![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD - 95935B IRFB3507PbF IRFS3507PBF IRFSL3507PbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits l Lead-Free HEXFET(R) Power MOSFET D G S VDSS RDS(on) typ. max. ID 75V 7.0m: 8.8m: 97A Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability S D G TO-220AB IRFB3507PbF S GD D2Pak IRFS3507PBF S D G TO-262 IRFSL3507PbF Absolute Maximum Ratings Symbol ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C VGS dv/dt TJ TSTG Parameter Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw Max. 97 69 390 190 1.3 20 5.0 -55 to + 175 300 10lbxin (1.1Nxm) 280 See Fig. 14, 15, 16a, 16b Units A d W W/C V V/ns C f Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche CurrentA Repetitive Avalanche Energy e g mJ A mJ Thermal Resistance Symbol RJC RCS RJA RJA Junction-to-Case Case-to-Sink, Flat Greased Surface , TO-220 Junction-to-Ambient, TO-220 Junction-to-Ambient (PCB Mount) , D2Pak k Parameter Typ. --- 0.50 --- --- Max. 0.77 --- 62 40 Units C/W k jk www.irf.com 1 01/20/06 IRFB/S/SL3507PbF Static @ TJ = 25C (unless otherwise specified) Symbol V(BR)DSS V(BR)DSS/TJ RDS(on) VGS(th) IDSS IGSS RG Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Gate Input Resistance Min. Typ. Max. Units 75 --- --- 2.0 --- --- --- --- --- --- --- 0.070 --- 7.0 8.8 --- 4.0 --- 20 --- 250 --- 200 --- -200 1.3 --- Conditions V VGS = 0V, ID = 250A V/C Reference to 25C, ID = 1mAd m VGS = 10V, ID = 58A V VDS = VGS, ID = 100A A VDS = 75V, VGS = 0V VDS = 75V, VGS = 0V, TJ = 125C nA VGS = 20V VGS = -20V f = 1MHz, open drain g Dynamic @ TJ = 25C (unless otherwise specified) Symbol gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units --- 88 24 36 20 81 52 49 3540 340 210 460 520 --- 130 --- --- --- --- --- --- --- --- --- --- --- S nC Conditions VDS = 50V, ID = 58A ID = 58A VDS = 60V VGS = 10V VDD = 48V ID = 58A RG = 5.6 VGS = 10V VGS = 0V VDS = 50V = 1.0MHz VGS = 0V, VDS = 0V to 60V VGS = 0V, VDS = 0V to 60V 86 --- --- --- --- --- --- --- --- --- --- Effective Output Capacitance (Energy Related) --- Effective Output Capacitance (Time Related)h --- ns g g pF i, See Fig.11 h, See Fig. 5 D Diode Characteristics Symbol IS ISM VSD trr Qrr IRRM ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)Ad Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time Min. Typ. Max. Units --- --- --- --- 97 390 A A Conditions MOSFET symbol showing the integral reverse G S --- --- 1.3 V --- 37 56 ns --- 45 68 --- 32 48 nC TJ = 125C --- 51 77 --- 1.7 --- A TJ = 25C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) p-n junction diode. TJ = 25C, IS = 58A, VGS = 0V TJ = 25C VR = 64V, TJ = 125C IF = 58A di/dt = 100A/s TJ = 25C g g Notes: Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A. Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25C, L = 0.17mH, RG = 25, IAS = 58A, VGS =10V. Part not recommended for use above this value. ISD 58A, di/dt 390A/s, VDD V(BR)DSS, TJ 175C. Pulse width 400s; duty cycle 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Coss eff. (ER) is a fixed capacitance that gives the same energy as When mounted on 1" square PCB (FR-4 or G-10 Material). For recom R is measured at TJ approximately 90C. Coss while VDS is rising from 0 to 80% VDSS . mended footprint and soldering techniques refer to application note #AN-994. 2 www.irf.com IRFB/S/SL3507PbF 1000 TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V 1000 TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V ID, Drain-to-Source Current (A) 100 BOTTOM ID, Drain-to-Source Current (A) 100 BOTTOM 10 4.5V 10 4.5V 1 60s PULSE WIDTH Tj = 25C 0.1 0.1 1 10 100 1000 V DS, Drain-to-Source Voltage (V) 60s PULSE WIDTH Tj = 175C 1 0.1 1 10 100 1000 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1000 Fig 2. Typical Output Characteristics 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) ID = 97A 2.0 ID, Drain-to-Source Current () VGS = 10V 100 T J = 175C 10 T J = 25C 1 VDS = 25V 60s PULSE WIDTH 0.1 2 4 6 8 10 1.5 1.0 0.5 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (C) VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 100000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd Fig 4. Normalized On-Resistance vs. Temperature 12.0 ID= 58A VGS, Gate-to-Source Voltage (V) 10.0 8.0 6.0 4.0 2.0 0.0 VDS= 60V VDS= 38V VDS= 15V C, Capacitance(pF) 10000 Ciss 1000 Coss Crss 100 1 10 VDS, Drain-to-Source Voltage (V) 100 0 20 40 60 80 100 QG Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com 3 IRFB/S/SL3507PbF 1000 10000 1000 100 1msec 10 10msec 1 DC 0.1 0.01 0.0 0.4 0.8 1.2 1.6 2.0 1 10 100 1000 VSD, Source-to-Drain Voltage (V) VDS, Drain-to-Source Voltage (V) Tc = 25C Tj = 175C Single Pulse OPERATION IN THIS AREA LIMITED BY R DS(on) 100sec ISD, Reverse Drain Current (A) 100 T J = 175C 10 T J = 25C 1 VGS = 0V 0.1 ID, Drain-to-Source Current (A) Fig 7. Typical Source-Drain Diode Forward Voltage 100 Limited By Package 80 ID, Drain Current (A) Fig 8. Maximum Safe Operating Area V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 95 90 60 85 40 80 20 75 0 25 50 75 100 125 150 175 T C , Case Temperature (C) 70 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 T J , Temperature ( C ) Fig 9. Maximum Drain Current vs. Case Temperature 1.6 Fig 10. Drain-to-Source Breakdown Voltage 1200 EAS , Single Pulse Avalanche Energy (mJ) 1.4 1.2 1000 ID 8.9A 12A BOTTOM 58A TOP Energy (J) 1.0 0.8 0.6 0.4 0.2 0.0 0 10 20 30 40 50 60 70 80 800 600 400 200 0 25 50 75 100 125 150 175 VDS, Drain-to-Source Voltage (V) Starting T J , Junction Temperature (C) 4 Fig 11. Typical COSS Stored Energy Fig 12. Maximum Avalanche Energy vs. DrainCurrent www.irf.com IRFB/S/SL3507PbF 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE ) J R1 R1 J 1 2 R2 R2 C Ri (C/W) i (sec) 0.2963 0.000504 0.4738 0.013890 0.01 1 2 Ci= i/Ri Ci i/Ri 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 0.0001 1E-006 1E-005 0.0001 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Duty Cycle = Single Pulse Avalanche Current (A) 100 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150C and Tstart =25C (Single Pulse) 0.01 10 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25C and Tstart = 150C. 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 0.1 1.0E-06 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth 300 EAR , Avalanche Energy (mJ) 250 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 58A 200 150 100 50 0 25 50 75 100 125 150 175 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max) is exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav *f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ( 1.3*BV*Iav) = DT/ ZthJC Iav = 2DT/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav Starting T J , Junction Temperature (C) Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFB/S/SL3507PbF 4.5 14 12 10 IRRM (A) VGS(th) Gate threshold Voltage (V) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 8 6 4 2 0 100 200 300 400 500 600 700 800 900 1000 dif/dt (A/s) IF = 19A VR = 64V T = 25C _____ J T = 125C ---------J ID = 100A ID = 250A ID = 1.0mA ID = 1.0A T J , Temperature ( C ) Fig 16. Threshold Voltage vs. Temperature 14 12 10 IRRM (A) Fig. 17 - Typical Recovery Current vs. dif/dt 350 300 250 Qrr (nC) 8 6 4 2 0 100 200 300 400 500 600 700 800 900 1000 dif/dt (A/s) IF = 39A VR = 64V T = 25C _____ J T = 125C ---------J 200 150 100 50 0 100 200 300 400 500 600 700 800 900 1000 dif/dt (A/s) I = 19A F V = 64V R TJ = 25C _____ TJ = 125C ---------- Fig. 18 - Typical Recovery Current vs. dif/dt 300 250 200 Qrr (nC) Fig. 19 - Typical Stored Charge vs. dif/dt 150 100 50 0 100 200 300 400 500 600 700 800 900 1000 dif/dt (A/s) I = 39A F V = 64V R TJ = 25C _____ TJ = 125C ---------- 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFB/S/SL3507PbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V + Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt - - + RG * * * * dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Body Diode Forward Drop Inductor Curent Inductor Current Ripple 5% ISD * VGS = 5V for Logic Level Devices Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs V(BR)DSS 15V tp DRIVER VDS L RG VGS 20V D.U.T IAS tp + V - DD A 0.01 I AS Fig 21a. Unclamped Inductive Test Circuit LD VDS Fig 21b. Unclamped Inductive Waveforms + VDD D.U.T VGS Pulse Width < 1s Duty Factor < 0.1% 90% VDS 10% VGS td(on) tr td(off) tf Fig 22a. Switching Time Test Circuit Fig 22b. Switching Time Waveforms Id Vds Vgs L 0 DUT 1K VCC Vgs(th) Qgs1 Qgs2 Qgd Qgodr www.irf.com Fig 23a. Gate Charge Test Circuit Fig 23b. Gate Charge Waveform 7 IRFB/S/SL3507PbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information @Y6HQG@) UCDTADTA6IADSA A GPUA8P9@A &'( 6TT@H7G@9APIAXXA (A! DIAUC@A6TT@H7GAGDI@AA8A Ir)AAQAAvAhriyAyvrAvv vqvphrAAGrhqAAArrA DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G GPUA8P9@ Q6SUAIVH7@S 96U@A8P9@ @6SAA2A! X@@FA ( GDI@A8 TO-220AB packages are not recommended for Surface Mount Application. 8 www.irf.com IRFB/S/SL3507PbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information @Y6HQG@) UCDTADTA6IADSG" "G GPUA8P9@A &'( 6TT@H7G@9APIAXXA (A ((& DIAUC@A6TT@H7GAGDI@AA8A DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G GPUA8P9@ Q6SUAIVH7@S 96U@A8P9@ @6SA&A2A ((& X@@FA ( GDI@A8 25 DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G GPUA8P9@ Q6SUAIVH7@S 96U@A8P9@ QA2A9@TDBI6U@TAG@69AS@@ QSP9V8UAPQUDPI6G @6SA&A2A ((& X@@FA ( 6A2A6TT@H7GATDU@A8P9@ www.irf.com 9 IRFB/S/SL3507PbF D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Part Marking Information UCDTADTA6IADSA$"TAXDUC GPUA8P9@A'!# 6TT@H7G@9APIAXXA!A! DIAUC@A6TT@H7GAGDI@AAGA DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G GPUA8P9@ Q6SUAIVH7@S A$"T 96U@A8P9@ @6SAA2A! X@@FA! GDI@AG 25 DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G GPUA8P9@ 10 Q6SUAIVH7@S A$"T 96U@A8P9@ QA2A9@TDBI6U@TAG@69AAAS@@ QSP9V8UAPQUDPI6G @6SAA2A! X@@FA! 6A2A6TT@H7GATDU@A8P9@ www.irf.com IRFB/S/SL3507PbF D2Pak (TO-263AB) Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 01/06 www.irf.com 11 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/ |
Price & Availability of IRFS3507PBF
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |