![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD-94152 AUTOMOTIVE MOSFET Typical Applications q q q q q IRLL024NQ HEXFET(R) Power MOSFET D Electronic Fuel Injection Active Suspension Power Doors, Windows & Seats Cruise Control Air Bags Advanced Process Technology Ultra Low On-Resistance 175C Operating Temperature Repetitive Avalanche Allowed up to Tjmax Dynamic dv/dt Rating Automotive [Q101] Qualified G VDSS = 55V RDS(on) = 0.065 Benefits q q q q q q S ID = 3.1A Description Specifically designed for Automotive applications, this HEXFET(R) Power MOSFET in a SOT-223 package utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this Automotive qualified HEXFET Power MOSFET are a 175C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. The efficient SOT-223 package is designed for surface mount and the enlarged tab provides improved thermal characteristics making it ideal in a variety of power applications. Power dissipation of 1.0W is possible in a typical surface mount application. Available in Tape & Reel. SOT-223 Absolute Maximum Ratings Parameter ID @ TC = 25C ID @ TC = 70C IDM PD @TC = 25C VGS EAS IAR EAR dv/dt TJ, TSTG Continuous Drain Current, V GS @ 4.5V Continuous Drain Current, V GS @ 4.5V Pulsed Drain Current Q Power DissipationS Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche EnergyT Avalanche CurrentQ Repetitive Avalanche EnergyV Peak Diode Recovery dv/dt U Junction and Storage Temperature Range Max. 3.1 2.6 12 1.3 8.3 16 87 See Fig.16c, 16d, 19, 20 9.9 -55 to + 175 Units A W mW/C V mJ A mJ V/ns C Thermal Resistance Parameter RJA RJA Junction-to-Amb. (PCB Mount, steady state)* Junction-to-Amb. (PCB Mount, steady state)** Typ. 90 50 Max. 120 60 Units C/W * When mounted on FR-4 board using minimum recommended footprint. ** When mounted on 1 inch square copper board, for comparison with other SMD devices. www.irf.com 1 03/16/01 IRLL024NQ Electrical Characteristics @ TJ = 25C (unless otherwise specified) V(BR)DSS V(BR)DSS/TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Min. 55 --- --- --- 1.0 4.5 --- --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. --- 0.057 --- --- --- --- --- --- --- --- 11 1.9 4.3 12 41 48 39 508 141 62 Max. Units Conditions --- V VGS = 0V, ID = 250A --- V/C Reference to 25C, ID = 1mA 0.065 VGS = 10V, ID = 3.1A R m 0.080 VGS = 5.0V, ID = 2.5A R 2.0 V VDS = VGS, ID = 250A --- S VDS = 25V, ID = 1.9A 25 VDS = 55V, VGS = 0V A 250 VDS = 44V, VGS = 0V, TJ = 125C 100 VGS = 16V nA -100 VGS = -16V 17 ID = 1.9A --- nC VDS = 44V --- VGS = 10V --- VDD = 28V R --- ID = 1.9A ns --- RG = 24 --- RD = 15 --- VGS = 0V --- pF VDS = 25V --- = 1.0MHz Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Q Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. Typ. Max. Units --- --- --- --- --- --- --- --- 40 65 3.1 A 12 1.0 60 97 V ns nC Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25C, IS = 1.9A, VGS = 0VR TJ = 25C, IF = 1.9A di/dt = 100A/s R D S Notes: Q Repetitive rating; pulse width limited by max. junction temperature. T Starting TJ = 25C, L = 18mH U ISD 1.9A, di/dt 197A/s, VDD V(BR)DSS, RG = 25, IAS = 3.1A. (See Figure 12). TJ 175C VLimited by TJmax , see Fig.16c, 16d, 19, 20 for typical repetitive avalanche performance. R Pulse width 400s; duty cycle 2%. S Surface mounted on 1 in square Cu board 2 www.irf.com IRFLL024NQ 100 I D , Drain-to-Source Current (A) 10 I D , Drain-to-Source Current (A) VGS 15V 10V 7.0V 5.5V 4.5V 4.0V 3.5V BOTTOM 2.7V TOP 100 10 VGS 15V 10V 7.0V 5.5V 4.5V 4.0V 3.5V BOTTOM 2.7V TOP 2.7V 1 2.7V 1 0.1 0.1 20s PULSE WIDTH TJ = 25 C 1 10 100 0.1 0.1 20s PULSE WIDTH TJ = 175 C 1 10 100 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 100.00 2.5 I D = 3.1A ID , Drain-to-Source Current ( ) T J = 175C R DS(on) , Drain-to-Source On Resistance (Normalized) 2.0 T J = 25C 10.00 1.5 1.0 0.5 1.00 1.0 3.0 5.0 7.0 VDS = 15V 20s PULSE WIDTH 9.0 11.0 13.0 15.0 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 180 VGS, Gate-to-Source Voltage (V) TJ , Junction Temperature ( C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com 3 IRLL024NQ 10000 6 VGS = 0V, f = 1 MHZ Ciss = C + C , C gs gd ds SHORTED Crss = C gd Coss = C + C ds gd ID = 3.1A VGS, Gate-to-Source Voltage (V) 5 VDS = 44V VDS = 27V VDS = 11V C, Capacitance(pF) 1000 Ciss Coss 100 4 2 Crss 1 10 1 10 100 0 0 3 6 9 12 15 VDS , Drain-to-Source Voltage (V) QG , Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 100 100 OPERATION IN THIS AREA LIMITED BY R DS(on) 10 100sec 1msec 1 10msec Tc = 25C Tj = 175C Single Pulse 1 10 100 1000 ISD , Reverse Drain Current (A) 10 TJ = 175 C 1 TJ = 25 C 0.1 0.3 V GS = 0 V 0.5 0.7 1.0 1.2 ID, Drain-to-Source Current (A) 0.1 VSD ,Source-to-Drain Voltage (V) VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRFLL024NQ 5.0 VDS 4.0 RD VGS RG I D , Drain Current (A) D.U.T. + -VDD 3.0 VGS 2.0 Pulse Width 1 s Duty Factor 0.1 % Fig 10a. Switching Time Test Circuit 1.0 VDS 90% 0.0 25 50 75 100 125 150 175 TC , Case Temperature ( C) Fig 9. Maximum Drain Current Vs. Case Temperature 10% VGS td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms 1000 Thermal Response (Z thJC ) 100 D = 0.50 0.20 0.10 10 0.05 0.02 0.01 1 SINGLE PULSE (THERMAL RESPONSE) 0.1 0.00001 0.0001 0.001 0.01 0.1 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 1 10 PDM t1 t2 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 IRLL024NQ R DS(on) , Drain-to -Source On Resistance ( ) R DS (on) , Drain-to-Source On Resistance ( ) 0.10 0.400 0.350 0.300 0.250 0.200 0.150 0.100 0.050 0 10 20 30 40 50 60 70 80 ID , Drain Current (A) 0.09 0.08 0.07 ID = 3.1A VGS = 10V 0.06 0.05 3.0 5.0 7.0 9.0 11.0 13.0 15.0 -V GS, Gate -to -Source Voltage (V) Fig 12. Typical On-Resistance Vs. Gate Voltage Fig 13. Typical On-Resistance Vs. Drain Current 2.0 60 VGS(th) Gate threshold Voltage (V) 1.8 50 1.6 Power (W) ID = 250A 40 1.4 30 1.2 20 1.0 10 0.8 -75 -50 -25 0 25 50 75 100 125 150 175 0 1.00 10.00 100.00 1000.00 T J , Temperature ( C ) Time (sec) Fig 14. Typical Threshold Voltage Vs. Junction Temperature Fig 15. Typical Power Vs. Time 6 www.irf.com IRFLL024NQ 250 EAS , Single Pulse Avalanche Energy (mJ) 200 TOP BOTTOM ID 1.3A 2.6A 3.1A VDS L 1 5V 150 D R IV E R 100 RG 20V D .U .T IA S + V - DD A 50 tp 0 .0 1 Fig 16c. Unclamped Inductive Test Circuit 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature ( C) Fig 16a. Maximum Avalanche Energy Vs. Drain Current V (B R )D SS tp IAS Fig 16d. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50K 12V .2F .3F QG VGS D.U.T. + V - DS QGS VG QGD VGS 3mA IG ID Current Sampling Resistors Charge Fig 17. Gate Charge Test Circuit Fig 18. Basic Gate Charge Waveform www.irf.com 7 IRLL024NQ 1000 100 Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25C due to avalanche losses 0.01 0.05 0.10 Avalanche Current (A) 10 1 0.1 0.01 0.001 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 tav (sec) Fig 19. Typical Avalanche Current Vs.Pulsewidth 90 80 EAR , Avalanche Energy (mJ) 70 60 50 40 30 20 10 0 25 50 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 3.1A 75 100 125 150 175 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = t av *f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3*BV*Iav) = T/ ZthJC Iav = 2T/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav Starting T J , Junction Temperature (C) Fig 20. Maximum Avalanche Energy Vs. Temperature 8 www.irf.com IRFLL024NQ Package Outline SOT-223 Part Marking Information SOT-223 E X A M P L E : T H IS IS A N IR FL 0 14 W A FER LO T CO D E XXXXXX D A TE CO D E (Y W W ) Y = LA S T D IG IT O F TH E Y E A R W W = W E EK P A R T NU M B E R IN TE RN A TIO NA L RE CT IF IE R LO G O F L0 14 31 4 TOP B O TT O M www.irf.com 9 IRLL024NQ Tape & Reel Information SOT-223 4 .1 0 (.1 6 1) 3 .9 0 (.1 5 4) 1 .8 5 (.0 7 2 ) 1 .6 5 (.0 6 5 ) 0 .3 5 (.0 1 3 ) 0 .2 5 (.0 1 0 ) TR 2 .0 5 (.0 8 0 ) 1 .9 5 (.0 7 7 ) 7 .5 5 (.2 9 7 ) 7 .4 5 (.2 9 4 ) 7 .6 0 (.2 9 9 ) 7 .4 0 (.2 9 2 ) 1 .6 0 (.0 6 2 ) 1 .5 0 (.0 5 9 ) TYP . F E E D D IR E C T IO N 1 2 .1 0 (.4 7 5 ) 1 1 .9 0 (.4 6 9 ) NOTES : 1 . C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R . 2 . O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 41 . 3 . E A C H O 3 3 0 .0 0 (1 3 .0 0 ) R E E L C O N T A IN S 2,50 0 D E V IC E S . 1 3 .2 0 (.5 1 9 ) 1 2 .8 0 (.5 0 4 ) 1 5.40 (.6 0 7 ) 1 1.90 (.4 6 9 ) 4 7 .1 0 (.2 79 ) 6 .9 0 (.2 72 ) 1 6 .3 0 (.6 4 1 ) 1 5 .7 0 (.6 1 9 ) 2 .3 0 (.0 9 0 ) 2 .1 0 (.0 8 3 ) 330.0 0 (13.000) M AX. 5 0.0 0 (1 .9 6 9 ) M IN . N O T ES : 1 . O U T LIN E C O M F O R M S T O E IA -4 1 8 -1 . 2 . C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R .. 3 . D IM E N S IO N M E A S U R E D @ H U B . 4 . IN C L U D E S F L A N G E D IS T O R T IO N @ O U T E R E D G E . 1 4 .4 0 (.5 6 6 ) 1 2 .4 0 (.4 8 8 ) 3 1 8 .4 0 (.7 2 4 ) M AX . 4 Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 3/01 10 www.irf.com |
Price & Availability of IRLL024NQ
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |