![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
STM32F103x6 STM32F103x8 STM32F103xB Performance line, ARM-based 32-bit MCU with Flash, USB, CAN, seven 16-bit timers, two ADCs and nine communication interfaces Features Core: ARM 32-bit CortexTM-M3 CPU - 72 MHz maximum frequency, 1.25 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state memory access - Single-cycle multiplication and hardware division Memories - 32 to 128 Kbytes of Flash memory - 6 to 20 Kbytes of SRAM Clock, reset and supply management - 2.0 to 3.6 V application supply and I/Os - POR, PDR, and programmable voltage detector (PVD) - 4-to-16 MHz crystal oscillator - Internal 8 MHz factory-trimmed RC - Internal 40 kHz RC - PLL for CPU clock - 32 kHz oscillator for RTC with calibration Low power - Sleep, Stop and Standby modes - VBAT supply for RTC and backup registers 2 x 12-bit, 1 s A/D converters (up to 16 channels) - Conversion range: 0 to 3.6 V - Dual-sample and hold capability - Temperature sensor DMA - 7-channel DMA controller - Peripherals supported: timers, ADC, SPIs, I2Cs and USARTs Up to 80 fast I/O ports - 26/37/51/80 I/Os, all mappable on 16 external interrupt vectors, all 5 V-tolerant except for analog inputs Debug mode LQFP48 7 x 7 mm LQFP100 14 x 14 mm LQFP64 10 x 10 mm VFQFPN36 6 x 6 mm BGA100 10 x 10 mm - Serial wire debug (SWD) & JTAG interfaces Up to 7 timers - Up to three 16-bit timers, each with up to 4 IC/OC/PWM or pulse counter - 16-bit, 6-channel advanced control timer: up to 6 channels for PWM output, deadtime generation and emergency stop - 2 watchdog timers (Independent and Window) - SysTick timer: a 24-bit downcounter Up to 9 communication interfaces - Up to 2 x I2C interfaces (SMBus/PMBus) - Up to 3 USARTs (ISO 7816 interface, LIN, IrDA capability, modem control) - Up to 2 SPIs (18 Mbit/s) - CAN interface (2.0B Active) - USB 2.0 full speed interface Packages are ECOPACK(R) (RoHS compliant) Device summary Root part number STM32F103C6, STM32F103R6, STM32F103T6 STM32F103C8, STM32F103R8 STM32F103V8, STM32F103T8 STM32F103RB STM32F103VB, STM32F103CB Table 1. Reference STM32F103x6 STM32F103x8 STM32F103xB March 2008 Rev 6 1/84 www.st.com 1 Contents STM32F103xx Contents 1 2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 2.2 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 4 5 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1 Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2 5.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.3.7 5.3.8 5.3.9 5.3.10 5.3.11 5.3.12 5.3.13 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 31 Embedded reset and power control block characteristics . . . . . . . . . . . 32 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 52 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2/84 STM32F103xx 5.3.14 5.3.15 5.3.16 5.3.17 5.3.18 Contents TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 CAN (controller area network) interface . . . . . . . . . . . . . . . . . . . . . . . . . 63 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.1 6.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.2.1 6.2.2 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . . 77 7 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.1 Future family enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3/84 List of tables STM32F103xx List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Device features and peripheral counts (STM32F103xx performance line). . . . . . . . . . . . . . 8 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 32 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Maximum current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Maximum current consumption in Run mode, code with data processing running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 36 Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 36 Typical current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Typical current consumption in Sleep mode, code with data processing code running from Flash or RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Typical current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 High-speed external (HSE) user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 SCL frequency (fPCLK1= 36 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 USB: Full speed electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4/84 STM32F103xx Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. List of tables RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . 70 LFBGA100 - low profile fine pitch ball grid array package mechanical data. . . . . . . . . . . . 71 LQPF100, 100-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . 73 LQFP64, 64-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . 74 LQFP48, 48-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . 75 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5/84 List of figures STM32F103xx List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. STM32F103xx performance line block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 STM32F103xx performance line BGA100 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 STM32F103xx performance line LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 STM32F103xx performance line LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 STM32F103xx performance line LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 STM32F103xx VFQFPN36 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals enabled. . . . . . . . . . . . . . . . . . 35 Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . . 35 Current consumption in Stop mode with regulator in Run mode versus temperature at VDD = 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Current consumption in Stop mode with regulator in Low-power mode versus temperature at VDD = 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Current consumption in Standby mode versus temperature at VDD = 3.3 V and 3.6 V . . . 38 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Typical application with a 8-MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . . 67 Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . . 68 VFQFPN36 6 x 6 mm, 0.5 mm pitch, package outline(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Recommended footprint (dimensions in mm)(1)(2)(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 LFBGA100 - low profile fine pitch ball grid array package outline . . . . . . . . . . . . . . . . . . . 71 Recommended PCB design rules (0.80/0.75 mm pitch BGA) . . . . . . . . . . . . . . . . . . . . . . 72 LQFP100, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 LQFP64, 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 LQFP48, 48-pin low-profile quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 LQFP100 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6/84 STM32F103xx Introduction 1 Introduction This datasheet provides the STM32F103xx performance line ordering information and mechanical device characteristics. For information on programming, erasing and protection of the internal Flash memory please refer to the STM32F10xxx Flash programming reference manual, PM0042, available from www.st.com. For information on the Cortex-M3 core please refer to the Cortex-M3 Technical Reference Manual. 2 Description The STM32F103xx performance line family incorporates the high-performance ARM Cortex-M3 32-bit RISC core operating at a 72 MHz frequency, high-speed embedded memories (Flash memory up to 128Kbytes and SRAM up to 20 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All devices offer two 12-bit ADCs, three general purpose 16-bit timers plus one PWM timer, as well as standard and advanced communication interfaces: up to two I2Cs and SPIs, three USARTs, an USB and a CAN. The STM32F103xx performance line family operates from a 2.0 to 3.6 V power supply. It is available in both the - to +85 C temperature range and the - to +105 C extended 40 40 temperature range. A comprehensive set of power-saving mode allows to design low-power applications. The complete STM32F103xx performance line family includes devices in 5 different package types: from 36 pins to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. These features make the STM32F103xx performance line microcontroller family suitable for a wide range of applications: Motor drive and application control Medical and handheld equipment PC peripherals gaming and GPS platforms Industrial applications: PLC, inverters, printers, and scanners Alarm systems, Video intercom, and HVAC Figure 1 shows the general block diagram of the device family. 7/84 Description STM32F103xx 2.1 Device overview Table 2. Device features and peripheral counts (STM32F103xx performance line) STM32F103Tx 32 10 2 1 1 1 2 1 1 26 2 10 channels 1 1 2 1 1 1 1 2 1 1 64 20 3 STM32F103Cx 32 10 2 64 20 3 1 2 2 3 1 1 37 2 10 channels 72 MHz 2.0 to 3.6 V Ambient temperatures: -40 to +85 C /-40 to +105 C (see Table 7) Junction temperature: -40 to + 125 C (see Table 7) VFQFPN36 LQFP48 LQFP64 LQFP100, BGA100 2 2 3 1 1 1 1 2 1 1 51 2 16 channels 128 20 3 STM32F103Rx 32 10 2 1 2 2 3 1 1 64 20 3 128 STM32F103Vx 64 20 3 1 2 2 3 1 1 80 128 Peripheral Flash - Kbytes SRAM - Kbytes Timers Communication 8/84 General purpose Advanced control SPI I2C USART USB CAN GPIOs 12-bit synchronized ADC Number of channels CPU frequency Operating voltage Operating temperatures Packages STM32F103xx Description 2.2 Overview ARM(R) CortexTM-M3 core with embedded Flash and SRAM The ARM Cortex-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The ARM Cortex-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The STM32F103xx performance line family having an embedded ARM core, is therefore compatible with all ARM tools and software. Figure 1 shows the general block diagram of the device family. Embedded Flash memory Up to 128 Kbytes of embedded Flash is available for storing programs and data. Embedded SRAM Up to 20 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. Nested vectored interrupt controller (NVIC) The STM32F103xx performance line embeds a Nested Vectored Interrupt Controller able to handle up to 43 maskable interrupt channels (not including the 16 interrupt lines of CortexM3) and 16 priority levels. Closely coupled NVIC gives low latency interrupt processing Interrupt entry vector table address passed directly to the core Closely coupled NVIC core interface Allows early processing of interrupts Processing of late arriving higher priority interrupts Support for tail-chaining Processor state automatically saved Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. External interrupt/event controller (EXTI) The external interrupt/event controller consists of 19 edge detectors lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect external line with pulse width lower than the Internal APB2 clock period. Up to 80 GPIOs are connected to the 16 external interrupt lines. 9/84 Description STM32F103xx Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected and is monitored for failure. During such a scenario, it is disabled and software interrupt management follows. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator). Several prescalers allow the configuration of the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the high-speed APB domains is 72 MHz. The maximum allowed frequency of the low-speed APB domain is 36 MHz. See Figure 2 for details on the clock tree. Boot modes At startup, boot pins are used to select one of three boot options: Boot from User Flash Boot from System Memory Boot from SRAM The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1. For further details please refer to AN2606. Power supply schemes VDD = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through VDD pins. VSSA, VDDA = 2.0 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs and PLL. In VDD range (ADC is limited at 2.4 V). VDDA and VSSA must be connected to VDD and VSS, respectively. VBAT = 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. For more details on how to connect power pins, refer to Figure 11: Power supply scheme. Power supply supervisor The device has an integrated Power On Reset (POR)/Power Down Reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR, without the need for an external reset circuit. The device features an embedded programmable voltage detector (PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD drops below the VPVD and/or when VDD is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to Table 9: Embedded reset and power control block characteristics for the values of VPOR/PDR and VPVD. 10/84 STM32F103xx Description Voltage regulator The regulator has three operation modes: main (MR), low power (LPR) and power down. MR is used in the nominal regulation mode (Run) LPR is used in the Stop mode Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered-down, inducing zero consumption (but the contents of the registers and SRAM are lost) This regulator is always enabled after reset. It is disabled in Standby Mode, providing high impedance output. Low-power modes The STM32F103xx performance line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Stop mode Stop mode allows to achieve the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI and the HSE RC oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB wakeup. Standby mode The Standby mode allows to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI and the HSE RC oscillators are also switched off. After entering Standby mode, SRAM and registers content are lost except for registers in the Backup domain and Standby circuitry. The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode. DMA The flexible 7-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: SPI, I2C, USART, general purpose and advanced control timers TIMx and ADC. 11/84 Description STM32F103xx RTC (real-time clock) and backup registers The RTC and the backup registers are supplied through a switch that takes power either on VDD supply when present or through the VBAT pin. The backup registers (ten 16-bit registers) can be used to store data when VDD power is not present. The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low power RC oscillator or the high speed external clock divided by 128. The internal low-power RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural crystal deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz. Independent watchdog The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application time out management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. Window watchdog The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. SysTick timer This timer is dedicated for OS, but could also be used as a standard down counter. It features: A 24-bit down counter Autoreload capability Maskable system interrupt generation when the counter reaches 0. Programmable clock source General purpose timers (TIMx) There are up to 3 synchronizable standard timers embedded in the STM32F103xx performance line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or one pulse mode output. This gives up to 12 input captures / output compares / PWMs on the largest packages. They can work together with the Advanced Control Timer via the Timer Link feature for synchronization or event chaining. The counter can be frozen in debug mode. Any of the standard timers can be used to generate PWM outputs. Each of the timers has independent DMA request generations. 12/84 STM32F103xx Description Advanced control timer (TIM1) The advanced control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6 channels. It can also be seen as a complete general-purpose timer. The 4 independent channels can be used for Input Capture Output Compare PWM generation (edge or center-aligned modes) One Pulse Mode output Complementary PWM outputs with programmable inserted dead-times. If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%). The counter can be frozen in debug mode. Many features are shared with those of the standard TIM timers which have the same architecture. The advanced control timer can therefore work together with the TIM timers via the Timer Link feature for synchronization or event chaining. IC bus Up to two IC bus interfaces can operate in multi-master and slave modes. They can support standard and fast modes. They support dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode. A hardware CRC generation/verification is embedded. They can be served by DMA and they support SM Bus 2.0/PM Bus. Universal synchronous/asynchronous receiver transmitter (USART) One of the USART interfaces is able to communicate at speeds of up to 4.5 Mbit/s. The other available interfaces communicate at up to 2.25 Mbit/s. They provide hardware management of the CTS and RTS signals, IrDA SIR ENDEC support, are ISO 7816 compliant and have LIN Master/Slave capability. All USART interfaces can be served by the DMA controller. Serial peripheral interface (SPI) Up to two SPIs are able to communicate up to 18 Mbits/s in slave and master modes in fullduplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable from 8-bit to 16-bit. The hardware CRC generation/verification supports basic SD Card/MMC modes. Both SPIs can be served by the DMA controller. Controller area network (CAN) The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks. 13/84 Description STM32F103xx Universal serial bus (USB) The STM32F103xx performance line embeds a USB device peripheral compatible with the USB Full-speed 12 Mbs. The USB interface implements a full speed (12 Mbit/s) function interface. It has software configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock source is generated from the internal main PLL. GPIOs (general-purpose inputs/outputs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high currentcapable. The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. I/Os on APB2 with up to 18 MHz toggling speed ADC (analog to digital converter) Two 12-bit Analog to Digital Converters are embedded into STM32F103xx performance line devices and each ADC shares up to 16 external channels, performing conversions in singleshot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. Additional logic functions embedded in the ADC interface allow: Simultaneous sample and hold Interleaved sample and hold Single shunt The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. The events generated by the standard timers (TIMx) and the Advanced Control timer (TIM1) can be internally connected to the ADC start trigger, injection trigger, and DMA trigger respectively, to allow the application to synchronize A/D conversion and timers. Temperature sensor The temperature sensor has to generate a linear voltage with any variation in temperature. The conversion range is between 2 V < VDDA < 3.6 V. The temperature sensor is internally connected to the ADC12_IN16 input channel which is used to convert the sensor output voltage into a digital value. Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP Interface is embedded. and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 14/84 STM32F103xx Figure 1. TRACECLK TRACED[0:3] as AS Description STM32F103xx performance line block diagram TPIU SW/JTAG Trace/trig pbu s Ibus Trace Controlle r flash obl Inte rfac e POWER VOLT. REG. 3.3V TO 1.8V @VDD JNTRST JTDI JTCK/SWCLK JTMS/SWDIO JTDO as AF VDD = 2 to 3.6V VSS Cortex-M3 CPU Fmax : 72 MHz Dbus Flash 128 KB 64 bit BusM atrix NVIC Syst em SRAM 20 KB PCLK1 PCLK2 HCLK FCLK RC 8 MHz RC 40 kHz @VDDA @VBAT PLL & CLOCK MANAGT @VDD XTAL OSC 4-16 MHz OSC_IN OSC_OUT GP DMA AHB:F max =48/72 MHz 7 ch annels IWDG Stand by in terface @VDDA SUPPLY SUPERVISION POR / PDR PVD 80AF PA[ 15:0] PB[ 15:0] PC[15:0] PD[15:0] PE[15:0] EXTI WAKEUP GPIOA GPIOB GPIOC GPIOD GPIOE APB2 : F max =48 / 72 MHz Rst Int VBAT OSC32_IN OSC32_OUT TAMPER-RTC NRST VDDA VSSA XTAL 32 kHz AHB2 APB2 AHB2 APB 1 RTC AWU Back up reg Backu p i nterf ace TIM2 TIM3 APB1 : Fmax =24 / 36 MHz TIM 4 USART2 USART3 SPI2 2x(8x16bit) I2C1 I2C2 bx CAN USB 2.0 FS 4 Chann els 4 Chann els 4 Chann els RX,TX, CTS, RTS, CK, SmartCard as AF RX,TX, CTS, RTS, CK, SmartCard as AF MOSI,MISO,SCK,NSS as AF SCL,SDA,SMBA L as AF SCL,SDA as AF USBDP/CANTX USBDM/CANRX 4 Chann els 3 co mpl. Chann els Brk i npu t MOSI,MISO, SCK,NSS as AF RX,TX, CTS, RTS, Smart Card as AF TIM1 SPI1 USART1 @VDDA 16AF VREF+ VREF- 12bit ADC1 IF SRAM 512B 12bi t ADC2 IF WWDG Temp sensor ai14390b 1. TA = -40 C to +105 C (junction temperature up to 125 C). 2. AF = alternate function on I/O port pin. 15/84 Description Figure 2. Clock tree 8 MHz HSI RC STM32F103xx HSI /2 USB Prescaler /1, 1.5 48 MHz USBCLK to USB interface HCLK to AHB bus, core, memory and DMA to Cortex System timer FCLK Cortex free running clock PCLK1 to APB1 peripherals Peripheral Clock Enable (13 bits) 72 MHz max Clock Enable (3 bits) PLLSRC PLLMUL ..., x16 x2, x3, x4 PLL HSI PLLCLK HSE SW SYSCLK /8 72 MHz /1, 2..512 max AHB Prescaler APB1 Prescaler /1, 2, 4, 8, 16 36 MHz max CSS to TIM2, 3 TIM2,3, 4 and 4 If (APB1 prescaler =1) x1 TIMXCLK else x2 Peripheral Clock Enable (3 bits) PLLXTPRE OSC_OUT OSC_IN 4-16 MHz HSE OSC /2 APB2 Prescaler /1, 2, 4, 8, 16 72 MHz max Peripheral Clock Enable (11 bits) PCLK2 to APB2 peripherals TIM1 timer to TIM1 If (APB2 prescaler =1) x1 TIM1CLK else x2 Peripheral Clock LSE to RTC /128 OSC32_IN OSC32_OUT LSE OSC 32.768 kHz ADC Prescaler /2, 4, 6, 8 Enable (1 bit) to ADC RTCCLK RTCSEL[1:0] ADCCLK LSI RC 40 kHz LSI to Independent Watchdog (IWDG) IWDGCLK Legend: Main Clock Output /2 PLLCLK HSI HSE SYSCLK MCO HSE = high-speed external clock signal HSI = high-speed internal clock signal LSI = low-speed internal clock signal LSE = low-speed external clock signal MCO ai14903 1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 64 MHz. 2. For the USB function to be available, both HSE and PLL must be enabled, with the CPU running at either 48 MHz or 72 MHz. 3. To have an ADC conversion time of 1 s, APB2 must be at 14 MHz, 28 MHz or 56 MHz. 16/84 STM32F103xx Pin descriptions 3 Figure 3. 1 Pin descriptions STM32F103xx performance line BGA100 ballout 2 3 4 5 6 7 8 9 10 A PC14PC13OSC32_IN TAMPER-RTC PE2 PB9 PB7 PB4 PB3 PA15 PA14 PA13 B PC15OSC32_OUT VBAT PE3 PB8 PB6 PD5 PD2 PC11 PC10 PA12 C OSC_IN VSS_5 PE4 PE1 PB5 PD6 PD3 PC12 PA9 PA11 D OSC_OUT VDD_5 PE5 PE0 BOOT0 PD7 PD4 PD0 PA8 PA10 E NRST PCD PE6 VSS_4 VSS_3 VSS_2 VSS_1 PD1 PC9 PC7 F PC0 PC1 PC3 VDD_4 VDD_3 VDD_2 VDD_1 NC PC8 PC6 G VSSA PA0-WKUP PA4 PC4 PB2 PE10 PE14 PB15 PD11 PD15 H VREF- PA1 PA5 PC5 PE7 PE11 PE15 PB14 PD10 PD14 J VREF+ PA2 PA6 PB0 PE8 PE12 PB10 PB13 PD9 PD13 K VDDA PA3 PA7 PB1 PE9 PE13 PB11 PB12 PD8 PD12 AI16001b 17/84 Pin descriptions Figure 4. STM32F103xx performance line LQFP100 pinout VDD_3 VSS_3 PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 PE2 PE3 PE4 PE5 PE6 VBAT PC13-TAMPER-RTC PC14-OSC32_IN PC15-OSC32_OUT VSS_5 VDD_5 OSC_IN OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VREFVREF+ VDDA PA0-WKUP PA1 PA2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 STM32F103xx LQFP100 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 VDD_2 VSS_2 NC PA 13 PA 12 PA 11 PA 10 PA 9 PA 8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12 PA3 VSS_4 VDD_4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS_1 VDD_1 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 ai14391 18/84 STM32F103xx Figure 5. STM32F103xx performance line LQFP64 pinout VDD_3 VSS_3 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 Pin descriptions VBAT PC13-TAMPER-RTC PC14-OSC32_IN PC15-OSC32_OUT PD0 OSC_IN PD1 OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VDDA PA0-WKUP PA1 PA2 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 1 47 2 46 3 45 4 44 5 43 6 42 7 41 8 LQFP64 40 9 39 10 38 11 37 12 36 13 35 14 34 15 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VDD_2 VSS_2 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12 PA3 VSS_4 VDD_4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PB10 PB11 VSS_1 VDD_1 ai14392 Figure 6. STM32F103xx performance line LQFP48 pinout VDD_3 VSS_3 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 VBAT PC13-TAMPER-RTC PC14-OSC32_IN PC15-OSC32_OUT PD0-OSC_IN PD1-OSC_OUT NRST VSSA VDDA PA0-WKUP PA1 PA2 48 47 46 45 44 43 42 41 40 39 38 37 36 1 2 35 34 3 33 4 32 5 31 6 LQFP48 30 7 29 8 28 9 27 10 26 11 25 12 13 14 15 16 17 18 19 20 21 22 23 24 VDD_2 VSS_2 PA13 PA12 PA11 PA10 PA9 PA8 PB15 PB14 PB13 PB12 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 PB11 VSS_1 VDD_1 ai14393b 19/84 Pin descriptions Figure 7. STM32F103xx VFQFPN36 pinout BOOT0 VSS_3 PA15 PA14 PB7 PB6 PB5 PB4 PB3 STM32F103xx 36 VDD_3 OSC_IN/PD0 OSC_OUT/PD1 NRST VSSA VDDA PA0-WKUP PA1 PA2 1 2 3 4 5 6 7 8 9 10 35 34 33 32 31 30 29 28 27 26 25 24 VDD_2 VSS_2 PA13 PA12 PA11 PA10 PA9 PA8 VDD_1 QFN36 23 22 21 20 19 18 11 12 13 14 15 16 17 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 VSS_1 ai14654 20/84 STM32F103xx Table 3. Pin definitions I / O Level(2) Pins VFQFPN36 LQFP100 BGA100 LQFP48 LQFP64 Pin name Type(1) Pin descriptions Alternate functions Main function(3) (after reset) Default Remap A3 B3 C3 D3 E3 B2 A2 A1 B1 C2 D2 C1 D1 E1 F1 F2 E2 F3 G1 H1 J1 K1 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2 3 4 5 6 PE2 PE3 PE4 PE5 PE6 VBAT PC13-TAMPERRTC(4) PC14-OSC32_IN(4) PC15OSC32_OUT(4) VSS_5 VDD_5 OSC_IN OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VREFVREF+ VDDA I/O FT I/O FT I/O FT I/O FT I/O FT S I/O I/O I/O S S I O I/O I/O I/O I/O I/O S S S S PE2 PE3 PE4 PE5 PE6 VBAT PC13(5) PC14(5) PC15(5) VSS_5 VDD_5 OSC_IN OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VREFVREF+ VDDA TRACECK TRACED0 TRACED1 TRACED2 TRACED3 TAMPER-RTC OSC32_IN OSC32_OUT ADC12_IN10 ADC12_IN11 ADC12_IN12 ADC12_IN13 G2 10 14 23 7 PA0-WKUP I/O PA0 WKUP/USART2_ CTS(7)/ ADC12_IN0/ TIM2_CH1_ETR(7) USART2_RTS(7)/ ADC12_IN1/ TIM2_CH2(7) USART2_TX(7)/ ADC12_IN2/ TIM2_CH3(7) H2 11 15 24 8 PA1 I/O PA1 J2 12 16 25 9 PA2 I/O PA2 21/84 Pin descriptions Table 3. Pin definitions (continued) I / O Level(2) Pins VFQFPN36 LQFP100 BGA100 LQFP48 LQFP64 Pin name Type(1) STM32F103xx Alternate functions Main function(3) (after reset) Default USART2_RX(7)/ ADC12_IN3/ TIM2_CH4(7) Remap K2 E4 F4 G3 13 14 17 18 19 20 26 27 28 29 10 11 PA3 VSS_4 VDD_4 PA4 I/O S S I/O PA3 VSS_4 VDD_4 PA4 SPI1_NSS(7)/ USART2_CK(7)/ ADC12_IN4 SPI1_SCK(7)/ ADC12_IN5 SPI1_MISO(7)/ ADC12_IN6/ TIM3_CH1(7) SPI1_MOSI(7)/ ADC12_IN7/ TIM3_CH2(7) ADC12_IN14 ADC12_IN15 ADC12_IN8/ TIM3_CH3(7) ADC12_IN9/ TIM3_CH4(7) TIM1_CH2N TIM1_CH3N TIM1_BKIN H3 15 21 30 12 PA5 I/O PA5 J3 16 22 31 13 PA6 I/O PA6 K3 G4 H4 J4 K4 G5 H5 J5 K5 G6 H6 J6 K6 G7 H7 J7 K7 E7 17 18 19 20 21 22 23 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 14 PA7 PC4 PC5 I/O I/O I/O I/O I/O I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT S PA7 PC4 PC5 PB0 PB1 PB2/BOOT1 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS_1 TIM1_CH1N 15 16 17 18 PB0 PB1 PB2 / BOOT1 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS_1 TIM1_ETR TIM1_CH1N TIM1_CH1 TIM1_CH2N TIM1_CH2 TIM1_CH3N TIM1_CH3 TIM1_CH4 TIM1_BKIN I2C2_SCL/ USART3_TX(6)(7) I2C2_SDA/ USART3_RX(6)(7) TIM2_CH3 TIM2_CH4 22/84 STM32F103xx Table 3. Pin definitions (continued) I / O Level(2) Pins VFQFPN36 LQFP100 BGA100 LQFP48 LQFP64 Pin name Type(1) Pin descriptions Alternate functions Main function(3) (after reset) Default Remap F7 24 32 50 19 VDD_1 S VDD_1 SPI2_NSS(6)/ I2C2_SMBAl(6)/ USART3_CK(6)(7)/ TIM1_BKIN(7) SPI2_SCK(6)/ USART3_CTS(6)(7) TIM1_CH1N (7) SPI2_MISO(6)/ USART3_RTS(6)(7) TIM1_CH2N (7) SPI2_MOSI(6)/ TIM1_CH3N(7) USART3_TX USART3_RX USART3_CK USART3_CTS TIM4_CH1 / USART3_RTS TIM4_CH2 TIM4_CH3 TIM4_CH4 TIM3_CH1 TIM3_CH2 TIM3_CH3 TIM3_CH4 USART1_CK/ TIM1_CH1(7)/MCO USART1_TX(7)/ TIM1_CH2(7) USART1_RX(7)/ TIM1_CH3(7) USART1_CTS/ CANRX(7)/ TIM1_CH4(7) / USBDM K8 25 33 51 - PB12 I/O FT PB12 J8 26 34 52 - PB13 I/O FT PB13 H8 27 35 53 - PB14 I/O FT PB14 G8 K9 J9 H9 G9 K10 J10 H10 G10 F10 E10 F9 E9 D9 C9 28 - 36 37 38 39 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 20 21 22 PB15 PD8 PD9 PD10 PD11 PD12 PD13 PD14 PD15 PC6 PC7 PC8 PC9 PA8 PA9 PA10 I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT PB15 PD8 PD9 PD10 PD11 PD12 PD13 PD14 PD15 PC6 PC7 PC8 PC9 PA8 PA9 PA10 29 30 40 41 42 43 D10 31 C10 32 44 70 23 PA11 I/O FT PA11 23/84 Pin descriptions Table 3. Pin definitions (continued) I / O Level(2) Pins VFQFPN36 LQFP100 BGA100 LQFP48 LQFP64 Pin name Type(1) STM32F103xx Alternate functions Main function(3) (after reset) Default Remap B10 33 45 71 24 PA12 I/O FT PA12 USART1_RTS/ CANTX(7) / TIM1_ETR(7) / USBDP PA13 A10 34 F8 E6 F6 A9 A8 B9 B8 C8 D8 E8 B7 C7 D7 B6 C6 D6 A7 A6 C5 B5 A5 D5 B4 39 40 41 42 43 44 45 35 36 37 38 5 6 46 47 48 49 50 51 52 53 5 6 54 55 56 57 58 59 60 61 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 25 26 27 28 29 PA13/JTMS/SWDIO I/O FT JTMS/SWDIO Not connected VSS_2 VDD_2 S S VSS_2 VDD_2 JTCK/SWCLK JTDI PC10 PC11 PC12 OSC_IN(8) OSC_OUT(8) PD2 PD3 PD4 PD5 PD6 PD7 JTDO JNTRST PB5 PB6 PB7 BOOT0 PB8 TIM4_CH3(6) (7) I2C1_SCL / CANRX PB3/TRACESWO PB4 I2C1_SMBAl I2C1_SCL(7)/ TIM4_CH1(6)(7) I2C1_SDA(7)/ TIM4_CH2(6) (7) TIM3_ETR USART2_CTS USART2_RTS USART2_TX USART2_RX USART2_CK TIM2_CH2 / SPI1_SCK TIM3_CH1 / SPI1_MISO TIM3_CH2 / SPI1_MOSI USART1_TX USART1_RX PA14 PA15 TIM2_CH1_ETR/ SPI1_NSS USART3_TX USART3_RX USART3_CK CANRX CANTX PA14/JTCK/SWCLK I/O FT PA15/JTDI PC10 PC11 PC12 I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O FT I/O I/O FT I/O FT I I/O FT 2 3 30 31 32 33 34 35 - PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PB3/JTDO PB4/JNTRST PB5 PB6 PB7 BOOT0 PB8 24/84 STM32F103xx Table 3. Pin definitions (continued) I / O Level(2) Pins VFQFPN36 LQFP100 BGA100 LQFP48 LQFP64 Pin name Type(1) Pin descriptions Alternate functions Main function(3) (after reset) Default Remap A4 D4 C4 E5 F5 46 47 48 62 63 64 96 97 98 99 100 36 1 PB9 PE0 PE1 VSS_3 VDD_3 I/O FT I/O FT I/O FT S S PB9 PE0 PE1 VSS_3 VDD_3 TIM4_CH4(6) (7) TIM4_ETR(6) I2C1_SDA / CANTX 1. I = input, O = output, S = supply, HiZ = high impedance. 2. FT = 5 V tolerant. 3. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1 and USART1 & USART2, respectively. Refer to Table 2 on page 8. 4. PC13, PC14 and PC15 are supplied through the power switch, and so their use in output mode is limited: they can be used only in output 2 MHz mode with a maximum load of 30 pF and only one pin can be put in output mode at a time. 5. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com. 6. Available only on devices with a Flash memory density equal or higher than 64 Kbytes. 7. This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com. 8. The pins number 2 and 3 in the VFQFPN36 package, and 5 and 6 in the LQFP48 and LQFP64 packages are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 package, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual. The use of PD0 and PD1 in output mode is limited as they can only be used at 50 MHz in output mode. 25/84 Memory mapping STM32F103xx 4 Memory mapping The memory map is shown in Figure 8. Figure 8. Memory map APB memory space 0xFFFF FFFF reserved 0xE010 0000 reserved 0x6000 0000 reserved 0x4002 3400 4 Kbits 1 Kbit 3 Kbits 1 Kbit 3 Kbits 1 Kbit 3 Kbits 1 Kbit 1 Kbit 1 Kbit 1 Kbit 1 Kbit 1 Kbit 1 Kbit 1 Kbit 2 Kbits 1 Kbit 1 Kbit 1 Kbit 1 Kbit 1 Kbit 1 Kbit 1 Kbit 35 Kbits 1 Kbit 1 Kbit 1 Kbit 1 Kbit 1 Kbit 1 Kbit 1 Kbit 1 Kbit 2 Kbits 1 Kbit 1 Kbit 2 Kbits 1 Kbit 1 Kbit 1 Kbit 1 Kbit 1 Kbit 7 Kbits 1 Kbit 1 Kbit 1 Kbit CRC 0x4002 3000 0xFFFF FFFF reserved 0x4002 2400 Flash Interface 0x4002 2000 7 0xE010 0000 0xE000 0000 Cortex-M3 Internal Peripherals reserved 0x4002 1400 0x4002 1000 0x4002 0400 RCC reserved DMA 0x4002 0000 6 0xC000 0000 reserved 0x4001 3C00 0x4001 3800 0x4001 3400 0x4001 3000 USART1 reserved SPI1 TIM1 5 0xA000 0000 0x4001 2C00 ADC2 0x4001 2800 ADC1 0x4001 2400 reserved 0x4001 1C00 4 0x8000 0000 Port E 0x1FFF FFFF 0x4001 1800 reserved 0x1FFF F80F Option Bytes 0x1FFF F800 Port D 0x4001 1400 Port C 0x4001 1000 Port B 0x4001 0C00 Port A 0x4001 0800 3 0x1FFF F000 0x6000 0000 EXTI System memory 0x4001 0400 AFIO 0x4001 0000 reserved 0x4000 7400 PWR BKP 2 reserved 0x4000 0000 Peripherals 0x4000 7000 0x4000 6C00 reserved 0x4000 6800 0x4000 6400 0x4000 6000 bxCAN shared 512 byte USB/CAN SRAM USB Registers 1 0x2000 0000 SRAM 0x0801 FFFF 0x4000 5C00 I2C2 0x4000 5800 I2C1 0x4000 5400 reserved 0x4000 4C00 0 0x0000 0000 0x0800 0000 USART3 Flash memory 0x4000 4800 USART2 0x4000 4400 0x0000 0000 Aliased to Flash, system memory or SRAM depending on BOOT pins reserved 0x4000 3C00 SPI2 0x4000 3800 reserved 0x4000 3400 IWDG 0x4000 3000 Reserved WWDG 0x4000 2C00 RTC 0x4000 2800 reserved 0x4000 0C00 TIM4 0x4000 0800 0x4000 0400 0x4000 0000 TIM3 TIM2 ai14394d 26/84 STM32F103xx Electrical characteristics 5 5.1 Electrical characteristics Test conditions Unless otherwise specified, all voltages are referred to VSS. 5.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA=25 C and TA=TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean3). 5.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 C, VDD = 3.3 V (for the 2 V VDD 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean2). 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 5.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 9. 5.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 10. 27/84 Electrical characteristics STM32F103xx Figure 9. Pin loading conditions Figure 10. Pin input voltage STM32F103xx pin C = 50 pF VIN STM32F103xx pin ai14141 ai14142 5.1.6 Power supply scheme Figure 11. Power supply scheme VBAT 1.8-3.6V Po wer swi tch Backup circuitry (OSC32K,RTC, Wake-up logic Backup registers) OUT Level shifter GP I/Os IN IO Logic Kernel logic (CPU, Digital & Memories) VDD VDD 1/2/3/4/5 VSS 1/2/3/4/5 Regulator 5 x 100 nF + 1 x 10 F VDD VREF VDDA VREF+ VREFVSSA ai14125c 10 nF + 1 F 10 nF + 1 F ADC Analog: RCs, PLL, ... 28/84 STM32F103xx Electrical characteristics 5.1.7 Current consumption measurement Figure 12. Current consumption measurement scheme IDD_VBAT VBAT IDD VDD VDDA ai14126 29/84 Electrical characteristics STM32F103xx 5.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 4: Voltage characteristics, Table 5: Current characteristics, and Table 6: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 4. Symbol VDD-VSS VIN |VDDx| |VSSX - VSS| VESD(HBM) Voltage characteristics Ratings External main supply voltage (including VDDA and VDD)(1) Input voltage on five volt tolerant pin(2) Input voltage on any other pin(2) Variations between different power pins Variations between all the different ground pins Electrostatic discharge voltage (human body model) Min -0.3 VSS -0.3 VSS - 0.3 50 50 Max 4.0 +5.5 VDD+0.3 50 mV 50 see Section 5.3.11: Absolute maximum ratings (electrical sensitivity) V Unit 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. IINJ(PIN) must never be exceeded (see Table 5: Current characteristics). This is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN < VSS. Table 5. Symbol IVDD IVSS IIO Current characteristics Ratings Total current into VDD power lines (source)(1) Total current out of VSS ground lines (sink)(1) Output current sunk by any I/O and control pin Output current source by any I/Os and control pin Injected current on NRST pin Max. 150 150 25 -25 5 5 5 pins)(4) 25 mA Unit IINJ(PIN) (2)(3) IINJ(PIN) (2) Injected current on HSE OSC_IN and LSE OSC_IN pins Injected current on any other pin(4) Total injected current (sum of all I/O and control 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. 3. Negative injection disturbs the analog performance of the device. See note in Section 5.3.17: 12-bit ADC characteristics. 4. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with IINJ(PIN) maximum current injection on four I/O port pins of the device. 30/84 STM32F103xx Table 6. Thermal characteristics Ratings Storage temperature range Maximum junction temperature Electrical characteristics Symbol TSTG TJ Value -65 to +150 150 Unit C C 5.3 5.3.1 Operating conditions General operating conditions Table 7. Symbol fHCLK fPCLK1 fPCLK2 VDD VBAT General operating conditions Parameter Internal AHB clock frequency Internal APB1 clock frequency Internal APB2 clock frequency Standard operating voltage Backup operating voltage LFBGA100 LQFP100 Power dissipation at TA = 85 C LQFP64 for suffix 6 or TA = 105 C for suffix 7(1) LQFP48 VFQFPN36 Ambient temperature for 6 suffix version Maximum power dissipation Low power dissipation(2) Maximum power dissipation Low power dissipation 6 suffix version (2) Conditions Min 0 0 0 2 1.8 Max 72 36 72 3.6 3.6 487 434 444 363 1110 Unit MHz V V PD mW -40 -40 -40 -40 -40 -40 85 C 105 105 C 125 105 C 125 TA Ambient temperature for 7 suffix version TJ Junction temperature range 7 suffix version 1. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 6.2: Thermal characteristics on page 76). 2. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Table 6.2: Thermal characteristics on page 76). 5.3.2 Operating conditions at power-up / power-down Subject to general operating conditions for TA. Table 8. Symbol tVDD Operating conditions at power-up / power-down Parameter VDD rise time rate VDD fall time rate Conditions Min 0 20 Max Unit s/V 31/84 Electrical characteristics STM32F103xx 5.3.3 Embedded reset and power control block characteristics The parameters given in Table 9 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. Table 9. Symbol Embedded reset and power control block characteristics Parameter Conditions PLS[2:0]=000 (rising edge) PLS[2:0]=000 (falling edge) PLS[2:0]=001 (rising edge) PLS[2:0]=001 (falling edge) PLS[2:0]=010 (rising edge) PLS[2:0]=010 (falling edge) PLS[2:0]=011 (rising edge) Min 2.1 2 2.19 2.09 2.28 2.18 2.38 2.28 2.47 2.37 2.57 2.47 2.66 2.56 2.76 2.66 Typ 2.18 2.08 2.28 2.18 2.38 2.28 2.48 2.38 2.58 2.48 2.68 2.58 2.78 2.68 2.88 2.78 100 Falling edge Rising edge 1.8(1) 1.84 1.88 1.92 40 1 2.5 4.5 1.96 2.0 Max 2.26 2.16 2.37 2.27 2.48 2.38 2.58 2.48 2.69 2.59 2.79 2.69 2.9 2.8 3 2.9 Unit V V V V V V V V V V V V V V V V mV V V mV mS VPVD Programmable voltage detector level selection PLS[2:0]=011 (falling edge) PLS[2:0]=100 (rising edge) PLS[2:0]=100 (falling edge) PLS[2:0]=101 (rising edge) PLS[2:0]=101 (falling edge) PLS[2:0]=110 (rising edge) PLS[2:0]=110 (falling edge) PLS[2:0]=111 (rising edge) PLS[2:0]=111 (falling edge) VPVDhyst(2) VPOR/PDR VPDRhyst TRSTTEMPO(2) PVD hysteresis Power on/power down reset threshold PDR hysteresis Reset temporization 1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value. 2. Guaranteed by design, not tested in production. 32/84 STM32F103xx Electrical characteristics 5.3.4 Embedded reference voltage The parameters given in Table 10 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. Table 10. Symbol VREFINT Embedded internal reference voltage Parameter Internal reference voltage Conditions - C < TA < +105 C 40 - C < TA < +85 C 40 Min 1.16 1.16 Typ 1.20 1.20 5.1 Max 1.26 1.24 17.1 Unit V V s ADC sampling time when TS_vrefint(1) reading the internal reference voltage 1. Shortest sampling time can be determined in the application by multiple iterations. 5.3.5 Supply current characteristics The current consumption is measured as described in Figure 12: Current consumption measurement scheme. Maximum current consumption The MCU is placed under the following conditions: All I/O pins are in input mode with a static value at VDD or VSS (no load) All peripherals are disabled except when explicitly mentioned The Flash memory access time is adjusted to the fHCLK frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above) Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling) When the peripherals are enabled fPCLK1 = fHCLK/2, fPCLK2 = fHCLK The parameters given in Table 11, Table 12 and Table 13 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. 33/84 Electrical characteristics Table 11. STM32F103xx Maximum current consumption in Run mode, code with data processing running from Flash Max(1) Parameter Conditions fHCLK TA = 85 C 72 MHz 48 MHz External clock(2), all peripherals enabled 36 MHz 24 MHz 16 MHz 50 36.1 28.6 19.9 14.7 8.6 32.8 24.4 19.8 13.9 10.7 6.8 TA = 105 C 50.3 36.2 28.7 20.1 14.9 8.9 mA 72 MHz 48 MHz External clock(2), all 36 MHz peripherals disabled 24 MHz 16 MHz 8 MHz 32.9 24.5 19.9 14.2 11 7.1 Unit Symbol IDD Supply current in Run mode 8 MHz 1. Data based on characterization results, not tested in production. 2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz; external clock is 9 MHz for fHCLK = 36 MHz. Table 12. Maximum current consumption in Run mode, code with data processing running from RAM Max Parameter Conditions fHCLK TA = 85 C 72 MHz(2) 48 MHz External clock(1), all peripherals enabled 36 MHz (3) (3) Symbol Unit TA = 105 C 50 32 25.5 18 13 8 mA 29.5 21 16.5 12 9 6 48 31.5 24 17.5 12.5 7.5 29 20.5 16 11.5 8.5 5.5 24 MHz(3) 16 MHz(3) IDD Supply current in Run mode 8 MHz (3) 72 MHz 48 MHz External peripherals disabled(3) clock(1), all 36 MHz 24 MHz 16 MHz 8 MHz 1. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz; external clock is 9 MHz for fHCLK = 36 MHz. 2. Data based on characterization results, tested in production at VDD max, fHCLK max. and TA max, and code executed from RAM. 3. Based on characterization, not tested in production. 34/84 STM32F103xx Electrical characteristics Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals enabled 45 40 35 Consumption (mA) 30 25 20 15 10 5 0 -40 0 25 70 85 105 Temperature (C) 72MHz 36MHz 16MHz 8MHz Figure 14. Typical current consumption in Run mode versus frequency (at 3.6 V) code with data processing running from RAM, peripherals disabled 30 25 Consumption (mA) 20 72 MHz 36MHz 16MHz 8MHz 15 10 5 0 -40 0 25 70 85 105 Temperature (C) 35/84 Electrical characteristics Table 13. Symbol STM32F103xx Maximum current consumption in Sleep mode, code running from Flash or RAM Max Parameter Conditions fHCLK TA = 85 C 72 MHz(2) 48 MHz External clock(1), all peripherals enabled (3) Unit TA = 105 C 32 20.5 16 12 9 6 mA 8 6.5 5.5 5 4.5 4 30 20 15.5 11.5 8.5 5.5 7.5 6 5 4.5 4 3 36 MHz(3) 24 MHz(3) (3) 16 MHz IDD Supply current in Sleep mode 8 MHz (3) 72 MHz 48 MHz External clock(1), all peripherals disabled(3) 36 MHz 24 MHz 16 MHz 8 MHz 1. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz; external clock is 9 MHz for fHCLK = 36 MHz. 2. Data based on characterization results, tested in production at VDD max, fHCLK max. and TA max. 3. Based on characterization, not tested in production. Table 14. Symbol Typical and maximum current consumptions in Stop and Standby modes(1) Typ(2) Parameter Conditions Max Unit VDD/VBAT VDD/VBAT TA = TA = = 2.4 V = 3.3 V 85 C 105 C Regulator in Run mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no Supply current in independent watchdog) Stop mode Regulator in Low Power mode, lowIDD speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) Low-speed internal RC oscillator and Supply current in (4) independent watchdog OFF, low-speed Standby mode oscillator and RTC OFF IDD_VBAT Backup domain supply current Low-speed oscillator and RTC ON 23.5 24 200(3) TBD(3) 13.5 14 180(3) TBD(3) A 1.7 2 4(3) 1.9(5) 5(3) 2.2(5) 1.1 1.4 1. TBD stands for to be determined. 2. Typical values are measured at TA = 25 C, VDD = 3.3 V, unless otherwise specified. 3. Data based on characterization results, tested in production at VDDmax and fHCLK max. 4. To have the Standby consumption with RTC ON, add IDD_VBAT (Low-speed oscillator and RTC ON) to IDD Standby (when VDD is present the Backup Domain is powered by VDD supply). 5. Data based on characterization results, not tested in production. 36/84 STM32F103xx Electrical characteristics Figure 15. Current consumption in Stop mode with regulator in Run mode versus temperature at VDD = 3.3 V and 3.6 V Stop regulator ON 300 250 Consumption (A) 200 150 100 50 0 -45 25 70 Temperature (C) 90 110 3.3 V 3.6 V Figure 16. Current consumption in Stop mode with regulator in Low-power mode versus temperature at VDD = 3.3 V and 3.6 V 300 250 Consumption (A) 200 150 100 50 0 -40 0 25 70 85 105 Temperature (C) 3.3 V 3.6 V 37/84 Electrical characteristics STM32F103xx Figure 17. Current consumption in Standby mode versus temperature at VDD = 3.3 V and 3.6 V Standby mode 3.5 3 Consumption (A) 2.5 2 1.5 1 0.5 0 -45 25 70 Temperature (C) 90 110 3.3 V 3.6 V Typical current consumption The MCU is placed under the following conditions: All I/O pins are in input mode with a static value at VDD or VSS (no load). All peripherals are disabled except if it is explicitly mentioned. The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above). Ambient temperature and VDD supply voltage conditions summarized in Table 7. Prefetch is ON (Reminder: this bit must be set before clock setting and bus prescaling) When the peripherals are enabled fPCLK1 = fHCLK/4, fPCLK2 = fHCLK/2, fADCCLK = fPCLK2/4 38/84 STM32F103xx Table 15. Electrical characteristics Typical current consumption in Run mode, code with data processing running from Flash Typ(1) Parameter Conditions fHCLK Unit Symbol All peripherals All peripherals enabled(2) disabled 36 24.2 19 12.9 9.3 5.5 3.3 2.2 1.6 1.3 1.08 31.4 23.5 18.3 12.2 8.5 4.9 2.7 1.6 1.02 0.73 0.5 27 18.6 14.8 10.1 7.4 4.6 2.8 1.9 1.45 1.25 1.06 23.9 17.9 14.1 9.5 6.8 4 2.2 1.4 0.9 0.67 0.48 72 MHz 48 MHz 36 MHz 24 MHz 16 MHz External clock (3) 8 MHz 4 MHz 2 MHz 1 MHz 500 kHz mA IDD Supply current in Run mode 125 kHz 64 MHz 48 MHz 36 MHz Running on high speed internal RC (HSI), AHB prescaler used to reduce the frequency 24 MHz 16 MHz 8 MHz 4 MHz 2 MHz 1 MHz 500 kHz 125 kHz mA 1. Typical values are measures at TA = 25 C, VDD = 3.3 V. 2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). 3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. 39/84 Electrical characteristics Table 16. STM32F103xx Typical current consumption in Sleep mode, code with data processing code running from Flash or RAM Typ(1) Conditions fHCLK Unit Symbol Parameter All peripherals All peripherals enabled(2) disabled 14.4 9.9 7.6 5.3 3.8 2.1 1.6 1.3 1.11 1.04 0.98 12.3 9.3 7 4.8 3.2 1.6 1 0.72 0.56 0.49 0.43 5.5 3.9 3.1 2.3 1.8 1.2 1.1 1 0.98 0.96 0.95 72 MHz 48 MHz 36 MHz 24 MHz 16 MHz External clock (3) 8 MHz 4 MHz 2 MHz 1 MHz 500 kHz IDD Supply current in Sleep mode 125 kHz 64 MHz 48 MHz 36 MHz 24 MHz Running on high 16 MHz speed internal RC (HSI), AHB prescaler 8 MHz used to reduce the 4 MHz frequency 2 MHz 1 MHz 500 kHz 125 kHz mA 4.4 3.3 2.5 1.8 1.2 0.6 0.5 0.47 0.44 0.42 0.41 1. Typical values are measures at TA = 25 C, VDD = 3.3 V. 2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). 3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. 40/84 STM32F103xx Table 17. Symbol Electrical characteristics Typical current consumption in Standby mode Parameter Conditions Low-speed internal RC oscillator and independent watchdog OFF IDD Supply current in Low-speed internal RC oscillator and Standby mode(2) independent watchdog ON Low-speed internal RC oscillator ON, independent watchdog OFF VDD 3.3 V 2.4 V 3.3 V 2.4 V 3.3 V 2.4 V 3.3 V Low-speed oscillator and RTC ON 2.4 V 1.1 Typ(1) 2 1.5 3.4 A 2.6 3.2 2.4 1.4 A Unit IDD_VBAT Backup domain supply current 1. Typical values are measures at TA = 25 C, VDD = 3.3 V. 2. To obtain Standby consumption with RTC ON, add IDD_VBAT (Low-speed oscillator, RTC ON) to IDD Standby. On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 18. The MCU is placed under the following conditions: all I/O pins are in input mode with a static value at VDD or VSS (no load) all peripherals are disabled unless otherwise mentioned the given value is calculated by measuring the current consumption - - with all peripherals clocked off with only one peripheral clocked on ambient operating temperature and VDD supply voltage conditions summarized in Table 4 41/84 Electrical characteristics Table 18. Peripheral current consumption(1) Peripheral TIM2 TIM3 TIM4 SPI2 USART2 APB1 USART3 I2C1 I2C2 USB CAN GPIO A GPIO B GPIO C GPIO D GPIO E APB2 ADC1(2) ADC2 TIM1 SPI1 USART1 0.35 0.39 0.39 0.65 0.715 STM32F103xx Typical consumption at 25 C 1.2 1.2 0.9 0.2 0.35 Unit mA 0.47 0.47 0.47 0.47 0.47 1.81 1.78 1.6 0.43 0.85 1. fHCLK = 72 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, default prescaler value for each peripheral. 2. Specific conditions for ADC: fHCLK = 56 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/4, ADON bit in the ADC_CR2 register is set to 1. 5.3.6 External clock source characteristics High-speed external user clock The characteristics given in Table 19 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 7. 42/84 STM32F103xx Table 19. Symbol fHSE_ext VHSEH VHSEL tw(HSE) tw(HSE) tr(HSE) tf(HSE) IL Electrical characteristics High-speed external (HSE) user clock characteristics Parameter User external clock source frequency(1) OSC_IN input pin high level voltage OSC_IN input pin low level voltage OSC_IN high or low time(1) OSC_IN rise or fall time(1) OSC_IN Input leakage current VSS VIN VDD 0.7VDD VSS 16 ns 5 1 A Conditions Min Typ 8 Max 25 VDD V 0.3VDD Unit MHz 1. Value based on design simulation and/or technology characteristics. It is not tested in production. 43/84 Electrical characteristics STM32F103xx Low-speed external user clock The characteristics given in Table 20 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 7. Table 20. Symbol fLSE_ext VLSEH VLSEL tw(LSE) tw(LSE) tr(LSE) tf(LSE) IL Low-speed external user clock characteristics Parameter User External clock source frequency(1) OSC32_IN input pin high level voltage OSC32_IN input pin low level voltage OSC32_IN high or low time(1) OSC32_IN rise or fall time(1) VSS VIN VDD 0.7VDD VSS 450 ns 5 1 A Conditions Min Typ 32.768 Max 1000 VDD V 0.3VDD Unit kHz OSC32_IN Input leakage current 1. Value based on design simulation and/or technology characteristics. It is not tested in production. Figure 18. High-speed external clock source AC timing diagram VHSEH 90% VHSEL 10% tr(HSE) THSE tf(HSE) tW(HSE) tW(HSE) t EXTER NAL CLOCK SOURC E fHSE_ext OSC _IN IL STM32F103xx ai14143 44/84 STM32F103xx Electrical characteristics Figure 19. Low-speed external clock source AC timing diagram VLSEH 90% VLSEL 10% tr(LSE) TLSE tf(LSE) tW(LSE) tW(LSE) t EXTER NAL CLOCK SOURC E fLSE_ext OSC32_IN IL STM32F103xx ai14144b 45/84 Electrical characteristics STM32F103xx High-speed external clock The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 21. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 21. Symbol fOSC_IN RF CL1 CL2(2) i2 gm(4) HSE 4-16 MHz oscillator characteristics(1) Parameter Oscillator frequency Feedback resistor Recommended load capacitance versus equivalent serial resistance of the crystal (RS)(3) HSE driving current Oscillator transconductance RS = 30 VDD= 3.3 V VIN = VSS with 30 pF load Startup VDD is stabilized 25 2 Conditions Min 4 Typ 8 200 30 Max 16 Unit MHz k pF 1 mA mA/V ms tSU(HSE)(5) startup time 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5 pF to 25pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included when sizing CL1 and CL2 (10 pF can be used as a rough estimate of the combined pin and board capacitance). 3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions. 4. Based on characterization results, not tested in production. 5. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer Figure 20. Typical application with a 8-MHz crystal Resonator with integrated capacitors CL1 OSC_IN 8 MH z resonator REXT(1) OSC_OU T RF Bias controlled gain STM32F103xx fHSE CL2 ai14145 1. REXT value depends on the crystal characteristics. Typical value is in the range of 5 to 6RS. 46/84 STM32F103xx Electrical characteristics Low-speed external clock The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 22. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 22. Symbol RF CL1 CL2 I2 gm tSU(LSE)(2) LSE oscillator characteristics (fLSE = 32.768 kHz) Parameter Feedback resistor Recommended load capacitance versus equivalent serial resistance of the crystal (RS)(1) LSE driving current Oscillator Transconductance startup time VDD is stabilized RS = 30 k VDD = 3.3 V VIN = VSS 5 3 Conditions Min Typ 5 15 Max Unit M pF 1.4 A A/V s 1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details 2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer Figure 21. Typical application with a 32.768 kHz crystal Resonator with integrated capacitors CL1 OSC32_IN 32.768 kH z resonator CL2 RF OSC32_OU T Bias controlled gain STM32F103xx fLSE ai14146 47/84 Electrical characteristics STM32F103xx 5.3.7 Internal clock source characteristics The parameters given in Table 23 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. High-speed internal (HSI) RC oscillator Table 23. Symbol fHSI HSI oscillator characteristics(1) Parameter Frequency TA = -40 to 105 C Conditions Min Typ 8 1 1 1 1 1 80 3 2.5 2.2 2 2 100 Max Unit MHz % % % % s A ACCHSI Accuracy of HSI oscillator TA = -10 to 85 C TA = 0 to 70 C at TA = 25C tsu(HSI) IDD(HSI) HSI oscillator start up time HSI oscillator power consumption 40 1. VDD = 3.3 V, TA = - to 105 C unless otherwise specified. LSI Low Speed Internal RC Oscillator Table 24. Symbol fLSI tsu(LSI) IDD(LSI) LSI oscillator characteristics (1) Parameter Frequency LSI oscillator startup time LSI oscillator power consumption 0.65 Conditions Min(2) 30 Typ 40 Max 60 85 1.2 Unit kHz s A 1. VDD = 3 V, TA = - to 105 C unless otherwise specified. 40 2. Value based on device characterization, not tested in production. 48/84 STM32F103xx Electrical characteristics Wakeup time from low-power mode The wakeup times given in Table 25 is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode: Stop or Standby mode: the clock source is the RC oscillator Sleep mode: the clock source is the clock that was set before entering Sleep mode. All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. Table 25. Symbol Low-power mode wakeup timings Parameter Conditions Wakeup on HSI RC clock HSI RC wakeup time = 2 s HSI RC wakeup time = 2 s, Regulator wakeup from LP mode time = 5 s HSI RC wakeup time = 2 s, Regulator wakeup from power down time = 38 s Typ 1.8 3.6 s 5.4 Unit s tWUSLEEP(1) Wakeup from Sleep mode Wakeup from Stop mode (regulator in run mode) tWUSTOP(1) Wakeup from Stop mode (regulator in low power mode) tWUSTDBY(1) Wakeup from Standby mode 50 s 1. The wakeup times are measured from the wakeup event to the point in which the user application code reads the first instruction. 5.3.8 PLL characteristics The parameters given in Table 26 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. Table 26. Symbol PLL characteristics Value Parameter PLL input clock Test conditions Min Typ 8.0 40 16 60 72 200 Max(1) Unit MHz % MHz s fPLL_IN fPLL_OUT tLOCK PLL input clock duty cycle PLL multiplier output clock PLL lock time 1. Data based on device characterization, not tested in production. 49/84 Electrical characteristics STM32F103xx 5.3.9 Memory characteristics Flash memory The characteristics are given at TA = - to 105 C unless otherwise specified. 40 Table 27. Symbol tprog tERASE tME Flash memory characteristics Parameter Conditions Min 40 20 20 Typ 52.5 Max(1) 70 40 40 20 Unit s ms ms mA 16-bit programming time TA = - to +105 C 40 Page (1kB) erase time Mass erase time TA = - to +105 C 40 TA = - to +105 C 40 Read mode fHCLK = 72 MHz with 2 wait states, VDD = 3.3 V IDD Supply current Write / Erase modes fHCLK = 72 MHz, VDD = 3.3 V Power-down mode / Halt, VDD = 3.0 to 3.6 V 5 50 2 3.6 mA A V Vprog Programming voltage 1. Values based on characterization and not tested in production. Table 28. Symbol Flash memory endurance and data retention Value Parameter Conditions TA = -40 to +85 C (6 suffix versions) TA = -40 to +105 C (7 suffix versions) TA = 85 C, 1 kcycle(2) kcycle(2) (2) Min(1) 10 30 20 20 Unit Typ Max kcycles NEND Endurance tRET Data retention TA = 105 C, 1 Years TA = 55 C, 10 kcycles 1. Values based on characterization not tested in production. 2. Cycling performed over the whole temperature range. 50/84 STM32F103xx Electrical characteristics 5.3.10 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 1000-4-2 standard. FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 1000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 29. They are based on the EMS levels and classes defined in application note AN1709. Table 29. Symbol EMS characteristics Parameter Conditions Level/ Class 2B VFESD VDD = 3.3 V, TA = +25 C, Voltage limits to be applied on any I/O pin to fHCLK=48 MHz induce a functional disturbance conforms to IEC 1000-4-2 Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, TA = +25 C, fHCLK = 48 MHz conforms to IEC 1000-4-4 VEFTB 4A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: Corrupted program counter Unexpected reset Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). 51/84 Electrical characteristics STM32F103xx Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with SAE J 1752/3 standard which specifies the test board and the pin loading. Table 30. Symbol EMI characteristics Parameter Conditions Monitored Frequency Band Max vs. [fHSE/fHCLK] Unit 8/48 MHz 8/72 MHz 12 22 23 4 12 19 29 4 dBV SEMI Peak level 0.1 to 30 MHz VDD = 3.3 V, TA = 2 5 C, 30 to 130 MHz LQFP100 package compliant with SAE J 130 MHz to 1GHz 1752/3 SAE EMI Level 5.3.11 Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts x (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Table 31. Symbol VESD(HBM) ESD absolute maximum ratings Ratings Electrostatic discharge voltage (human body model) Conditions TA = +25 C conforming to JESD22-A114 TA = +25 C conforming to JESD22-C101 Class 2 Maximum value(1) 2000 V II 500 Unit Electrostatic discharge VESD(CDM) voltage (charge device model) 1. Values based on characterization results, not tested in production. Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: A supply overvoltage is applied to each power supply pin A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 32. Symbol LU Electrical sensitivities Parameter Static latch-up class Conditions TA = +105 C conforming to JESD78A Class II level A 52/84 STM32F103xx Electrical characteristics 5.3.12 I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 33 are derived from tests performed under the conditions summarized in Table 7. All I/Os are CMOS and TTL compliant. Table 33. Symbol VIL I/O static characteristics Parameter Input low level voltage (1) Conditions Min -0.5 Typ Max 0.8 Unit Standard IO input high level voltage(1) VIH IO FT(2) input high level voltage(1) Input low level voltage(1) Input high level voltage(1) V TTL ports 2 2 -0.5 CMOS ports 0.65 VDD 200 5% VDD(4) VSS VIN VDD Standard I/Os VIN= 5 V I/O FT 1 A 3 30 30 40 40 5 50 50 k k pF VDD+0.5 5.5V 0.35 VDD VDD+0.5 mV mV VIL VIH V Standard IO Schmitt trigger voltage hysteresis(3) Vhys IO FT Schmitt trigger voltage hysteresis(3) Ilkg Input leakage current (5) RPU RPD CIO Weak pull-up equivalent resistor(6) Weak pull-down equivalent resistor(6) I/O pin capacitance VIN = VSS VIN = VDD 1. Values based on characterization results, and not tested in production. 2. FT = Five-volt tolerant. 3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested. 4. With a minimum of 100 mV. 5. Leakage could be higher than max. if negative current is injected on adjacent pins. 6. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order). 53/84 Electrical characteristics STM32F103xx Output driving current The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink +20 mA (with a relaxed VOL). In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2: The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 5). The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 5). Output voltage levels Unless otherwise specified, the parameters given in Table 34 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. All I/Os are CMOS and TTL compliant. Table 34. Symbol VOL(1) VOH(2) VOL (1) VOH (2) VOL(1)(3) VOH(2)(3) VOL(1)(3) VOH(2)(3) Output voltage characteristics Parameter Output low level voltage for an I/O pin when 8 pins are sunk at same time Output high level voltage for an I/O pin when 8 pins are sourced at same time Output low level voltage for an I/O pin when 8 pins are sunk at same time Output high level voltage for an I/O pin when 8 pins are sourced at same time Output low level voltage for an I/O pin when 8 pins are sunk at same time Output high level voltage for an I/O pin when 8 pins are sourced at same time Output low level voltage for an I/O pin when 8 pins are sunk at same time Output high level voltage for an I/O pin when 8 pins are sourced at same time Conditions TTL port IIO = +8 mA 2.7 V < VDD < 3.6 V CMOS port IIO =+ 8mA 2.7 V < VDD < 3.6 V Min Max 0.4 V VDD-0.4 0.4 V 2.4 1.3 V VDD-1.3 0.4 V VDD-0.4 Unit IIO = +20 mA 2.7 V < VDD < 3.6 V IIO = +6 mA 2 V < VDD < 2.7 V 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 5 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 5 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. 3. Based on characterization data, not tested in production. 54/84 STM32F103xx Electrical characteristics Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 22 and Table 35, respectively. Unless otherwise specified, the parameters given in Table 35 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. Table 35. MODEx[1:0] bit value(1) I/O AC characteristics(1) Symbol Parameter Conditions Min Max 2 125(3) CL = 50 pF, VDD = 2 V to 3.6 V 125(3) 10 25(3) CL = 50 pF, VDD = 2 V to 3.6 V 25(3) CL = 30 pF, VDD = 2.7 V to 3.6 V Fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2.7 V to 3.6 V CL = 50 pF, VDD = 2 V to 2.7 V CL = 30 pF, VDD = 2.7 V to 3.6 V Output high to low level fall time 50 30 20 5(3) 8(3) 12(3) 5(3) 8(3) 12(3) ns MHz MHz MHz ns MHz ns Unit MHz fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V 10 tf(IO)out tr(IO)out Output high to low level fall time Output low to high level rise time fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V 01 tf(IO)out tr(IO)out Output high to low level fall time Output low to high level rise time 11 tf(IO)out CL = 50 pF, VDD = 2.7 V to 3.6 V CL = 50 pF, VDD = 2 V to 2.7 V CL = 30 pF, VDD = 2.7 V to 3.6 V tr(IO)out Output low to high level rise time Pulse width of external signals detected by the EXTI controller CL = 50 pF, VDD = 2.7 V to 3.6 V CL = 50 pF, VDD = 2 V to 2.7 V - tEXTIpw 10 ns 1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register. 2. The maximum frequency is defined in Figure 22. 3. Values based on design simulation and validated on silicon, not tested in production. 55/84 Electrical characteristics Figure 22. I/O AC characteristics definition STM32F103xx 90% 50% 10% EXT ERNAL OUTPUT ON 50pF tr(I O)out 10% 50% 90% tr(I O)out T Maximum frequency is achieved if (tr + tf) 2/3)T and if the duty cycle is (45-55%) when loaded by 50pF ai14131 5.3.13 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 33). Unless otherwise specified, the parameters given in Table 36 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. Table 36. Symbol VIL(NRST) VIH(NRST) Vhys(NRST) RPU VF(NRST) VNF(NRST) NRST pin characteristics Parameter NRST Input low level voltage NRST Input high level voltage NRST Schmitt trigger voltage hysteresis Weak pull-up equivalent resistor(1) NRST Input filtered pulse (2) Conditions Min -0.5 2 Typ Max 0.8 Unit V VDD+0.5 200 VIN = VSS 30 40 50 100 k ns ns NRST Input not filtered pulse(2) 300 1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). 2. Values guaranteed by design, not tested in production. 56/84 STM32F103xx Figure 23. Recommended NRST pin protection Electrical characteristics External reset circuit(1) NRST(2) VDD RPU FILTER Internal Reset 0.1 F STM32F10xxx ai14132b 2. The reset network protects the device against parasitic resets. 3. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 36. Otherwise the reset will not be taken into account by the device. 5.3.14 TIM timer characteristics The parameters given in Table 37 are guaranteed by fabrication. Refer to Section 5.3.12: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 37. Symbol tres(TIM) TIMx(1) characteristics Parameter Timer resolution time fTIMxCLK = 72 MHz Timer external clock frequency on CH1 to CH4 f TIMxCLK = 72 MHz Timer resolution 16-bit counter clock period 1 when internal clock is fTIMxCLK = 72 MHz 0.0139 selected 13.9 0 0 fTIMxCLK/2 36 16 65536 910 65536 x 65536 Conditions Min 1 Max Unit tTIMxCLK ns MHz MHz bit tTIMxCLK s tTIMxCLK s fEXT ResTIM tCOUNTER tMAX_COUNT Maximum possible count fTIMxCLK = 72 MHz 59.6 1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers. 57/84 Electrical characteristics STM32F103xx 5.3.15 Communications interfaces I2C interface characteristics Unless otherwise specified, the parameters given in Table 38 are derived from tests performed under ambient temperature, fPCLK1 frequency and VDD supply voltage conditions summarized in Table 7. The STM32F103xx performance line I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 38. Refer also to Section 5.3.12: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 38. Symbol tw(SCLL) tw(SCLH) tsu(SDA) th(SDA) tr(SDA) tr(SCL) tf(SDA) tf(SCL) th(STA) tsu(STA) tsu(STO) tw(STO:STA) Cb I2C characteristics Standard mode I2C(1) Parameter Min SCL clock low time SCL clock high time SDA setup time SDA data hold time SDA and SCL rise time SDA and SCL fall time Start condition hold time Repeated Start condition setup time Stop condition setup time Stop to Start condition time (bus free) Capacitive load for each bus line 4.0 4.7 4.0 4.7 400 4.7 4.0 250 0(3) 1000 300 Max Min 1.3 s 0.6 100 0(4) 20 + 0.1Cb 20 + 0.1Cb 0.6 s 0.6 0.6 1.3 400 s s pF 900(3) 300 300 ns Max Fast mode I2C(1)(2) Unit 1. Values based on standard I2C protocol requirement, not tested in production. 2. fPCLK1 must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be higher than 4 MHz to achieve the maximum fast mode I2C frequency. 3. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of SCL signal. 4. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL. 58/84 STM32F103xx Figure 24. I2C bus AC waveforms and measurement circuit VDD 4 .7 k I2C bus VDD 4 .7 k STM32F103xx SDA 100 SCL Electrical characteristics 100 S TART REPEATED S TART tsu(STA) SDA tf(SDA) th(STA) SCL tw(SCKH) S TART tr(SDA) tw(SCKL) tsu(SDA) th(SDA) S TOP tsu(STA:STO) tr(SCK) tf(SCK) tsu(STO) ai14149b 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. Table 39. SCL frequency (fPCLK1= 36 MHz.,VDD = 3.3 V)(1)(2)(3) I2C_CCR value fSCL (kHz) RP = 4.7 k 400 300 200 100 50 20 TBD TBD TBD TBD TBD TBD 1. TBD = to be determined. 2. RP = External pull-up resistance, fSCL = I2C speed, 3. For speeds around 200 kHz, the tolerance on the achieved speed is of 5%. For other speed ranges, the tolerance on the achieved speed 2%. These variations depend on the accuracy of the external components used to design the application. 59/84 Electrical characteristics STM32F103xx SPI interface characteristics Unless otherwise specified, the parameters given in Table 40 are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 7. Refer to Section 5.3.12: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 40. Symbol fSCK 1/tc(SCK) tr(SCK) tf(SCK) tsu(NSS)(2) th(NSS)(2) (2) SPI characteristics(1) Parameter SPI clock frequency Slave mode SPI clock rise and fall time NSS setup time NSS hold time Capacitive load: C = 30 pF Slave mode Slave mode 4 tPCLK 18 50 1 5 1 SPI1 SPI2 1 5 3 Slave mode, fPCLK = 36 MHz, presc = 4 Slave mode, fPCLK = 24 MHz 0 0 10 25 3 25 4 55 4 tPCLK ns 60 0 18 8 Conditions Master mode Min 0 Max 18 MHz Unit tw(SCKH) Master mode, fPCLK = 36 MHz, SCK high and low time tw(SCKL)(2) presc = 4 tsu(MI) (2) tsu(SI)(2) th(MI) (2) th(SI)(2) Data input setup time Master mode Data input setup time Slave mode Data input hold time Master mode Data input hold time Slave mode Data output access time Data output disable time SPI1 SPI2 ta(SO)(2)(3) tdis(SO)(2)(4) Slave mode Slave mode (after enable edge) Master mode (after enable edge) Slave mode (after enable edge) tv(SO) (2)(1) Data output valid time tv(MO)(2)(1) th(SO)(2) th(MO) (2) Data output valid time Data output hold time Master mode (after enable edge) 1. Remapped SPI1 characteristics to be determined. 2. Values based on design simulation and/or characterization results, and not tested in production. 3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z 60/84 STM32F103xx Figure 25. SPI timing diagram - slave mode and CPHA = 0 Electrical characteristics NSS input tSU(NSS) SCK Input CPHA= 0 CPOL=0 CPHA= 0 CPOL=1 tc(SCK) th(NSS) tw(SCKH) tw(SCKL) tv(SO) MS B O UT tsu(SI) tr(SCK) tf(SCK) LSB OUT ta(SO) MISO OUT P UT MOSI I NPUT th(SO) BI T6 OUT tdis(SO) M SB IN th(SI) B I T1 IN LSB IN ai14134 Figure 26. SPI timing diagram - slave mode and CPHA = 1(1) NSS input tSU(NSS) SCK Input CPHA=1 CPOL=0 CPHA=1 CPOL=1 tc(SCK) th(NSS) tw(SCKH) tw(SCKL) tr(SCK) tf(SCK) ta(SO) MISO OUT P UT tsu(SI) MOSI I NPUT M SB IN tv(SO) MS B O UT th(SI) th(SO) BI T6 OUT tdis(SO) LSB OUT B I T1 IN LSB IN ai14135 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. 61/84 Electrical characteristics Figure 27. SPI timing diagram - master mode(1) High NSS input tc(SCK) SCK Input CPHA= 0 CPOL=0 CPHA= 0 CPOL=1 STM32F103xx SCK Input CPHA=1 CPOL=0 CPHA=1 CPOL=1 tsu(MI) MISO INP UT MOSI OUTUT tw(SCKH) tw(SCKL) MS BIN th(MI) M SB OUT tv(MO) B I T1 OUT th(MO) ai14136 tr(SCK) tf(SCK) BI T6 IN LSB IN LSB OUT 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. USB characteristics The USB interface is USB-IF certified (Full Speed). Table 41. USB startup time Parameter USB transceiver startup time Max 1 Unit s Symbol tSTARTUP Table 42. Symbol Input levels VDI VCM VSE USB DC electrical characteristics Parameter Conditions Min.(1) Max.(1) Unit Differential input sensitivity Differential common mode range Single ended receiver threshold I(USBDP, USBDM) Includes VDI range 0.2 0.8 1.3 2.5 2.0 V Output levels VOL VOH Static output level low Static output level high RL of 1.5 k to 3.6 V(2) RL of 15 k to VSS(2) 2.8 0.3 V 3.6 1. All the voltages are measured from the local ground potential. 2. RL is the load connected on the USB drivers 62/84 STM32F103xx Electrical characteristics Figure 28. USB timings: definition of data signal rise and fall time Crossover points Differen tial data lines V CRS VS S tf tr ai14137 Table 43. Symbol USB: Full speed electrical characteristics Parameter Conditions Min Max Unit Driver characteristics tr tf trfm VCRS Rise time(1) Fall time(1) CL = 50 pF CL = 50 pF tr/tf 4 4 90 1.3 20 20 110 2.0 ns ns % V Rise/ fall time matching Output signal crossover voltage 1. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0). 5.3.16 CAN (controller area network) interface Refer to Section 5.3.12: I/O port characteristics for more details on the input/output alternate function characteristics (CANTX and CANRX). 63/84 Electrical characteristics STM32F103xx 5.3.17 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 44 are derived from tests performed under ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 7. Note: Table 44. Symbol VDDA VREF+ IVREF fADC fS(2) fTRIG(2) VAIN RAIN(2) RADC(2) CADC(2) tCAL(2) tlat(2) tlatr(2) tS(2) tSTAB(2) tCONV(2) It is recommended to perform a calibration after each power-up. ADC characteristics Parameter ADC power supply Positive reference voltage Current on the VREF input pin ADC clock frequency Sampling rate External trigger frequency Conversion voltage range(3) External input impedance Sampling switch resistance Internal sample and hold capacitor 5.9 Calibration time Injection trigger conversion latency Regular trigger conversion latency Sampling time Power-up time Total conversion time (including sampling time) fADC = 14 MHz 83 0.214 fADC = 14 MHz 3 (4) Conditions Min 2.4 2.4 Typ Max 3.6 VDDA Unit V V A MHz MHz kHz 1/fADC V k k pF s 1/fADC s 1/fADC s 1/fADC s 1/fADC s s 1/fADC 160(1) 0.6 0.05 fADC = 14 MHz 0 (VSSA or VREFtied to ground) 220(1) 14 1 823 17 VREF+ See Equation 1 and Table 45 1 5 0.143 fADC = 14 MHz 0.107 fADC = 14 MHz 1.5 0 1 fADC = 14 MHz 0 2(4) 17.1 239.5 1 18 14 to 252 (tS for sampling +12.5 for successive approximation) 1. Data based on characterization results, not tested in production. 2. Guaranteed by design, not tested in production. 3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package. Refer to Section 3: Pin descriptions for further details. 4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 44. 64/84 STM32F103xx Equation 1: RAIN max formula: S R AIN < --------------------------------------------------------------- - R ADC N+2 f ADC x C ADC x ln ( 2 ) Electrical characteristics t The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 45. RAIN max for fADC = 14 MHz(1) Ts (cycles) tS (s) 0.11 0.54 0.96 2.04 2.96 3.96 5.11 17.1 1.2 10 19 41 60 80 104 350 RAIN max (k) 1.5 7.5 13.5 28.5 41.5 55.5 71.5 239.5 1. Data guaranteed by design, not tested in production. Table 46. Symbol ET EO EG ED EL ADC accuracy - limited test conditions(1) Parameter Total unadjusted error(3) Offset error(3) (3) (3) Test conditions fPCLK2 = 56 MHz, , fADC = 14 MHz, RAIN < 10 k VDDA = 3 V to 3.6 V TA = 25 C Measurements made after ADC calibration VREF+ = VDDA Typ 1.3 1 0.5 0.7 0.8 Max(2) 2 1.5 1.5 1 1.5 Unit Gain error LSB Differential linearity error Integral linearity error(3) 1. ADC DC accuracy values are measured after internal calibration. 2. Data based on characterization, not tested in production. 3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (nonrobust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 5.3.12 does not affect the ADC accuracy. 65/84 Electrical characteristics Table 47. Symbol ET EO EG ED EL STM32F103xx ADC accuracy(1) (2) Parameter Total unadjusted error(4) Offset error(3) (3) Test conditions fPCLK2 = 56 MHz, , fADC = 14 MHz, RAIN < 10 k VDDA = 2.4 V to 3.6 V Measurements made after ADC calibration Typ 2 1.5 1.5 1 1.5 Max(3) 5 2.5 3 2 3 Unit Gain error LSB Differential linearity error(3) Integral linearity error (3) 1. ADC DC accuracy values are measured after internal calibration. 2. Better performance could be achieved in restricted VDD, frequency, VREF and temperature ranges. 3. Data based on characterization, not tested in production. 4. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (nonrobust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 5.3.12 does not affect the ADC accuracy. Figure 29. ADC accuracy characteristics V V [1LSBIDEAL = REF+ (or DDA depending on package)] 4096 4096 EG 4095 4094 4093 (2) ET 7 6 5 4 3 2 1 0 1 VSSA 2 3 4 1 LSBIDEAL EO EL ED (3) (1) ET=Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO=Offset Error: deviation between the first actual transition and the first ideal one. EG=Gain Error: deviation between the last ideal transition and the last actual one. ED=Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line 5 6 7 4093 4094 4095 4096 VDDA ai14395b 66/84 STM32F103xx Figure 30. Typical connection diagram using the ADC VDD VT 0.6 V AINx VT 0.6 V Electrical characteristics STM32F103xx RAIN(1) RADC(1) 12-bit A/D conversion CADC(1) VAIN CAIN IL1 A ai14150b 1. Refer to Table 44 for the values of CAIN, RAIN, RADC and CADC. 2. CPARASITIC must be added to CAIN. It represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (3 pF). A high CPARASITIC value will downgrade conversion accuracy. To remedy this, fADC should be reduced. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 31 or Figure 32, depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip. Figure 31. Power supply and reference decoupling (VREF+ not connected to VDDA) STM32F103xx VREF+ (see note 1) 1 F // 10 nF VDDA 1 F // 10 nF VSSA /VREF- (see note 1) ai14388b 1. VREF+ and VREF- inputs are available only on 100-pin packages. 67/84 Electrical characteristics STM32F103xx Figure 32. Power supply and reference decoupling (VREF+ connected to VDDA) STM32F103xx VREF+/VDDA (See note 1) 1 F // 10 nF VREF-/VSSA (See note 1) ai14389 1. VREF+ and VREF- inputs are available only on 100-pin packages. 5.3.18 Temperature sensor characteristics Table 48. Symbol TL(1) Avg_Slope(1) V25(1) tSTART(2) TS_temp(3)(2) TS characteristics Parameter VSENSE linearity with temperature Average slope Voltage at 25 C Startup time ADC sampling time when reading the temperature 4.0 1.34 4 2.2 Conditions Min Typ Max Unit C mV/C V s s 1 4.3 1.43 2 4.6 1.52 10 17.1 1. Guaranteed by characterization, not tested in production. 2. Data guaranteed by design, not tested in production. 3. Shortest sampling time can be determined in the application by multiple iterations. 68/84 STM32F103xx Package characteristics 6 6.1 Package characteristics Package mechanical data In order to meet environmental requirements, ST offers the STM32F103xx in ECOPACK(R) packages. These packages have a Lead-free second-level interconnect. The category of second-level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 69/84 Package characteristics STM32F103xx Figure 33. VFQFPN36 6 x 6 mm, 0.5 mm pitch, Figure 34. Recommended footprint package outline(1) (dimensions in mm)(1)(2)(3) Seating plane C A2 A 36 ddd C 4.30 A3 D e 28 27 36 A1 Pin # 1 ID R = 0.20 1 27 4.80 1 6.30 4.80 4.10 4.30 E2 b E 0.30 9 4.10 19 1.00 19 18 D2 10 9 0.75 10 18 0.50 4.30 L ZR_ME ai14870 1. Drawing is not to scale. 2. The back-side pad is not internally connected to the VSS or VDD power pads. 3. There is an exposed die pad on the underside of the VFQFPN package. It should be soldered to the PCB. All leads should also be soldered to the PCB. Table 49. Symbol VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data millimeters Min Typ 0.900 0.020 0.650 0.250 0.180 5.875 1.750 5.875 1.750 0.450 0.350 0.230 6.000 3.700 6.000 3.700 0.500 0.550 0.080 0.300 6.125 4.250 6.125 4.250 0.550 0.750 0.0071 0.2313 0.0689 0.2313 0.0689 0.0177 0.0138 Max 1.000 0.050 1.000 Min 0.0315 inches(1) Typ 0.0354 0.0008 0.0256 0.0098 0.0091 0.2362 0.1457 0.2362 0.1457 0.0197 0.0217 0.0031 0.0118 0.2411 0.1673 0.2411 0.1673 0.0217 0.0295 Max 0.0394 0.0020 0.0394 A A1 A2 A3 b D D2 E E2 e L ddd 0.800 1. Values in inches are converted from mm and rounded to 4 decimal digits. 70/84 STM32F103xx Package characteristics Figure 35. LFBGA100 - low profile fine pitch ball grid array package outline C Seating plane ddd C A2 A4 A3 B e D D1 F A1 A A K J H G F E D C B A 1 2 3 4 5 6 7 8 9 10 F E1 E e A1 corner index area (see note 5) b (100 eee balls) MCAB fff M C ai14396 Bottom view 1. Drawing is not to scale. Table 50. Dim. LFBGA100 - low profile fine pitch ball grid array package mechanical data mm Min Typ Max 1.700 0.270 1.085 0.30 0.80 0.45 9.85 0.50 10.00 7.20 9.85 10.00 7.20 0.80 1.40 0.12 0.15 0.08 100 10.15 0.3878 0.55 10.15 0.0177 0.3878 0.0197 0.3937 0.2835 0.3937 0.2835 0.0315 0.0551 0.0047 0.0059 0.0031 0.3996 0.0106 0.0427 0.0118 0.0315 0.0217 0.3996 Min inches(1) Typ Max 0.0669 A A1 A2 A3 A4 b D D1 E E1 e F ddd eee fff N (number of balls) 1. Values in inches are converted from mm and rounded to 4 decimal digits. 71/84 Package characteristics Figure 36. Recommended PCB design rules (0.80/0.75 mm pitch BGA) STM32F103xx Dpad 0.37 mm 0.52 mm typ. (depends on solder Dsm mask registration tolerance Solder paste 0.37 mm aperture diameter - Non solder mask defined pads are recommended - 4 to 6 mils screen print Dpad Dsm 72/84 STM32F103xx Package characteristics Figure 38. Recommended footprint(1)(2) Figure 37. LQFP100, 100-pin low-profile quad flat package outline(1) 0.25 mm 0.10 inch GAGE PLANE k D D1 D3 75 76 51 75 51 L L1 C 76 0.5 50 0.3 50 16.7 14.3 b E3 E1 E 100 26 1.2 1 100 26 25 25 12.3 Pin 1 1 identification e ccc C 16.7 A1 ai14906 A2 A SEATING PLANE C 1L_ME 1. Drawing is not to scale. 2. Dimensions are in millimeters. Table 51. Symbol LQPF100, 100-pin low-profile quad flat package mechanical data millimeters Typ Min Max 1.6 0.05 1.4 0.22 1.35 0.17 0.09 16 14 12 16 14 12 0.5 0.6 1 3.5 0.0 0.08 7.0 0.45 0.75 15.8 13.8 16.2 14.2 15.8 13.8 0.15 1.45 0.27 0.2 16.2 14.2 0.6299 0.5512 0.4724 0.6299 0.5512 0.4724 0.0197 0.0236 0.0394 3.5 0.0 0.0031 7.0 0.0177 0.0295 0.622 0.5433 0.6378 0.5591 0.0551 0.0087 0.002 0.0531 0.0067 0.0035 0.622 0.5433 Typ inches(1) Min Max 0.063 0.0059 0.0571 0.0106 0.0079 0.6378 0.5591 A A1 A2 b c D D1 D3 E E1 E3 e L L1 k ccc 1. Values in inches are converted from mm and rounded to 4 decimal digits. 73/84 Package characteristics STM32F103xx Figure 40. Recommended footprint(1)(2) Figure 39. LQFP64, 64-pin low-profile quad flat package outline(1) D D1 A1 A A2 48 33 0.3 49 0.5 32 b 12.7 10.3 E1 E e 10.3 64 17 1.2 1 c 16 7.8 12.7 L1 L ai14398 ai14909 1. Drawing is not to scale. 2. Dimensions are in millimeters. Table 52. Dim. LQFP64, 64-pin low-profile quad flat package mechanical data mm Min Typ Max 1.60 0.05 1.35 0.17 0.09 12.00 10.00 12.00 10.00 0.50 0 0.45 3.5 0.60 1.00 Number of pins 7 0.75 0 0.0177 1.40 0.22 0.15 1.45 0.27 0.20 0.0020 0.0531 0.0067 0.0035 0.4724 0.3937 0.4724 0.3937 0.0197 3.5 0.0236 0.0394 7 0.0295 0.0551 0.0087 Min inches(1) Typ Max 0.0630 0.0059 0.0571 0.0106 0.0079 A A1 A2 b c D D1 E E1 e L L1 N 64 1. Values in inches are converted from mm and rounded to 4 decimal digits. 74/84 STM32F103xx Package characteristics Figure 41. LQFP48, 48-pin low-profile quad flat package outline(1) D D1 A1 A A2 Figure 42. Recommended footprint(1)(2) 0.50 1.20 13 12 24 25 0.30 b 9.70 5.80 7.30 0.20 E1 E e 7.30 1 48 37 36 1.20 L1 L c 5.80 9.70 ai14911 ai14399 1. Drawing is not to scale. 2. Dimensions are in millimeters. Table 53. Dim. LQFP48, 48-pin low-profile quad flat package mechanical data mm Min Typ Max 1.60 0.05 1.35 0.17 0.09 9.00 7.00 9.00 7.00 0.50 0 0.45 3.5 0.60 1.00 Number of pins 7 0.75 0 0.0177 1.40 0.22 0.15 1.45 0.27 0.20 0.0020 0.0531 0.0067 0.0035 0.3543 0.2756 0.3543 0.2756 0.0197 3.5 0.0236 0.0394 7 0.0295 0.0551 0.0087 Min inches(1) Typ Max 0.0630 0.0059 0.0571 0.0106 0.0079 A A1 A2 b C D D1 E E1 e L L1 N 48 1. Values in inches are converted from mm and rounded to 4 decimal digits. 75/84 Package characteristics STM32F103xx 6.2 Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 7: General operating conditions on page 31. The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x JA) Where: TA max is the maximum ambient temperature in C, JA is the package junction-to-ambient thermal resistance, in C/W, PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max = (VOL x IOL) + ((VDD - VOH) x IOH), PI/O max represents the maximum power dissipation on output pins where: taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 54. Symbol Thermal characteristics Parameter Thermal resistance junction-ambient LFBGA100 - 10 x 10 mm / 0.5 mm pitch Thermal resistance junction-ambient LQFP100 - 14 x 14 mm / 0.5 mm pitch Value 41 46 45 55 18 C/W Unit JA Thermal Resistance Junction-Ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch Thermal resistance junction-ambient VFQFPN 36 - 6 x 6 mm / 0.5 mm pitch 6.2.1 Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org 76/84 STM32F103xx Package characteristics 6.2.2 Selecting the product temperature range When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Table 55: Ordering information scheme. Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature. As applications do not commonly use the STM32F103xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application. The following examples show how to calculate the temperature range needed for a given application. Example 1: High-performance application Assuming the following application conditions: Maximum ambient temperature TAmax = 82 C (measured according to JESD51-2), IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output at low level with IOL = 20 mA, VOL= 1.3 V PINTmax = 50 mA x 3.5 V= 175 mW PIOmax = 20 x 8 mA x 0.4 V + 8 x 20 mA x 1.3 V = 272 mW This gives: PINTmax = 175 mW and PIOmax = 272 mW: PDmax = 175 + 272 = 447 mW Thus: PDmax = 464 mW Using the values obtained in Table 54 TJmax is calculated as follows: - For LQFP100, 46 C/W TJmax = 82 C + (46 C/W x 447 mW) = 82 C + 20.6 C = 102.6 C This is within the range of the suffix 6 version parts (-40 < TJ < 105 C). In this case, parts must be ordered at least with the temperature range suffix 6 (see Table 55: Ordering information scheme). Example 2: High-temperature application Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature TJ remains within the specified range. Assuming the following application conditions: Maximum ambient temperature TAmax = 115 C (measured according to JESD51-2), IDDmax = 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V PINTmax = 20 mA x 3.5 V= 70 mW PIOmax = 20 x 8 mA x 0.4 V = 64 mW This gives: PINTmax = 70 mW and PIOmax = 64 mW: PDmax = 70 + 64 = 134 mW Thus: PDmax = 134 mW 77/84 Package characteristics Using the values obtained in Table 54 TJmax is calculated as follows: - For LQFP100, 46 C/W TJmax = 115 C + (46 C/W x 134 mW) = 115 C + 6.2 C = 121.2 C This is within the range of the suffix 7 version parts (-40 < TJ < 125 C). STM32F103xx In this case, parts must be ordered at least with the temperature range suffix 7 (see Table 55: Ordering information scheme). Figure 43. LQFP100 PD max vs. TA 700 600 500 400 300 200 100 0 Suffix 6 Suffix 7 P D (mW) 10 5 11 5 TA ( C) 78/84 12 5 75 85 95 STM32F103xx Ordering information scheme 7 Ordering information scheme Table 55. Example: Device family STM32 = ARM-based 32-bit microcontroller Product type F = general-purpose Device subfamily 103 = performance line Pin count T = 36 pins C = 48 pins R = 64 pins V = 100 pins Flash memory size 6 = 32 Kbytes of Flash memory 8 = 64 Kbytes of Flash memory B = 128 Kbytes of Flash memory Package H = BGA T = LQFP U = VFQFPN Temperature range 6 = Industrial temperature range, -40 to 85 C. 7 = Industrial temperature range, -40 to 105 C. Options xxx = programmed parts TR = tape and real Ordering information scheme STM32 F 103 C 6 T 7 xxx For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office. 7.1 Future family enhancements Further developments of the STM32F103xx performance line will see an expansion of the current options. Larger packages will soon be available with up to 512 KB Flash, 64 KB SRAM and with extended features such as flexible static memory controller (FSMC) support, SDIO, I2S, DAC and additional timers and USARTS. 79/84 Revision history STM32F103xx 8 Revision history Table 56. Date 01-jun-2007 Document revision history Revision 1 Initial release. Flash memory size modified in Note 6, Note 4, Note 7, Note 8 and BGA100 pins added to Table 3: Pin definitions. Figure 3: STM32F103xx performance line BGA100 ballout added. THSE changed to TLSE in Figure 19: Low-speed external clock source AC timing diagram. VBAT ranged modified in Power supply schemes. tSU(LSE) changed to tSU(HSE) in Table 21: HSE 4-16 MHz oscillator characteristics. IDD(HSI) max value added to Table 23: HSI oscillator characteristics. Sample size modified and machine model removed in Electrostatic discharge (ESD). Number of parts modified and standard reference updated in Static latch-up. 25 C and 85 C conditions removed and class name modified in Table 32: Electrical sensitivities. RPU and RPD min and max values added to Table 33: I/O static characteristics. RPU min and max values added to Table 36: NRST pin characteristics. Figure 24: I2C bus AC waveforms and measurement circuit and Figure 23: Recommended NRST pin protection corrected. Notes removed below Table 7, Table 36, Table 42. IDD typical values changed in Table 11: Maximum current consumption in Run and Sleep modes. Table 37: TIMx characteristics modified. tSTAB, VREF+ value, tlat and fTRIG added to Table 44: ADC characteristics. In Table 28: Flash memory endurance and data retention, typical endurance and data retention for TA = 85 C added, data retention for TA = 25 C removed. VBG changed to VREFINT in Table 10: Embedded internal reference voltage. Document title changed. Controller area network (CAN) section modified. Figure 11: Power supply scheme modified. Features on page 1 list optimized. Small text changes. Changes 20-Jul-2007 2 80/84 STM32F103xx Table 56. Date Revision history Document revision history (continued) Revision Changes STM32F103CBT6, STM32F103T6 and STM32F103T8 root part numbers added (see Table 2: Device features and peripheral counts (STM32F103xx performance line)) VFQFPN36 package added (see Section 6: Package characteristics). All packages are ECOPACK(R) compliant. Package mechanical data inch values are calculated from mm and rounded to 4 decimal digits (see Section 6: Package characteristics). Table 3: Pin definitions updated and clarified. Table 25: Low-power mode wakeup timings updated. TA min corrected in Table 10: Embedded internal reference voltage. Note 4 added below Table 21: HSE 4-16 MHz oscillator characteristics. VESD(CDM) value added to Table 31: ESD absolute maximum ratings. Note 3 added and VOH parameter description modified in Table 34: Output voltage characteristics. Note 1 modified under Table 35: I/O AC characteristics. Equation 1 and Table 45: RAIN max for fADC = 14 MHz added to Section 5.3.17: 12-bit ADC characteristics. VAIN, tS max, tCONV, VREF+ min and tlat max modified, notes modified and tlatr added in Table 44: ADC characteristics. Figure 29: ADC accuracy characteristics updated. Note 1 modified below Figure 30: Typical connection diagram using the ADC. Electrostatic discharge (ESD) on page 52 modified. Number of TIM4 channels modified in Figure 1: STM32F103xx performance line block diagram. Maximum current consumption Table 11, Table 12 and Table 13 updated. Vhysmodified in Table 33: I/O static characteristics. Table 47: ADC accuracy updated. tVDD modified in Table 8: Operating conditions at power-up / power-down. VFESD value added in Table 29: EMS characteristics. Values corrected, note 2 modified and note 3 removed in Table 25: Low-power mode wakeup timings. Table 14: Typical and maximum current consumptions in Stop and Standby modes: Typical values added for VDD/VBAT = 2.4 V, Note 5 modified, Note 3 added. Table 17: Typical current consumption in Standby mode added. On-chip peripheral current consumption on page 41 added. ACCHSI values updated in Table 23: HSI oscillator characteristics. Vprog added to Table 27: Flash memory characteristics. Upper option byte address modified in Figure 8: Memory map. Typical fLSI value added in Table 24: LSI oscillator characteristics and internal RC value corrected from 32 to 40 kHz in entire document. TS_temp added to Table 48: TS characteristics. NEND modified in Table 28: Flash memory endurance and data retention. TS_vrefint added to Table 10: Embedded internal reference voltage. Handling of unused pins specified in General input/output characteristics on page 53. All I/Os are CMOS and TTL compliant. Figure 31: Power supply and reference decoupling (VREF+ not connected to VDDA) modified. tJITTER and fVCO removed from Table 26: PLL characteristics. Appendix A: Important notes on page 81 added. Added Figure 13, Figure 14, Figure 15 and Figure 17. 18-Oct-2007 3 81/84 Revision history Table 56. Date STM32F103xx Document revision history (continued) Revision Changes Document status promoted from preliminary data to datasheet. The STM32F103xx is USB certified. Small text changes. Power supply schemes on page 10 modified. Number of communication peripherals corrected for STM32F103Tx and number of GPIOs corrected for LQFP package in Table 2: Device features and peripheral counts (STM32F103xx performance line). Main function and default alternate function modified for PC14 and PC15 in, Note 5 added and Remap column added in Table 3: Pin definitions. VDD-VSS ratings and Note 1 modified in Table 4: Voltage characteristics, Note 1 modified in Table 5: Current characteristics. Note 1 and Note 2 added in Table 9: Embedded reset and power control block characteristics. IDD value at 72 MHz with peripherals enabled modified in Table 12: Maximum current consumption in Run mode, code with data processing running from RAM. IDD value at 72 MHz with peripherals enabled modified in Table 13: Maximum current consumption in Sleep mode, code running from Flash or RAM. IDD_VBAT typical value at 2.4 V modified and IDD_VBAT maximum values added in Table 14: Typical and maximum current consumptions in Stop and Standby modes. Note added in Table 15 on page 39 and Table 16 on page 40. ADC1 and ADC2 consumption and notes modified in Table 18: Peripheral current consumption. tSU(HSE) and tSU(LSE) conditions modified in Table 21 and Table 22, respectively. Maximum values removed from Table 25: Low-power mode wakeup timings. tRET conditions modified in Table 28: Flash memory endurance and data retention. Figure 11: Power supply scheme corrected. Figure 16: Current consumption in Stop mode with regulator in Lowpower mode versus temperature at VDD = 3.3 V and 3.6 V added. Note removed below Figure 25: SPI timing diagram - slave mode and CPHA = 0. Note added below Figure 26: SPI timing diagram - slave mode and CPHA = 1(1). Details on unused pins removed from General input/output characteristics on page 53. Table 40: SPI characteristics updated. Table 41: USB startup time added. VAIN, tlat and tlatr modified, note added and Ilkg removed in Table 44: ADC characteristics. Test conditions modified and note added in Table 47: ADC accuracy. Note added below Table 45 and Table 48. Inch values corrected in Table 51: LQPF100, 100-pin low-profile quad flat package mechanical data, Table 52: LQFP64, 64-pin low-profile quad flat package mechanical data and Table 53: LQFP48, 48-pin lowprofile quad flat package mechanical data. JAvalue for VFQFPN36 package added in Table 54: Thermal characteristics. Order codes replaced by Section 7: Ordering information scheme. MCU `s operating conditions modified in Typical current consumption on page 38. Avg_Slope and V25 modified in Table 48: TS characteristics. I2C interface characteristics on page 58 modified. Impedance size specified in A.4: Voltage glitch on ADC input 0 on page 81. 22-Nov-2007 4 82/84 STM32F103xx Table 56. Date Revision history Document revision history (continued) Revision Changes Figure 2: Clock tree on page 16 added. Maximum TJ value given in Table 6: Thermal characteristics on page 31. CRC feature added (see CRC (cyclic redundancy check) calculation unit on page 9 and Figure 8: Memory map on page 26 for address). IDD modified in Table 14: Typical and maximum current consumptions in Stop and Standby modes. ACCHSI modified in Table 23: HSI oscillator characteristics on page 48, note 2 removed. PD, TA and TJ added, tprog values modified and tprog description clarified in Table 27: Flash memory characteristics on page 50. tRET modified in Table 28: Flash memory endurance and data retention. VNF(NRST) unit corrected in Table 36: NRST pin characteristics on page 56. Table 40: SPI characteristics on page 60 modified. IVREF added to Table 44: ADC characteristics on page 64. Table 46: ADC accuracy - limited test conditions added. Table 47: ADC accuracy modified. LQFP100 package specifications updated (see Section 6: Package characteristics on page 69). Recommended LQFP100, LQFP 64, LQFP48 and VFQFPN36 footprints added (see Figure 38, Figure 40, Figure 42 and Figure 34). Section 6.2: Thermal characteristics on page 76 modified, Section 6.2.1 and Section 6.2.2 added. Appendix A: Important notes on page 81 removed. Small text changes. Figure 8: Memory map clarified. In Table 28: Flash memory endurance and data retention: - NEND tested over the whole temperature range - cycling conditions specified for tRET - tRET min modified at TA = 55 C V25, Avg_Slope and TL modified in Table 48: TS characteristics. CRC feature removed. 14-Mar-2008 5 21-Mar-2008 6 83/84 STM32F103xx Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. (c) 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 84/84 |
Price & Availability of STM32F103X608
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |