![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
www.fairchildsemi.com FAN8620B 12V Spindle Motor and Voice Coil Motor Driver Features Spindle Motor Driver * * * * * * * Soft commutation Spindle brake after retract Adjustable brake delay time 1.5A max. current power driver Low output saturation voltage: 1V typical @1.2A PWM decoder & filter for soft commutation The external circuit (ASIC) based start-up, commutation and motor speed control Description The FAN8620B is an ASIC combination chip, designed for the HDD application, it includes the following functions: spindle motor drive, voice coil motor drive, retract and power management. To drive and control the spindle, the external ASIC provides the appropriate control signals (Start up, commutation, speed control) to the FAN8620B. The spindle motor condition is monitored by the FG output and the motor speed control is accomplished via the PWMSP input. The ASIC controls the voice coil motor current via PWMH and PWML inputs and the power management circuit always monitors the power supply voltages. Voice Coil Motor Driver * * * * * * * Trimmed low offset current 1.2A max. current power driver Gain selection and adjustable gain Automatic power failure retract function Class AB linear amplifier with no dead zone Low output saturation voltage: 0.8V typical @1.0A Internal full bridge with VPNP (Vertical PNP) & NPN transistors 48-QFPH-1414 Power Monitoring * * * * Power on reset with delay Hysteresis on both power comparators Over temperature & over current shut down 5V and 12V power monitor threshold accuracy 2% Others * Can be used with 5Volt and 3.3Volt control signals(CNTL1,CNTL2 & CNTL3) for ASIC Interface Package * 48QFPH (48 pin quad flat package heat-sink) Typical Application * Hard disk drive (HDD) Ordering Information Device FAN8620B Package 48-QFPH-1414 Operating Temp. 0 ~ 70C Rev. 1.0.0 May. 2000. (c)2000 Fairchild Semiconductor International 1 FAN8620B Pin Assignments SENSE12 CBRAKE PWMSP CCOMP 38 BRAKE PVCC1 CNTL3 CNTL2 CNTL1 CFSP GND TAB 48 47 46 45 44 43 42 41 40 39 37 U PWMSF CFSF ADJ SENSE5 VDD FG 1 2 3 4 5 6 36 35 34 33 32 31 N SUBGND V PCS W SUBGND TAB FAN8620B 7 8 9 10 11 12 30 29 28 27 26 25 TAB VREF MCLK HALFVCC POR CDLY GAINSEL ERROUT VDD ERRIN VCM+ PGND SENSEOUT 13 14 15 16 17 18 19 20 21 22 23 24 CFVCM PWMH VCC SUBGND FILOUT SENSE CRET PWML PVCC2 2 VCM- TAB CRET2 RRET FAN8620B Pin Definitions Pine Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Pin Name PWMSF CFSF ADJ SENSE5 VDD FG VREF MCLK HALFVCC POR CDLY GAINSEL PWMH PWML CFVCM CRET VCC FILOUT SENSE CRET2 PVCC2 VCM(-) SUBGND RRET SENSEOUT PGND VCM(+) ERRIN VDD ERROUT SUBGND W I/O I O O I O O I I I O I O O O I O O Pin Function Description PWM input for spindle soft commutation Capacitor for spindle PWM soft commutation filter Reference voltage adjustable Adjustable threshold voltage to 5V 5V power supply Frequency generation to spindle speed Voltage reference output for ASIC power Clock from ASIC for commutation 1/2 VCC pin Fault output(Power On Reset & Thermal Shut Down) Delay capacitor for power on reset VCM current Amplifier gain selection PWM signal input (MSB) PWM signal input (LSB) Filter capacitor for VCM PWM control Delay capacitor for retract 12V power line VCM PWM output VCM current sense Amplifier input Power for VCM retract 12V power line for VCM output VCM negative output Ground Adjustable maximum retract current VCM current sense Amplifier output Ground VCM positive output VCM error Amplifier negative input 5V power supply VCM error Amplifier output Ground Spindle motor W phase output 3 FAN8620B Pin Definitions (Continued) Pine Number 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Pin Name PCS V SUBGND N U CCOMP BRAKE CBRAKE PVCC1 SENSE12 GND CNTL1 CNTL2 CNTL3 PWMSP CFSP I/O O O O O I I I I Pin Function Description Spindle output current sensing Spindle motor V phase output Ground Spindle motor neutral point Spindle motor U phase output Spindle output control compensation Dynamic brake Back-EMF charging capacitor for brake power 12V power line for spindle Adjustable for threshold voltage to 12V Ground Control input for spindle and brake Control input for start-up clock and soft commutation Control input for VCM Amplifier & retract PWM input for spindle speed control Filter capacitor for spindle PWM control 4 FAN8620B Internal Block Diagram POR Vreg Power-on Reset CNTL 1,2,3 Interface FG MCLK PWMSF Custom Digital ASIC Spindle Motor Driver U V W N 3-Phase BLDC Motor PWMSP VCM+ VCM- GAINSEL PWMH PWML Voice Coil Motor Voice Coil Motor Driver Retract Brake FAN8620B 5 FAN8620B Equivalent Circuits PWM decoder filter input of Spindle part PWM decoder filter Capacitor of Spindle part VDD VDD + 22 #1, #47 #2, #48 + - - 100 Internal switch Internal Referecnce Voltage Regulator part Sense5 input VDD VDD 27 #3 VDD #4 27 Internal 1.3V + #7 FG output MCLK input VDD VDD 50k 27 #6 #8 27 50k 50k 6 FAN8620B Equivalent Circuits (Continued) VCM power amplifier reference Power on reset part VDD #17 27 #11 12.6k #9 12.6k #10 27 VDD 50k + VDD 15 TSD Internal 2.5V VCM gain selection input VCM PWM high input VDD VDD 27 #12 10k #13 10k 27 10k 500 Internal switch VCM PWM low input VCM PWM filter Capacitor VDD VCC 27 #14 #15 + 15.6 3k + + - Internal switch Internal 4V 7 FAN8620B Equivalent Circuits (Continued) Filtered VCM PWM command output VCM current sense input VCC VCC + #18 Internal DEC OUT #19 Capacitor for retract power Maximum retract current set input U 30 VCC V W VCC 27 #20 Retract Block #24 2k Spindle motor output compensation Capacitor Spindle motor output and Back-EMF sensing part VCC VDD VCC #32, 34, 37 VCC 60 #38 #33 VCC 60 #36 + + Internal 4.2V Retract Block 8 FAN8620B Equivalent Circuits (Continued) Dynamic brake part CNTL1, 2, 3 input VCC VDD 40 VDD 2k #40 27 #44, #45, #46 27 #39 8k VCC U VCM output and control part #17 VCC #9 #30 Internal 4V VCC + 60 #28 VCC VCC #25 60 + + #22 #42 + #27 VCC Sense12 input VCC 60 #19 Internal 4V 9 FAN8620B Absolute Maximum Ratings (Ta = 25C) Parameter Maximum signal block supply voltage for 5V line Maximum signal block supply voltage for 12V line Maximum power block supply voltage for 12V line Maximum output current of Spindle motor Maximum output current of VCM Power dissipation Storage temperature Maximum junction temperature Operating ambient temperature Symbol VDDMAX VCCMAX PVCCMAX ISOMAX IVOMAX PD TSTG TJMAX TA Value 6.0 15.0 15.0 2.0 1.2 3.0 note Unit V V V A A W C C C -55 ~ 125 150 0 ~ 70 Notes: 1. Power dissipation is reduced 16mW / C for using above Ta=25C. 2. Do not exceed Pd and SOA(Safe Operating Area). Power Dissipation Curve Pd[mW] 3,000 2,000 1,000 0 SOA 0 25 50 70 100 125 150 175 Ambient temperature, Ta [C] Recommended Operating Conditions (Ta = 25C) Parameter Supply voltage Supply voltage for logic circuit Symbol VCC, PVCC1, PVCC2 VDD Min. 10.8 4.5 Typ. 12.0 5.0 Max. 13.2 5.5 Unit V V 10 FAN8620B Electrical Characteristics (Ta=25C, unless otherwise specified) Parameter SUPPLY CURRENT(1) IDD1 IDD2 IDD3 IDD4 ICC1 ICC2 ICC3 ICC4 VTH12 VHYS12 V12 VTH5 VHYS5 V5 ICPOR VTHPOR VPOH VPOL TdPOR VCTL1H ICTL1H VCTL1L ICTL1L CNTL1= Low Brake Mode (CNTL1= Low) Stand by Normal Mode ( CNTL1 = CNTL3 = High ) Retract Mode (CNTL3=Low) Brake Mode ( CNTL1 =Low) Stand by Normal Mode ( CNTL1 = CNTL3 = High) Retract Mode (CNTL3 =Low) VCC=Sweep, VDD=5V VCC=Sweep, VDD=5V VCC=12V, VDD=5V VCC=12V, VDD=Sweep VCC=12V, VDD=Sweep VCC=12V, VDD=5V VCC=12V, VDD=5V CDLY=Sweep VCC=12V, VDD=5V VCC=12V, VDD=5V CDLY=220nF CNTL1 = High - - - - - - - - 9.1 100 3.0 3.6 50 2.90 -17.0 2.3 4.5 0 - 2.07 65 - -200 55 20 20 20 7 9 30 9 9.45 200 3.2 3.95 100 3.23 -13.5 2.5 - - 40 - 100 - -165 65 25 25 25 12 15 50 14 9.8 300 3.4 4.3 150 3.55 -10.0 2.7 VDD 0.5 - - 160 1.43 -130 mA mA mA mA mA mA mA mA V mV V V mV V uA V V V ms V uA V uA 5V line supply current 1 5V line supply current 2 5V line supply current 3 5V line supply current 4 12V line supply current 1 12V line supply current 2 12V line supply current 3 12V line supply current 4 POWER MONITOR Threshold voltage level for 12V Hysteresis on 12V comparator Adjustable pin voltage for 12V Threshold voltage level for 5V Hysteresis on 5V comparator Adjustable pin voltage for 5V POWER ON RESET GENERATOR Charging current for POR Capacitor POR threshold voltage Output high voltage Output low voltage Power on reset delay(2) CONTROL INPUT (3) Symbol Condition Min. Typ. Max. Units Logic control input 1 HIGH voltage Logic control input 1 HIGH current Logic control input 1 LOW voltage Logic control input 1 LOW current 11 FAN8620B Electrical Characteristics (Continued) (Ta=25C, unless otherwise specified) Parameter RUNNING MODE CHECK Back-EMF threshold voltage(2) FG output high voltage FG output low voltage Running mode check SPINDLE FG GENERATION FG frequency FG duty SPINDLE PWM CONTROL PWM high level input voltage(2) PWM low level input voltage (2) Symbol VBTH VFGH VFGL RM1 FG DTFG VSPMH VSPML IPSP1 VSP2 IPSP2 VSP1 VSPD VSP3 ICFSP1 ICFSP2 VBC VBH VBL Condition - - - U=V=W=5V, N=100Hz U,V,W=120 shift pulse(100Hz) U,V,W=120 shift pulse(1KHz) - - PWMSP=100% PWMSP=100% PWMSP=0% PWMSP=0% - PWMSP=50% PWMSP=0%, CFSP=2.5V SPMSP=100%, CFSP=2.5V - (Test only) - Min. 65 4.5 - - 45 3.0 - 100 1.5 -200 3.1 1.2 2.35 -200 100 11.0 - - Typ. 80 - - 100 300 50 - - 150 1.7 -150 3.3 1.6 2.5 -150 150 - VDD - Max. 95 - 0.5 - - 55 - 2.0 200 1.9 -100 3.5 2.0 2.65 -100 200 - - 0.5 Units mV V V Hz Hz % V V uA V uA V V V uA uA V V V High input current at PWMSP CFSP voltage2(100% duty of PWMSP) Low input current at PWMSP CFSP voltage1(0% duty of PWMSP) CFSP voltage amplitude CFSP voltage3 (50% of PWMSP) CFSP charging current CFSP discharge current BRAKE CBrake output voltage Brake output high voltage Brake output low voltage 12 FAN8620B Electrical Characteristics (Continued) (Ta=25C, unless otherwise specified) Parameter PWM high level input voltage(2) PWM low level input voltage (2) Symbol VSFMH VSFML IPFP1 VSF2 IPSF2 VSF1 VSFD VSF3 ICFSF1 ICFSF2 VSU5U VSU5V VSU5W VSV5L VSU5L VSU5L FU FV FW IULQU IVLQU IWLQU IULQL IVLQL IWLQL GMSP ICOMP1 ICOMP2 ICOMP3 Condition - - PWMSF=100% PWMSF=100% PWMSF=0% PWMSF=0% - PWMSF=50% PWMSF=0%, CFSP=2.5V SPMSF=100%, CFSP=2.5V RU,RV,RW=5 RU,RV,RW=5 RU,RV,RW=5 RU,RV,RW=5 RU,RV,RW=5 RU,RV,RW=5 CNTL2=12KHz CNTL2=12KHz CNTL2=12KHz - - - - - - RU,RV,RW=5 PWMSP=0% PWMSP=50% PWMSP=100% Min. 3.0 - 100 2.60 -200 2.10 425 2.35 -150 50 - - - - - - - - - -10 -10 -10 -20 -20 -20 - -10 -400 -750 Typ. - - 150 2.75 -150 2.25 475 2.50 -100 100 - - - - - - 1 1 1 0 0 0 0 0 0 0.85 0 -300 -630 Max. - 2.0 200 2.90 -100 2.40 525 2.65 -50 150 0.9 0.9 0.9 0.8 0.8 0.8 - - - 10 10 10 20 20 20 - 10 -200 -500 Units V V uA V uA V mV V uA uA V V V V V V KHz KHz KHz uA uA uA uA uA uA A/V uA uA uA SPINDLE PWM SOFT COMMUTATION High input current at PWMSF CFSF voltage2(100% duty of PWMSF) Low input current at PWMSF CFSF voltage1(0% duty of PWMSF) CFSF voltage amplitude CFSF voltage3 (50% of PWMSF) CFSF charging current CFSF discharge current SPINDLE OUTPUT U saturation voltage_upper V saturation voltage_upper W saturation voltage_upper U saturation voltage_lower V saturation voltage_lower W saturation voltage_lower U output frequency V output frequency W output frequency Leakage current U upper Leakage current V upper Leakage current W upper Leakage current U lower Leakage current V lower Leakage current W lower Transconductance gain SPM CCOMP charging current1 CCOMP charging current2 CCOMP charging current3 13 FAN8620B Electrical Characteristics (Continued) (Ta=25C, unless otherwise specified) Parameter REGULATOR Adjustable PIN voltage Regulator output voltage Regulator line regulation(2) Regulator load regulation(2) VCM PWM CONTROL High PWMH input current Low PWMH input current High PWML input current Low PWML input current PWMH high level input voltage PWMH low level input voltage PWML low level input voltage CFVCM voltage1 CFVCM voltage5 CFVCM voltage9 PWM current ratio (VCM) PWMH current variation PWML current variation VCM PWM FILTER Maximum phase shift(2) Filter cut-off frequency(2) Filter attenuation at 1MHz (2) (2) (2) Symbol VADJ VREG RLINE RLOAD IPWMH1 IPWMH2 IPWML1 IPWM2 VPWMH1 VPWMH2 VPWML1 VPWM2 VCFVC1 VCFVC5 VCFVC9 RPWM IVPWM IVPWM DF FCO aFILTER Condition - - - IO = 500mA PWMH = 100% PWMH = 0% PWML = 100% PWML = 0% - - - - PWMH=100%,PWML=100% PWMH=50%,PWML=50% PWMH=0%,PWML=0% - - - Measure at 500HZ, CFVCM=10nF - - Min. 1.29 3.1 - - 36 -200 36 -200 3.0 - 3.0 - 5.56 3.80 1.66 - 1.2 17.7 - - - Typ. 1.31 3.3 - - 48 -150 48 -150 - - - - 5.95 4.00 2.05 64 1.3 20.3 - 100 70 Max. 1.33 3.5 2.0 2.0 60 -100 60 -100 - 2.0 - 2.0 6.34 4.20 2.44 - 1.4 22.3 2 - - Units V V % % uA uA uA uA V V V V V V V - mA uA deg kHz dB PWML high level input voltage(2) (2) 14 FAN8620B Electrical Characteristics (Continued) (Ta=25C, unless otherwise specified) Parameter VCM REFERENCE VOLTAGE VCM reference voltage VCM ERROR AMPLIFIER Amplifier output high Amplifier output low Short circuit current Input offset (2) Symbol VREF VEOH VEOL IESC VOSE AVE BGE VSOH VSOL ISSC VOSE BGS gain1(2) (2) Condition CNTL3= High - - - - - - - - - - - Gainsel=High Gainsel=Low - - - - - Min. 3.8 10.8 - 8 -15 - - 10.8 - 10 -15 - - - - 11.0 - -15 - Typ. 4.0 - - - 0 80 2 - - - 0 2 18 6 22.9 - - 0 2 Max. 4.2 - 1.2 - 15 - - - 1.2 - 15 - - - - - 1.0 15 - Units V V V mA mV dB MHz V V mA mV MHz dB dB dB V V mV MHz voltage(2) (2) Error amplifier open loop gain(2) Unit gain bandwidth VCM SENSE AMPLIFIER Amplifier output high Amplifier output low Short circuit current(2) Input offset voltage(2) Unit gain bandwidth (2) Sense amplifier voltage AVS1 AVS2 APO VPOH VPOL VOSE BGP Sense amplifier voltage gain2 VCM POWER AMPLIFIER Power Amplifier gain Power Amplifier output high voltage Power Amplifier output low voltage Input offset voltage(2) Unit gain bandwidth(2) 15 FAN8620B Electrical Characteristics (Continued) (Ta=25C, unless otherwise specified) Parameter VCM AMPLIFIER TOTAL VCM offset current VCM transconductance gain high VCM transconductance gain low VCM+ saturation voltage lower VCM- saturation voltage upper VCM+ saturation voltage upper VCM- saturation voltage lower Leakage current power Amplifier1 RETRACT Min. operating voltage of CRET2 Source voltage Sinking saturation voltage Retract sinking current1 Retract sinking current2 Upper power transistor leakage Lower power transistor leakage THERMAL SHUT DOWN Operating temperature Thermal hysteresis TSD THYS - - - - 150 30 - - C C VCRET2 VSRC VRTSAT IRCT1 IRCT2 ILRET1 ILRET1 CRET2=Sweep CRET2=5V CRET2=5V Rret=8.0K Rret=4.2K - - - - - 40 80 -10 -10 - - - 58 100 0 0 3.6 1.2 0.7 76 130 10 10 V V V mA mA uA uA IOSVCM GMVH GMVL VVMS1 VVMS2 VVMS3 VVMS4 IVCML1 PWMH=PWML=50% duty Gainsel=Low Gainsel=High Rvcm=15 Rvcm=15 Rvcm=15 Rvcm=15 - -20 - - - - - - -20 0 0.45 0.11 - - - - 0 20 - - 0.7 0.7 0.7 0.7 20 mA A/V A/V V V V V uA Symbol Condition Min. Typ. Max. Units Notes: 1. No Spindle or VCM Load. 2. Guaranteed by Design. 3. Logic control input2 & 3 spec's are equal to logic control input1. 16 FAN8620B Application Information Spindle Motor Drive Circuit The FAN8620B is a combination chip consisting of spindle motor and voice coil motor designed for HDD system. According to the spindle conditions, the digital ASIC provides optimum control signals (Start-up, commutation, speed control, and commutation mode) to the FAN8620B. Back-EMF (BEMF) signal of the spindle motor is fed back to ASIC via FG line. The MCLK and PWM signals are used to determine the commutation timing and to control the spindle speed, respectively. Spindle Driver The spindle includes both low and high side drivers (H-bridge) for a three-phase sensorless brushless DC motor. To reduce the saturation voltage, the vertical PNP transistor is used as the high side driver. Frequency Generation (FG) FG stands for Frequency Generation. It is the output signal to the ASIC. It contains important information about the motor speed. According to the FG frequency, the digital ASIC provides different motor clock signals to the motor drive IC via MCLK. It checks the motor speed to send the VCM enable signal via CNTL3. FG frequency (Hz), motor speed (rpm) and pole number are directly related as shown below in the three phase motor. FG frequency(Hz) = motor speed(rpm) x pole number / 2 x 3 / 60 In a typical application,(8 pole motor) FG frequency = 5400 x 8 /2 x 3 / 60 = 1080 [Hz] MCLK & Mask The MCLK is a motor clock used as the standard clock signal for the proper commutation timing of the spindle motor. It is supplied by the ASIC. As shown in table 1, it has different delay times depending on the mode of the spindle. MCLK (Td) Start-up mode Acceleration mode Running mode 2ms (External ASIC) FG(n-1) / 2 FG(n-1) / 32 Table 1. After the FG_Edge signal detection, the MCLK occurs after a half FG_Edge delay time in the acceleration mode and 1/ 32 FG_Edge delay time in the soft commutation mode. MASK 1ms FG(n-1) / 4 344.45ms Commutation Hard Hard Soft 17 FAN8620B Mask When the coil current is abruptly changed in a short time interval, a spark voltage occurs. This spark voltage mixes with the FG output to give the wrong spindle information to the ASIC. To eliminate the spark voltage from the FG output, the masking circuit is needed. di Vcoil = - L ---dt W_BEMF V_BEMF U_ BEMF U_Comp 120 V_Comp W_Comp 60 FG FG_Edge Electrically 30 Delay MCLK Figure 1. BEMF, FG, and MCLK in the acceleration mode FG 8msec commutation noise, false zero cross FG 2msec 2msec MCLK 1msec 1msec MASK Figure 2. MCLK vs MASK in the start-up mode 18 FAN8620B FG 8msec, T1 T2 commutation noise, false zero cross FG T1/2 T2/2 MSLK T1/4 T2/4 MASK Figure 3. MCLK vs MASK in the acceleration mode PWMDEC and Speed Control Motor speed is measured by the ASIC via the FG output. The digital ASIC compares FG frequency with the target motor speed and sends the speed compensation signal to the PWMSP input of the FAN8620B. This PWM signal is internally filtered and is converted into DC voltage through the built-in PWM Decoder Filter. The analog output of the filter depends on the duty of the PWM signal. The filter is a 3rd order, low-pass filter. The first pole location of the filter is determined by the external capacitor connected to pin(48) CFSP. 1 0.5 1 0.5 Ispindle = ( D - D MIN ) -------------------------------------- -------------- = ( D - 0.13 ) -------------------------------- ---------R33 + R METAL D MAX R33 + 0.074 0.87 ISPM (mA) 1400.0 1200.0 1000.0 800.0 600.0 400.0 200.0 0.0 0 10 20 30 PWM SP vs ISPM Io(mA) 40 50 Duty(%) 60 70 80 90 100 Figure 4. Spindle current vs PWMSP duty variation ( R33 = 0.25 ) 19 FAN8620B Start-up Mode In the sensorless BLDC motor the Back-EMF is used to determine the rotor position. At standstill condition, there is no Back-EMF voltage and no FG output. There is no information about the motor position. To drive the spindle in the start-up mode, the digital ASIC sends the spindle enable signal via CNTL1 and supplies the HIGH or OPEN signal via CNTL2 to be used as commutation signal of the spindle motor. The digital ASIC continuously provides HIGH or OPEN signal until the Back-EMF generated is large enough to produce the FG signal for the self commutation. During a fixed time, if the Back-EMF generated is too small and the spindle motor is not driven by the self commutation, the ASIC resets all signals and retries the spindle. CNTL1(1) SPM driver High Open (Floating) Low 1 0 0 0 0 1 CNTL2(2) Hard Hard Soft 1 0 0 CNTL3(3) VCM driver Retract 0 0 1 GAINSEL SPM driver Normal x Start up Hold (5) Brake Commutation VCM gain 0.11 x 0.45 Notes: 1. CNTL1: Spindle motor control 2. CNTL2: commutation mode control 3. CNTL3; VCM control 4. "1": Enable; "0": disable; Test only Acceleration Mode When the Back-EMF detected is large enough to determine motor position, the mode is changed from start-up to acceleration. The ASIC sends the optimum commutation timing signal via MCLK according to the FG input. By using the Back-EMF, the spindle is self-commuted at acceleration and running modes. During the motor drive, the spindle motor is commuted at a point which is electrically 30 delayed after the FG_Edge. Running Mode The running mode is when the spindle motor speed arrives within 1% of the target speed. The commutation mode, commutation delay time, MCLK delay time (Td) and masking time are changed at the running mode. The spindle motor speed is controlled by PWM signal within 0.01%. The soft commutation using the current slope of the motor may reduce audible noise, EMI (Electromagnetic Interference) and spark voltage which is generated on the motor coil commutation. 20 FAN8620B CNTL1 SPINdle ON High Open Low High Open Low CNTL2 FG +1% Target RPM -1% Rotation Speed Start-Up Hard-commutation Soft-commutation Internal Ready 10msec Internal commutation Mode Change 100msec CNTL3 VCM ON High Open High CASE1 : High gain Low High CASE1 : Low gain Low VCM Enable Figure 5. Motor start-up sequence Duty (%) 100% D% 0 F trarget FG Frequency Figure 6. FG vs PWMSP duty variation 21 FAN8620B (1) Acceleration Mode: Hard-Commutation Mode + U_BEMF 0 - + V_BEMF 0 - + W_BEMF 0 - SOURCE Iu SINK SOURCE Iv SINK SOURCE Iw SINK (2) Running Mode: Soft-commutation Mode SOURCE Iu SINK SOURCE Iv SINK SOURCE Iw SINK Figure 7. Acceleration and running the spindle motor 22 FAN8620B Start High frequency Noise Elimination Using filtered FG Generate start Counter Counting the FG duration Hard commutation NO Saturation =? NO MCLK = FG(n-1)/32 MASK = 344.45usec Running MCLK = FG(n-1)/2 MASK = FG(n-1)/4 YES Waiting 2msec MCLK generation Acceleration Retry MASK = 1msec FG polarity Check = SAME? YES Start up Keep going Waiting for FG edge Store count Value of the FG Figure 8. MCLK generation flow chart 23 FAN8620B Voice Coil Motor VCM Driver The voice coil motor driver is linear, class AB, H-bridge type driver, It includes all power transistors. After the VCM is enabled via CNTL3, the VCM current level is controlled by two PWM signals. The input voltage level at pin PWMH weighs, at a maximum, 64 times more than the input voltage at pin PWML. These PWM signals are filtered by an internal secondorder low-pass filter and converted into PWMOUT (DC Voltage). The filter PWMOUT depends only on the duty cycle and not on the logic level. The PWM Filter's pole is adjustable by pin CFVCM connected to the external capacitor. R1 PWMH input 13 R2 1/2 VDD Vin Gm + VREF(4V) 3k + - C1 R1 PWML input 14 R2 1/2 VDD Vin A Gm + 15 R1 R1 + C1 Filtout 18 CFVCM Figure 9. PWM decoder & filter schematic 2 17 9 C9 VCC R7 HALFVCC R5 + R5 VREF(4V) PWM decoder &Filter R5 + + R5 - PGND 26 VCM+ 27 v+ L PVCC 21 Sense VCM RL 19 IVCM Rsense R4 R3 vb Gain: 8,2 + R3 22 R6 + vs VCM- v- Filtout 18 Errin 28 Errout Senseout 30 25 12 Gainsel VREF(4V) R18 Rext Cext R25 Figure 10. VCM driver schematic 24 FAN8620B The transconductance of VCM amplifier gain, Gm, is: I VCM 2 Aerror Apower R25 Gm = ------------ = --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Vin 2 R18 Rsense As Aerror Apower + ( R18 + R25 ) ( Z VCM + Rsense ) Aloop R25 1 1 -Gm = ------------------------- ---------- --------------------- ------ 1 + Aloop R18 Rsense As 2 R18 As Aerror Apower Aloop = --------------------------------------------------------------------------------( R18 + R25 ) ( Z VCM + Rsense ) Therefore Aloop >>1, R25 1 1 Gm ---------- --------------------- ------ 2 R18 Rsense As The transconductance (Gm) can be adjusted by selecting the external components R18, R25 and sense resister Rsense. if R18 = R25, Rsense = 1 GAINSEL = Low, 1 / AS = 0.45 Gm = 0.45 GAINSEL = High, 1 / AS = 0.11 Gm = 0.11 VCM current (IVCM) is: 1R25 11Imotor = 4 x ( PWMH - 0.5 ) + ----- ( PWML - 0.5 ) x ---------- x --------------------- x ------32 R18 Rsense AS NOTES: PWMH = 1 when 100% duty PWMH = 0.5 when 50% duty PWMH = 0 when 0% duty 25 FAN8620B Retract Circuit The retract function is the operation where the VCM moves from the data zone to the parking zone. It is off in the normal state. It operates when power interrupt causes the spindle to stop. U V W Bandgap Reference _ Retract Enable _ + 2K 24 Rret 21 20 Q19 x 300 VA Iref 2V Iret VCM 19 Cret2 Iretdly + 27 16 R16 Cret Figure 11. Retract block schematic VA = 2.0V 2 x RretVret = ------------------------ - V BE, Q19 [ V ] Rret + 2k 26 FAN8620B Power Management Features Low Power Interrupt: The low power interrupt operation occurs when the power supply voltage (5V,12V) level drops below each threshold voltage. The threshold voltage (Vth) and time delay (Tdly) may be adjustable by the external component value. Vth Tdly = CDLY -------- ,( Vth = 2.5V , I = 14A) I VDD 11 VDD VCC I = 14A R4 5V SENSE 4 12V SENSE 42 R5 R8 R7 + + + _ Q15 _ 12 POR CDLY 2.5V TSD R4 = 7k, R5 = 11k R7 = 25k, R8 = 9k Figure 12. Power on reset block schematic Power on Reset The power-on reset circuit monitors the voltage level of both +5V or +12V power supplies and chip temperature (thermal shut down). The power-on reset circuit disables the spindle and VCM circuit when the power supply voltage level drops below the reference voltage. VDD, VCC Vth Vhys T POR Tdly Vbe T Figure 13. Power on reset function 27 FAN8620B Vhys = 53mV R4 + R5 VDD ;Vhys ( 5V ) = --------------------- x Vhys R5 R7 + R8 VDD ;Vhys ( 12V ) = --------------------- x Vhys R8 Default (pin4, pin42 : not connected) VDD, th 4.1V VCC ,th 9.4V 7k + 11k VDD ;Vhys ( 5V ) = ---------------------- x 53mV 90mV 11k 25k + 9k VDD ;Vhys ( 12V ) = ---------------------- x 53mV 200mV 9k Regulator The FAN8620B includes the voltage regulator for ASIC and other circuits. It consists bias circuit, the band gap reference and the external NPN power transistor. The regulator voltage can be adjusted by the external resistor, R3a, R3b. VREG = VREF 1 + R3a , VREF ---------- R3b = 1.3V VDD Bias Block Bandgap Reference Vref + 7 - VREF VREG R3a Vadjust 3 R3b Figure 14. low drop regulator schematic if R3a = 20k, R3b = 13k VREG = VREF 1 + R3a --------- R3b 20k = 1.3 x 1 + --------- = 3.3V 13k 28 FAN8620B STR_CLK BEMF DETECTION STR_MASK U_OUT FG Figure 15. Start-up mode MCLK*2 U_OU T FG Figure 16. Acceleration mode 1 T1/4 2msec T1/2 MCLK*2 T1 U_OUT FG Figure 17. Acceleration mode 2 29 FAN8620B U_OUT V_OUT W_OU T Figure 18. Output in hard-commutation mode Switching Mode Conterting FG COM O utput Figure 19. commutation mode converting U_OU T V_OU T W _OU T Figure 20. Soft-commutation mode 30 FAN8620B Figure 21. VCM recalibration flow 31 FAN8620B Vrret Iret Vvcm Figure 22. Retract & break at power off 32 FAN8620B Typical Application Circuits 5V Q1 C11 SENSE5 SENSE12 4 42 11 CDLY POR 10 Power On Reset Thermal Shutdown FG 6 MCLK 8 CNTL1 44 CNTL2 45 CNTL3 46 C38 38 PWMSP C48 PWMSF 1 C2 2 CCOMP PWM Decoder & Filter PWM Decoder & Filter Retract VCM enable PWMH PWML C15 15 C9 9 HALFVCC VCMREF4V VCM SENSE + Gain:8,2 GAINSEL 12 23, 35 GND R25 R18 R30 C30 SENSEOUT 25 18 ERRIN 28 ERROUT 30 17 VCC VDD 5 FILOUT SENSE Amplifier 13 14 PWM Decoder & Filter VCC Retract 24 RRET R16 VCM+ VCM16 PVCC 21 CRET C16 Q16 Vlimit AMP 3 State Input Control Commutation & Spindle Motor Control 37 V 3-phase Output Driver 34 W 32 R33 33 PCS SUBGND 12V D1 41 PVCC U FG Generator 7 VREF Bandgap Reference & Bias Zero Cross Detector 3 ADJ 36 39 N V M39a C39 W M39b R3a R3b GND 43 Brake AMP U V W Brake Cbrake Brake C40 40 47 48 31 U V W 20 CRET2 R24 C20 + + VCM- 22 Rsense D2 + Gain:14 SENSE 19 VCM+ 27 D3 PGND 29 26 CS RS D4 +5V 33 FAN8620B Application Circuits R42a 12V R4a 5V R42b 12V R4b C11 D4 VREG 4 SENSE5 42 SENSE12 11 CDLY 17 5, 29 VDD VREF ADJ 7 Q1 3 U BRAKE 39 C39 CBRAKE 40 PVCC1 41 N 36 U 37 34 C40 M39a v M39b 2003 12V R3a R3b C3 VCC 5V POR FG MCLK CNTL1 CNTL2 CNTL3 PWMSP PWMSF PWMH PWML C48 Digital Custom ASIC C2 C9 10 6 8 44 45 46 47 1 13 14 48 2 CFSP CFSF CFVCM HALFVCC C15 15 FAN8620B V U 9 V GAINSEL 12 +12V D2 Rsense 19 SENSE 22 VCMW CCOMP 33 PCS 21 PVCC2 CRET2 20 27 18 D3 VCM+ FILOUT 25 R18 R25 ERRIN 28 RRET CRET GND ERROUT 30 24 16 R16 C16 Q16 R24 D1 C20 R33 12V 32 38 C38 W CS RS SENSEOUT 23, 26, 31, 35 To Pin19 : option R30 C30 34 FAN8620B DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. www.fairchildsemi.com 12/1/00 0.0m 001 Stock#DSxxxxxxxx 2000 Fairchild Semiconductor International 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. |
Price & Availability of FAN8620B
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |