Part Number Hot Search : 
F14468 ZD5242B 92315 D9003 1615A SFH460 C68HC KSR231
Product Description
Full Text Search
 

To Download SKM50GB063D Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Absolute Maximum Ratings
Symbol Conditions 1)
VCES VCGR IC ICM VGES Ptot Tj, (Tstg) Visol humidity climate IF = -IC IFM = -ICM IFSM I 2t RGE = 20 k Tcase = 25/75 C Tcase = 25/75 C; tp = 1 ms per IGBT, Tcase = 25 C AC, 1 min. DIN 40040 DIN IEC 68 T.1 Tcase = 25/80 C Tcase = 25/80 C; tp = 1 ms tp = 10 ms; sin.; Tj = 150 C tp = 10 ms; Tj = 150 C
Values Units
600 600 70 / 50 140 / 100 20 250 -40 ... +150 (125) 2500 Class F 40/125/56 75 / 50 140 / 100 440 970 V V A A V W C V
SEMITRANS(R) M Superfast NPT-IGBT Modules SKM 50 GB 063 D
Inverse Diode A A A A2s
SEMITRANS 2
Characteristics
Symbol Conditions 1)
V(BR)CES VGE = 0, IC = 1,5 mA VGE(th) VGE = VCE, IC = 1 mA ICES Tj = 25 C VGE = 0 VCE = VCES Tj = 125 C IGES VGE = 20 V, VCE = 0 VCEsat VGE = 15 V; IC = 30 A IC = 50 A VCEsat Tj = 25 (125) C gfs VCE = 20 V, IC = 50 A CCHC Cies Coes Cres LCE td(on) tr td(off) tf Eon Eoff per IGBT VGE = 0 VCE = 25 V f = 1 MHz VCC = 300 V VGE = -15 V / +15 V3) IC = 50 A, ind. load RGon = RGoff = 22 Tj = 125 C
VCES
4,5 - - - - - 20 - - - - - - - - - - - - - - - - - - -
min.
typ.
- 5,5 0,1 3 - 1,8(2,0) 2,1(2,4) - - 2800 300 200 - 50 40 300 30 2,5 1,8 1,45(1,35) - 10 31 3,2 - - -
max.
- 6,5 1,5 - 100 - 2,5(2,8) - 350 - - - 30 - - - - - - 1,7 0,9 15 - - 0,5 1,0 0,05
Units
V V mA mA nA V V S pF pF pF pF nH ns ns ns ns mWs mWs V V m A C C/W C/W C/W
GB Features * N channel, homogeneous Silicon structure (NPT- Non punchthrough IGBT) * Low tail current with low temperature dependence * High short circuit capability, self limiting if term. G is clamped to E * Pos. temp.-coeff. of VCEsat * 50 % less turn off losses 9) * 30 % less short circuit current 9) * Very low Cies, Coes, Cres 9) * Latch-up free * Fast & soft inverse CAL diodes 8) * Isolated copper baseplate using DCB Direct Copper Bonding Technology without hard mould * Large clearance (10 mm) and creepage distances (20 mm) Typical Applications * Switching (not for linear use) * Switched mode power supplies * UPS * Three phase inverters for servo / AC motor speed control * Pulse frequencies also above 10 kHz
1)
Inverse Diode 8) VF = VEC IF = 50 A VTO rt IRRM Qrr Rthjc Rthjc Rthch VGE = 0 V; Tj = 25 (125 C)
Tj = 125 C Tj = 125 C IF = 50 A; Tj = 125 C2) IF = 50 A; Tj = 125 C2) per IGBT per diode per module
Thermal characteristics
Tcase = 25 C, unless otherwise specified 2) IF = - IC, VR = 300 V, -diF/dt = 800 A/s, VGE = 0 V 3) Use VGEoff = -5... -15 V 8) CAL = Controlled Axial Lifetime Technology 9) Compared to PT-IGBT
Cases and mech. data B 6 - 12
(c) by SEMIKRON 0898 B6-7
SKM 50 GB 063 D
300 W 250 6 200 5 150 4 3 2 50 1 P tot 0 0 TC 20 40 60 80 100 120 140 C 160 E 0 0 IC 20 40 60 80 100 120 A 140 E off
M50GB 06.X LS -1
8 mWs 7
M50GB 06.X LS -2
E on
Tj = 125 C VCE = 300 V VGE = 15 V RG = 22
100
Fig. 1 Rated power dissipation Ptot = f (TC)
M50GB 06.X LS -3
Fig. 2 Turn-on /-off energy = f (IC)
M50GB 06.X LS -4
6 mWs 5
1000
E on
Tj = 125 C VCE = 300 V VGE = 15 V IC = 50 A
A tp=12s
1 pulse TC = 25 C Tj 150 C
100
4 100s 3 E off 2 1 1 E 0 0 RG 20 40 60 80 100 120 IC 0,1 1 V CE 10 100 1000 V 10000 1ms 10ms 10
Not for linear use
Fig. 3 Turn-on /-off energy = f (RG)
M50GB 06.X LS -5
Fig. 4 Maximum safe operating area (SOA) IC = f (VCE)
M50GB 06.X LS -6
2,5
Tj 150 C
VGE = 15 V RGoff = 22 IC = 50 A
12
2
10 di/dt= 300 A/s 900 A/s 1500 A/s
8 1,5 6 1 4 0,5 ICpuls/IC 0 0 V CE 100 200 300 400 500 600 V 700
Tj 150 C VGE = 15 V tsc 10 s L < 35 nH IC = 50 A
allowed numbers of short circuits: <1000 time between short circuits: >1s
2 ICSC/IC 0 0 V CE
100
200
300
400
500
600 V
700
Fig. 5 Turn-off safe operating area (RBSOA)
Fig. 6 Safe operating area at short circuit IC = f (VCE)
B6-8
0796
(c) by SEMIKRON
M50GB 06.X LS -8
80 A 70 60 50 40 30 20 10 IC 0 0 TC 20 40 60 80 100 120 140 160 C
Tj = 150 C VGE 15V
Fig. 8 Rated current vs. temperature IC = f (TC)
M50GB 06.X LS -9
M 50GB 06.X LS -10
100 A 80 17V 15V 13V 11V 9V 7V
100 A 80 17V 15V 13V 11V 9V 7V
60
60
40
40
20 IC 0 0 V CE 1 2 3 4 V 5
20 IC 0 0 V CE 1 2 3 4 V 5
Fig. 9 Typ. output characteristic, tp = 250 s; Tj = 25 C
Fig. 10 Typ. output characteristic, tp = 250 s; Tj = 125 C
M50GB 06.X LS -12
100
Pcond(t) = VCEsat(t) * IC(t) VCEsat(t) = VCE(TO)(Tj) + rCE(Tj) * IC(t) VCE(TO)(Tj) 1,2 - 0,001 (Tj -25) [V] typ.: rCE(Tj) = 0,018 + 0,00008 (Tj -25) [] max.: rCE(Tj) = 0,026 + 0,00008 (Tj -25) []
A 80
60
40
20
valid for VGE = + 15 +2 [V]; IC 0,3 ICnom -1
IC 0 0 V GE 2 4 6 8 10 12 V 14
Fig. 11 Saturation characteristic (IGBT) Calculation elements and equations
Fig. 12 Typ. transfer characteristic, tp = 80 s; VCE = 20 V
(c) by SEMIKRON
B6-9
SKM 50 GB 063 D
M 50GB06.XLS-13
20 V 18 16 14 12 10 8 6 4 VGE 2 0 0 QGate 40 80 120 nC 160 100V 300V
M 50GB06.XLS-14
ICpuls = 50 A
10 nF Cies 1
VGE = 0 V f = 1 MHz
Coes Cres 0,1
C 0,01 0 VCE 10 20 30 V 40
Fig. 13 Typ. gate charge characteristic
M 50GB06.XLS-15
Fig. 14 Typ. capacitances vs.VCE
M 50GB06.XLS-16
1000 ns tdoff
Tj = 125 C VCE = 300 V VGE = 15 V RGon = 22 RGoff = 22 induct. load
1000
t doff ns
Tj = 125 C VCE = 300 V VGE = 15 V IC = 50 A induct. load
tdon 100 tr tdon t tf t 10 0 IC 20 40 60 80 100 A 120 10 0 RG 20 40 60 80 100 120 tf 100 tr
Fig. 15 Typ. switching times vs. IC
M 50GB06.XLS-17
Fig. 16 Typ. switching times vs. gate resistor RG
M 50GB06.XLS-18
80 A Tj=125C typ. 60 Tj=25C typ. Tj=125C max. Tj=25C max. 40
0,8 mJ RG= 10
VCC = 300 V Tj = 125 C VGE = 15 V
0,6
15 25
0,4
40 80
20
0,2 EoffD 0 0 VF 0,4 0,8 1,2 1,6 V 2 0 IF 20 40 60 80 A 100
IF 0
Fig. 17 Typ. CAL diode forward characteristic
B 6 - 10
Fig. 18 Diode turn-off energy dissipation per pulse
0898 (c) by SEMIKRON
M 50GB 06.X LS -19
M 50GB 06.X LS -20
1 K/W
1 K/W
0,1 D=0,50 0,20 0,10 0,05 0,02 0,01 single pulse
0,1
D=0,5 0,2 0,1 0,05 0,02 0,01
0,01
0,01 single pulse ZthJC 0,001 0,00001 tp
ZthJC 0,001 0,00001 tp
0,0001
0,001
0,01
0,1 s
1
0,0001
0,001
0,01
0,1 s
1
Fig. 19 Transient thermal impedance of IGBT ZthJC = f (tp); D = tp / tc = tp * f
80 A 60
M50GB 06.X LS -22
Fig. 20 Transient thermal impedance of inverse CAL diodes ZthJC = f (tp); D = tp / tc = tp * f
M50GB 06.X LS -23
RG= 10
VCC = 300 V Tj = 125 C VGE = 15 V
80 A RG= 10
60
VCC = 300 V Tj = 125 C VGE = 15 V IF = 50 A
15 40 25 40 20 IRR 0 0 IF 20 40 60 80 A 100 80 20 80 40 40 25
15
IRR 0 0 diF/dt 1000 2000 3000 A/s 4000
Fig. 22 Typ. CAL diode peak reverse recovery current IRR = f (IF; RG)
M 50GB 06.X LS -24
Fig. 23 Typ. CAL diode peak reverse recovery current IRR = f (di/dt) VCC = 300 V Tj = 125 C VGE = 15 V
6 C 5 80 40 25 15 RG= 10 IF= 75 A 50 A 38 A 3 25 A 2 13 A 1 Qrr 0 0 diF/dt 1000 2000 3000 4000 A/s
4
5000
Fig. 24 Typ. CAL diode recovered charge
(c) by SEMIKRON
0898
B 6 - 11
SKM 50 GB 063 D
SEMITRANS 2 Case D 61 UL Recognized File no. E 63 532
SKM 50 GB 063 D
Dimensions in mm Case outline and circuit diagram
Mechanical Data
Symbol Conditions min.
M1 M2 a w to heatsink, SI Units(M6) to heatsink, US Units for terminals, SI Units(M5) for terminals, US Units 3 27 2,5 22 - -
Values typ.
- - - - - -
Units max.
5 44 5 44 5x9,81 160 Nm lb.in. Nm lb.in. m/s2 g
This is an electrostatic discharge sensitive device (ESDS). Please observe the international standard IEC 747-1, Chapter IX. Eight devices are supplied in one SEMIBOX A without mounting hardware, which can be ordered separately under Ident No. 33321100 (for 10 SEMITRANS 2) Larger packing units of 20 or 42 pieces are used if suitable Accessories B 6 - 4 SEMIBOX C - 1.
B 6 - 12
0898
(c) by SEMIKRON


▲Up To Search▲   

 
Price & Availability of SKM50GB063D

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X