)))/(VDD(max)VDD(min)). b.VDDQ(typ),Tcase=85C,worstcaseprocesscorner. Table 50. WCK-to-Data READ Timing Sensitivity to Tcase Parameter PLLon WCK2DQOSensitivitytovariationsinTcaseforzone_T1 PLLoff Symbol Values TBD ps/C TBD Units Notes ab tO2TSensZ1 , a.CalculationoftO2TSensZ1isperformedasfollows: tO2TSensZ1equalsthequantity(tWCK2DQO(Zone_T1(max))tWCK2DQO(Zone_T1(min))) dividedby(Tcase(Zone_T1(max))Tcase(Zone_T1(min))) =(tWCK2DQO(Tcase(max))tWCK2DQO(Tcase(min)))/(Tcase(max)Tcase(min)). b.VDDQ(typ),VDD(typ),worstcaseprocesscorner. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 154 H5GQ1H24AFR Tables51,52and53belowprovideinformationforWRITEtimings. . Table 51. WCK-to-Data WRITE Timing Sensitivity to VDDQ Parameter PLLon WCK2DQISensitivitytovariationsinVDDQforzone_VQ1 PLLoff Symbol Values TBD ps/V TBD Units Notes a,b tI2VQSensZ1 a.CalculationoftI2VQSensZ1isperformedasfollows: tI2VQSensZ1equalsthequantity(tWCK2DQI(Zone_VQ1(max))tWCK2DQI(Zone_VQ1(min))) dividedby(VDDQ(Zone_VQ1(max))VDDQ(Zone_VQ1(min))) =(tWCK2DQI(VDDQ(max))tWCK2DQI(VDDQ(min)))/(VDDQ(max)VDDQ(min)). b.VDD(typ),Tcase=85C,worstcaseprocesscorner. Table 52. WCK-to-Data WRITE Timing Sensitivity to VDD Parameter PLLon WCK2DQISensitivitytovariationsinVDDforzone_VD1 PLLoff Symbol Values TBD ps/V TBD Units Notes a,b tI2VDSensZ1 a.CalculationoftO2VDSensZ1isperformedasfollows: tI2VDSensZ1equalsthequantity(tWCK2DQI(Zone_VD1(max))tWCK2DQI(Zone_VD1(min))) dividedby(VDD(Zone_VD1(max))VDD(Zone_VD1(min))) =(tWCK2DQI(VDD(max))tWCK2DQI(VDD(min)))/(VDD(max)VDD(min)). b.VDDQ(typ),Tcase=85C,worstcaseprocesscorner. Table 53. WCK-to-Data WRITE Timing Sensitivity to Tcase Parameter PLLon WCK2DQISensitivitytovariationsinTcaseforzone_T1 PLLoff Symbol Values TBD ps/C TBD Units Notes a,b tI2TSensZ1 a.CalculationoftI2TSensZ1isperformedasfollows: tI2TSensZ1equalsthequantity(tWCK2DQI(Zone_T1(max))tWCK2DQI(Zone_T1(min))) dividedby(Tcase(Zone_T1(max))Tcase(Zone_T1(min))) =(tWCK2DQI(Tcase(max))tWCK2DQI(Tcase(min)))/(Tcase(max)Tcase(min)). b.VDDQ(typ),VDD(typ),worstcaseprocesscorner. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 155 H5GQ1H24AFR 7.PACKAGESPECIFICATION 1 VSSQ VDDQ VSSQ VDDQ VSSQ VDDQ VDD VSS MF 2 DQ1 DQ3 3 4 BYTE0 VSSQ VDDQ VSSQ DQ0 DQ2 5 VPP, NC 6 7 A B C D E F G H J K L M N P R T U 8 9 10 VREFD 11 DQ8 12 13 BYTE1 VSSQ VDDQ VSSQ VDDQ VSSQ VDDQ CS# DQ9 14 VSSQ VDDQ VSSQ VDDQ VSSQ VDDQ VDD VSS VREFC VSS VDD VSS VDD VSS VDDQ VSSQ VSS BA3 A3 SEN BA1 A5 DQ10 DQ11 EDC0 VSSQ VSSQ VDD DQ12 EDC1 DBI0# VDDQ WCK01 WCK01# VSSQ VDDQ RAS# DQ4 DBI1# DQ5 VDDQ VSSQ VSS A9 A1 A12 RFU, NC DQ13 DQ7 DQ6 DQ14 DQ15 VDDQ VSSQ VDD A10 A0 ABI# A8 A7 VDD BA0 A2 CK# BA2 A4 VDDQ VSSQ ZQ VDDQ VDDQ CK RESET# CKE# VSS VDD VDDQ VSSQ VDDQ VSSQ VDDQ VSSQ VSSQ VDDQ DQ31 VDDQ CAS# A11 A6 VDDQ WE# VSSQ VDDQ DQ23 VSS VDD VDDQ VSSQ VDDQ VSSQ VDDQ VSSQ VDD DQ30 DQ28 VSS VSSQ VDDQ VSS VSSQ VDDQ VSS VDD VSS VREFD VDD DQ22 VDDQ VSSQ VDDQ VSSQ VDDQ VSSQ VDDQ VSSQ DQ29 DBI3# DQ20 DQ21 DBI2# VDDQ WCK23 WCK23# VSSQ VDDQ VSSQ VSSQ DQ26 DQ24 VDD VSSQ DQ18 EDC3 DQ27 VDD VSS VPP, NC EDC2 DQ19 DQ25 DQ16 DQ17 BYTE3 x32mode:ON x16mode:ON x32mode:ON x16mode:OFF BYTE2 Note) Top View (as seen thru package), MF = LOW (MF = 0) Figure 81. GDDR5 SGRAM 170ball BGA Ball-out MF=0 This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 156 H5GQ1H24AFR 1 VSSQ VDDQ VSSQ VDDQ VSSQ VDDQ VDD VSS MF 2 DQ25 3 4 BYTE3 VSSQ VDDQ VSSQ DQ24 5 VPP, NC 6 7 A B C D E F G H J K L M N P R T U 8 9 10 VREFD 11 DQ16 12 13 BYTE2 VSSQ VDDQ VSSQ VDDQ VSSQ VDDQ WE# DQ17 14 VSSQ VDDQ VSSQ VDDQ VSSQ VDDQ VDD VSS VREFC DQ27 EDC3 DQ26 VSS VDD VSS VDD VSS VDDQ VSSQ VSS BA1 A5 SEN BA3 A3 DQ18 DQ19 VSSQ VSSQ VDD DQ20 EDC2 DBI3# VDDQ WCK23 WCK23# VSSQ VDDQ CAS# DQ28 DQ30 DBI2# DQ29 DQ31 VDDQ VSSQ VSS A11 A6 A12 RFU, NC DQ21 DQ22 DQ23 VDDQ VSSQ VDD A8 A7 ABI# A10 A0 VDD BA2 A4 CK# BA0 A2 VDDQ VSSQ ZQ VDDQ VDDQ CK RESET# CKE# VSS VDD VDDQ VSSQ VDDQ VSSQ VDDQ VSSQ VSSQ VDDQ DQ7 VDDQ RAS# A9 A1 VDDQ CS# VSSQ VDDQ DQ15 VSS VDD VDDQ VSSQ VDDQ VSSQ VDDQ VSSQ VDD DQ6 DQ4 VSS VSSQ VDDQ VSS VSSQ VDDQ VSS VDD VSS VREFD VDD DQ14 VDDQ VSSQ VDDQ VSSQ VDDQ VSSQ VDDQ VSSQ DQ5 DQ12 DQ13 DBI1# DBI0# VDDQ WCK01 WCK01# VSSQ VDDQ VSSQ VSSQ DQ2 DQ0 VDD VSSQ DQ10 EDC0 VDD VSS VPP, NC EDC1 DQ11 DQ3 DQ1 DQ8 DQ9 BYTE0 x32mode:ON x16mode:ON x32mode:ON x16mode:OFF BYTE1 Note)TopView(asseenthrupackage),MF=HIGH(MF=1) Figure 82. GDDR5 SGRAM 170ball BGA Ball-out MF=1 This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 157 H5GQ1H24AFR 7.1.SIGNALS Table 54. Ball-out Description SYMBOL CK,CK# TYPE Input DESCRIPTION Clock:CKandCK#aredifferentialclockinputs.Commandinputsarelatchedontherising edgeofCK.AddressinputsarelatchedontherisingedgeofCKandtherisingedgeofCK#. AlllatenciesarereferencedtoCK.CKandCK#areexternallyterminated. WriteClocks:WCKandWCK#aredifferentialclocksusedforWRITEdatacaptureandREAD dataoutput.WCK01/WCK01#isassociatedwithDQ0DQ15,DBI0#,DBI1#,EDC0andEDC1. WCK23/WCK23#isassociatedwithDQ16DQ31,DBI2#,DBI3#,EDC2andEDC3. ClockEnable:CKE#LOWactivatesandCKE#HIGHdeactivatestheinternalclock,device inputbuffers,andoutputdrivers.TakingCKE#HIGHprovidesPRECHARGEPOWER DOWNandSELFREFRESHoperations(allbanksidle),orACTIVEPOWERDOWN(row ACTIVEinanybank).CKE#mustbemaintainedLOWthroughoutreadandwriteaccesses. ThevalueofCKE#latchedatpowerupwithRESET#goingHighdeterminesthetermination valueoftheaddressandcommandinputs. ChipSelect:CS#LOWenablesandCS#HIGHdisablesthecommanddecoder.Allcommands aremaskedwhenCS#isregisteredHIGH.CS#providesforexternalrankselectiononsystems withmultipleranks.CS#isconsideredpartofthecommandcode. CommandInputs:RAS#,CAS#,andWE#(alongwithCS#)definethecommandbeing entered. BankAddressInputs:BA0BA3definetowhichbankanACTIVE,READ,WRITE,or PRECHARGEcommandisbeingapplied.BA0BA3alsodeterminewhichModeRegisteris accessedwithanMODEREGISTERSETcommand.BA0BA3aresampledwiththerising edgeofCK. AddressInputs:A0A11(A12)providetherowaddressforACTIVEcommands,A0A5(A6) providethecolumnaddressandA8definestheautoprechargefunctionforREAD/WRITE commands,toselectonelocationoutofthememoryarrayintherespectivebank.A8sampled duringaPRECHARGEcommanddetermineswhetherthePRECHARGEappliestoonebank (A8LOW,bankselectedbyBA0BA3)orallbanks(A8HIGH).Theaddressinputsalso providetheopcodeduringaMODEREGISTERSETcommandandthedatabitsduringa LDFFcommand.A8A11(A12)aresampledwiththerisingedgeofCKandA0A7are sampledwiththerisingedgeofCK#. DataInput/Output:32bitdatabus DataBusInversion.DBI#0isassociatedwithDQ0DQ7,DBI#1isassociatedwithDQ8DQ15, DBI#2isassociatedwithDQ16DQ23,DBI#3isassociatedwithDQ24DQ31. ErrorDetectionCode.ThecalculatedCRCdataistransmittedonthesepins.Inadditionthese pinsdrivea`hold'patternwhenidleandcanbeusedasanRDQSfunction.EDC0is associatedwithDQ0DQ7,EDC1isassociatedwithDQ8DQ15,EDC2isassociatedwith DQ16DQ23,EDC3isassociatedwithDQ24DQ31. AddressBusInversion I/OPowerSupply.Isolatedonthedieforimprovednoiseimmunity. I/OGround:Isolatedonthedieforimprovednoiseimmunity. PowerSupply Ground ReferenceVoltageforDQ,DBI#,andEDCpins. ReferenceVoltageforaddressandcommandpins. PumpVoltage MirrorFunction:VDDQCMOSinput.Mustbetiedtopowerorground. ExternalReferencePinforautocalibration WCK01, WCK01#, WCK23, WCK23# CKE# Input Input CS# Input RAS#, CAS#,WE# BA0-BA3 Input Input A0-A11 (A12) Input DQ0-31 DBI#03 EDC03 I/O I/O Output ABI# VddQ VssQ Vdd Vss Vrefd Vrefc Vpp MF ZQ Input Supply Supply Supply Supply Supply Supply Supply Reference Reference This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 158 H5GQ1H24AFR Table 54. Ball-out Description SYMBOL RFU NC SEN RESET# Input Input TYPE ReservedforFutureUse DESCRIPTION Notconnected Scanenable.VDDQCMOSinput.Mustbetiedtothegroundwhennotinuse. ResetPin.VDDQCMOSinput.RESET#Lowasynchronouslyinitiatesafullchipreset.With RESET#LowallODTsaredisabled. Figure clarifiestheuseoftheMF=0andMF=1balloutsinx16modeandwhythebytesarerenumberedto givethecontrollertheviewofthesamebytesthatacontrollerseeswithasinglex32device.Thisisimpor tantforAddressTraining,DMandEDCfunctionality.Formoredetailsseethex16enableandMFenable section. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 159 H5GQ1H24AFR 0 1 0 1 + 2 3 = 3 2 Topviewthrupackage (PCBbelow) TopviewthruPCB (PCBabove) Controllerview x16MF=0 x16MF=0 x16MF=1 Legend: DQ ADDRESS/COMMAND(exceptCS#) CS# x16MF=1 Figure 83. Byte Orientation in Clamshell Topology This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 160 H5GQ1H24AFR 7.2.ONDIETERMINATION(ODT) GDDR5SGRAMssupportmultipleterminationmodesforitshighspeedinputsignals.Whenthetermina tionisenabledforareceiver,animpedancedefinedforthatterminationmodeisappliedbetweenthat inputreceiverandtheVDDQsupplyrail.ThisiscommonlyreferredtoasVDDQtermination.Registers havebeendefinedtocontroltheterminationmodes.ADD/CMDTerminationiscontrolledusingMR1bits A4andA5.DataterminationiscontrolledusingMR1bitsA2andA3.WCKterminationiscontrolled usingMR3bitsA8andA9. Table55includesallthehighspeedGDDR5SGRAMsignalswhosereceiversincludeondieterminationto VDDQandwhethertheirterminationcanbedisabledbyADD/CMDTerm,DQTerm,orWCKTerm.A "Yes"indicateswhetherthemoderegisterfieldcontrolsterminationforthesignal. Table 55. Signals Affected by Termination Control Registers ADD/CMDTerm MR1(A4,A5) Signal RAS#,CAS#,WE,CS#,CKE# A10/A0,A9/A1,BA0/A2,BA3/A3, BA2/A4,BA1/A5,A11/A6,A8/A7, A12/RFU/(NC),ABI# DQ[7:0],DBI0# DQ[15:8],DBI1# DQ[23:16],DBI2# DQ[31:24],DBI3# WCK01,WCK01#,WCK23,WCK23# x32 Yes Yes No No No No No x16 Yes Yes No Disabled No Disabled No DQTerm MR1(A2,A3) x32 No No Yes Yes Yes Yes No x16 No No Yes Disabled Yes Disabled No WCKTerm MR3(A8,A9) x32 No No No No No No Yes x16 No No No Disabled No Disabled Yes This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 161 H5GQ1H24AFR 7.3.PACKAGEOUTLINE TOPVIEW SIDEVIEW pkgheight U T R p N M L K BOTTOMVIEW (170ball) H G F E D B A pkgstandoff 5x0.8=4.0 13x0.8=10.4 pkgx 12 0.8 Figure 84. Package Dimensions Table 56. Package Height Parameters Nominal pkgstandoff pkgheight 0.350 1.100 Variation +/0.050 +/0.100 Notes: 1)GDDR5packageheightspecificationiscomplianttoMO207RevL,variationDAAz This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 162 0.8 C 14 J 16x0.8=12.8 pkgY H5GQ1H24AFR 7.4.MIRRORFUNCTION(MF)ENABLEandx16MODEENABLE TheGDDR5SGRAMprovidesamirrorfunction(MF)pintochangethephysicallocationofthecommand, address,data,andWCKpinsassistinginroutingdevicesbacktoback.TheMFballshouldbetieddirectly toVSSQorVDDQdependingonthecontrollineorientationdesired. TheGDDR5SGRAMcanoperateinax32modeorax16modetoallowaclamshellconfigurationwitha pointtopointconnectiononthehighspeeddatasignal.Thedisabledpinsinx16modeshouldallbeina HiZstate,nonterminating. Thex16modeisdetectedatpoweruponthepinatlocationC13whichisEDC1whenconfiguredtoMF=0 andEDC2whenconfiguredtoMF=1.Forx16modethispinistiedtoVSSQ;thepinispartofthetwobytes thataredisabledinthismodeandthereforenotneededforEDCfunctionality.Forx32modethispinis activeandalwaysterminatedtoVDDQinthesystemorbythecontroller.Theconfigurationissetwith RESET#goingHigh.Oncetheconfigurationhasbeenset,itcannotbechangedduringnormaloperation. Usuallytheconfigurationisfixedinthesystem.Detailsofthex16modedetectionaredepictedinFigure . Acomparisonofx32modeandx16modesystemsisshowninFigure . This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 163 H5GQ1H24AFR VDDQ enable Termination EDCdatafrom otherDRAM GDDR5 inx16mode MF=0 EDC1 EDCData RX EDC1 EDC x16 TX EN Controller RESET# VSSQ RX D 0=x16 RESET# RESET# VDDQ enable Termination EDC2 EDC x16 TX EN EDCdatafrom otherDRAM GDDR5 inx16mode MF=1 EDCData RX EDC2 Controller RESET# RESET# VSSQ RX D 0=x16 RESET# VDDQ enable Termination GDDR5 inx32mode MF=0or1 EDC1 x32 1=x32 VSSQ RX D EDCData RX EDC1 EDC TX EN Controller RESET# RESET# RESET# Figure 85. Enabling x16 mode This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 164 H5GQ1H24AFR Table 57. x16 mode and MF MODE x16nonmirrored x32nonmirrored x16mirrored x32mirrored MF VSSQ VSSQ VDDQ VDDQ EDC1(MF=0)orEDC2(MF=1) VSSQ VDDQ(terminatedbythesystemorcontroller) VSSQ VDDQ(terminatedbythesystemorcontroller) GDDR5 x32 DQ0DQ7,DBI0# EDC0 WCK01,WCK01# DQ8DQ15,DBI1# EDC1 GDDR5 x16 DQ0DQ7,DBI0# EDC0 WCK01,WCK01# GDDR5 x16 Byte0 Byte0 EDC1 EDC2 Byte1 DQ8DQ15,DBI1# EDC1 Byte1 Controller Controller DQ16DQ23,DBI2# EDC2 WCK23,WCK23# DQ24DQ31,DBI3# EDC3 AddressBus CommandBus CK,CK# RESET# Byte2 DQ16DQ23,DBI2# EDC2 WCK23,WCK23# Byte2 Byte3 DQ24DQ31,DBI3# EDC3 AddressBus Byte3 ADD/ CMD CommandBus CK,CK# RESET ADD/ CMD MF VSSQ MF VSSQ MF VDDQ Figure 86. System view for x32 mode vs. x16 mode Figure86andFigure87showexamplesoftheboardchannelsandtopologiesthataresupportedin GDDR5inordertoillustratetheexpectedusageofx16modeandtheMFpin. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 165 H5GQ1H24AFR 32bitchannel 16DQ (P2P) 32DQ (P2P) ADD/CMD (P22P) 16DQ (P2P) ADD/CMD (P2P) 64bitchannel 32DQ (P2P) ADD/CMD (P22P) 32DQ (P2P) Figure 87. Example Channel Topologies ForflexibilityofPCBroutingGDDR5SGRAMdevices,theballoutincludesdefinitionofbothMF=0and MF=1.ThefollowingsimpleblockdiagramsinFigure88demonstratesomeoftheflexibilityofPCBrout ing. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 166 H5GQ1H24AFR Singlesideconfigurations x32MF=0 1 x32MF=0 x32MF=0 x32MF=0 x32MF=0 1 x32MF=1 x32MF=0 x32MF=1 x32MF=1 1 x32MF=1 x32MF=1 x32MF=1 x16MF=0 x16MF=1 Clamshellconfigurations x32MF=0 1 x16MF=0 x32MF=1 x32MF=1 1 x16MF=1 x16MF=1 x32MF=1 x32MF=0 1 x16MF=0 Legend: x32MF=0 Note1:32bitchannelisshownasanexample. Alsoapplieswithx16ona16bitchannel. DQ ADDRESS/COMMAND(exceptCS#) CS# Figure 88. Example GDDR5 PCB Layout Topologies This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 167 H5GQ1H24AFR BOUNDARY SCAN TheGDDR5SGRAMincorporatesamodifiedboundaryscantestmode.Thismodedoesnotoperatein accordancewithIEEEStandard1149.11990.TosavethecurrentGDDR5SGRAM'sballout,thismodewill scantheparalleldatainputandoutputthescanneddataonEDC0locatedatC2controlledbyanaddon pin,SENwhichislocatedatJ10ofthe170ballpackage. Scanmodeisentereddirectlyafterpowerupwhilethedeviceisinresetstate.Thisensuresthatno unwantedaccesscommandsarebeingexecutedpriortoscanmode. Boundaryscandoesnotdistinguishbetweenx16andx32modes,anddataiscapturedonallpins.Theuser hastomakesuretomaskthosebitsinthetestprogramwhicharenotwiredinthesystem. Fornormaldeviceoperation,i.e.afterscanmodeoperation,itisrequiredthatdevicereinitialization occursthroughdevicepowerdownandthenpowerup. ItispossibletooperatetheGDDR5SGRAMwithoutusingtheboundaryscanfeature.SENshouldbetied Lowtopreventthedevicefromenteringtheboundaryscanmode.Theotherpinswhichareusedforscan mode(RESET#,MF,EDC0andCS#)willbeoperatingasnormalwhenSENisdeasserted. Table 58. Boundary Scan Exit Order BIT# 1 2 3 4 5 6 7 8 9 10 11 12 BALL D5 D4 D2 E4 E2 F4 F2 G3 H5 H4 J5 J4 BIT# 13 14 15 16 17 18 19 20 21 22 23 24 BALL J3 K4 K5 L3 M2 M4 N2 N4 P2 P4 P5 R2 BIT# 25 26 27 28 29 30 31 32 33 34 35 36 BALL T2 T4 U2 U4 U11 U13 T11 T13 R13 P13 N11 N13 BIT# 37 38 39 40 41 42 43 44 45 46 47 48 BALL M11 M13 L12 K10 K11 J13 J12 J11 H11 H10 F13 F11 BIT# 49 50 51 52 53 54 55 56 57 58 59 60 BALL E13 E11 D13 C13 B13 B11 A13 A11 A4 A2 B4 B2 Note:Whenthedeviceisinscanmode,mirrorfunctionisdisabled(MF=0)andnoneofthepinsareremapped. This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 168 H5GQ1H24AFR Table 59. Scan Pin Description PACKAGE SYMBOL BALL J2 SSH NORMAL FUNCTION RESET# TYPE Input DESCRIPTION ScanShift:capturethedatainputfromthepadatlogicLOW andshiftthedataonthechainatlogicHIGH. ScanClock.Notatrueclock,couldbeasinglepulseorseriesof pulses.Allscaninputswillbereferencedtotherisingedgeof thescanclock. ScanOutput. ScanEnable:logicHIGHenablesscanmode.Scanmodeis disabledatlogicLOW.MustbetiedtoVSSQwhennotinuse. ScanOutputEnable:enables(registeredLOW)anddisables (registeredHIGH)SOUTdata.ThispinwillbetiedtoVDDQor GNDthrougharesistor(typically1KOhm)fornormal operation.Testerneedstooverdrivethispintoguaranteethe requiredinputlogiclevelinscanmode. G12 C2 J10 SCK SOUT SEN CS# EDC0 RFU Input Output Input J1 SOE# MF Input Notes: 1. WhenSENisasserted,nocommandsaretobeexecutedbytheGDDR5SGRAM.Thisappliestobothuser commandsandmanufacturingcommandswhichmayexistwhileRESET#isdeasserted. 2. Allscanfunctionalityisvalidonlyaftertheappropriatepowerup(Steps14ofinitializationsequence). 3. Inscanmode,allODTwillbedisabled. Table 60. Scan AC Electrical Characteristics PARAMETER/CONDITION SYMBOL MIN MAX UNIT S NOTES Clock Clockcycletime ScanCommandTime Scanenablesetuptime Scanenableholdtime ScancommandsetuptimeforSSH,SOE#andSOUT ScancommandholdtimeforSSH,SOE#andSOUT ScanCaptureTime Scancapturesetuptime Scancaptureholdtime tSDS tSDH 10 10 ns ns 1 1 tSES tSEH tSCS tSCH 20 20 14 14 ns ns ns ns 1 1 1 1 tSCK 40 ns 1 This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 169 H5GQ1H24AFR Table 60. Scan AC Electrical Characteristics PARAMETER/CONDITION SYMBOL MIN MAX UNIT S NOTES ScanShiftTime Scanclocktovalidscanoutput Scanclocktoscanoutputhold Notes: 1. TheparameterappliesonlywhenSENisasserted. tSAC tSOH 1.5 6 ns ns 1 1 SCK tSES SEN SSH Notatrueclock,butasinglepulse oraseriesofpulses (Low) tSCS SOE# tSDS Pins under Test tSDH VALID Figure. 89 Scan Capture Timing This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 170 H5GQ1H24AFR SCK tSES SEN SSH tSCS SOE# tSOH SOUT tSAC ScanOut bit1 tSCS ScanOut bit2 ScanOut bit3 ScanOut bit4 Figure. 90 Scan Shift Timing This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 171 H5GQ1H24AFR VDD VDDQ VREF RESET# (SSHin ScanMode) tSCS SEN tSES tSCK SCK tSCS SOE# tSCS ScanOut bit1 SOUT tSDS Pins under Test 200us Powerup RESETatpowerup VDDstable tSDH tSAC VALID BoundaryScanMode Don'tCare Figure 91. Scan Initialization Sequence This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 172 H5GQ1H24AFR DQ3 D SET Q DedicatedScanDFFpersignalundertest CLR Q DQ2 D SET Q CLR Q Signalsinscanchain: DQ[31:0],EDC[3:1],DBI#[3:0], WCK01,WCK01#,WCK23,WCK23#, RAS#,CAS#,WE#,CKE#,ABI#, A[7:0]***,CK,CK#,ZQ Note:A[7:0]***aremultiplexedpinsand representA[12:8]andBA[3:0] Signalsnotinthescanchain: VDDQ,VSSQ,VDD,VSS,VREFx Pinsundertest DQ1 D SET Q CLR Q WCK01# SSH,ScanShiftPinRESET# SCK,ScanClockPinCS# SEN,ScanEnablePinSEN SOE#,ScanOutputEnablePinMF D SET Q SOUT,ScanOutPinEDC0 CLR Q Figure. 92 Internal Block Diagram This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsability for use of circuits described. No patent licenses are implied. Rev. 1.0 /Nov. 2009 173 |
Price & Availability of H5GQ1H24AFR
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |