Part Number Hot Search : 
P4NC80 100BF 00090 SMA82 RF3322 CM9153 2N526 29DL3
Product Description
Full Text Search
 

To Download GA400TD25S Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD -50051D
GA400TD25S
"HALF-BRIDGE" IGBT DUAL INT-A-PAK
Features
* Generation 4 IGBT technology * Standard: Optimized for minimum saturation voltage and operating frequencies up to 10kHz * Very low conduction and switching losses * HEXFREDTM antiparallel diodes with ultra- soft recovery * Industry standard package * UL approved
Standard Speed IGBT
VCES = 250V VCE(on) typ. = 1.3V
@VGE = 15V, IC = 400A
Benefits
* Increased operating efficiency * Direct mounting to heatsink * Performance optimized for power conversion: UPS, SMPS, Welding * Lower EMI, requires less snubbing
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C ICM ILM IFM VGE VISOL PD @ TC = 25C PD @ TC = 85C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Pulsed Collector CurrentQ Peak Switching CurrentR Peak Diode Forward Current Gate-to-Emitter Voltage RMS Isolation Voltage, Any Terminal To Case, t = 1 min Maximum Power Dissipation Maximum Power Dissipation Operating Junction Temperature Range Storage Temperature Range
Max.
250 400 800 800 800 20 2500 1350 700 -40 to +150 -40 to +125
Units
V A
V W C
Thermal / Mechanical Characteristics
Parameter
RJC RJC RCS Thermal Resistance, Junction-to-Case - IGBT Thermal Resistance, Junction-to-Case - Diode Thermal Resistance, Case-to-Sink - Module Mounting Torque, Case-to-Heatsink S Mounting Torque, Case-to-Terminal 1, 2 & 3S Weight of Module
Typ.
-- -- 0.1 -- -- 400
Max.
0.09 0.20 -- 6.0 5.0 --
Units
C/W N. m g
www.irf.com
1
05/15/02
GA400TD25S
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
V(BR)CES VCE(on) Parameter Min. Typ. Max. Units Conditions Collector-to-Emitter Breakdown Voltage 250 -- -- VGE = 0V, IC = 1mA Collector-to-Emitter Voltage -- 1.3 1.6 VGE = 15V, IC = 400A -- 1.3 -- V VGE = 15V, IC = 400A, TJ = 125C Gate Threshold Voltage 3.0 -- 6.0 IC = 3.0mA VGE(th) VGE(th)/TJ Temperature Coeff. of Threshold Voltage -- -11 -- mV/C VCE = VGE, IC = 2.5mA gfe Forward TransconductanceT -- 371 -- S VCE = 25V, IC = 400A ICES Collector-to-Emitter Leaking Current -- -- 0.50 mA VGE = 0V, VCE = 250V -- -- 20 VGE = 0V, VCE = 250V, T J = 125C VFM Diode Forward Voltage - Maximum -- 1.7 2.2 V IF = 500A, V GE = 0V -- 1.7 -- IF = 500A, VGE = 0V, TJ = 125C IGES Gate-to-Emitter Leakage Current -- -- 500 nA VGE = 20V
Dynamic Characteristics - TJ = 125C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets Cies Coes Cres trr Irr Q rr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Energy Turn-Off Switching Energy Total Switching Energy Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak ReverseCurrent Diode Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Typ. 1600 232 528 1250 365 841 792 6.0 38 45 36000 4080 800 229 71 8154 911 Max. Units Conditions 2400 VCC = 200V 348 nC IC = 440A 792 TJ = 25C -- RG1 = 15, RG2 = 0, -- ns IC = 400A -- VCC = 150V -- VGE = 15V -- mJ See Fig.17 through Fig.21 -- 52 -- VGE = 0V -- pF VCC = 30V -- = 1 MHz -- ns IC = 400A -- A RG1 = 15 -- nC RG2 = 0 -- A/s VCC = 150V di/dt1400A/s
2
www.irf.com
GA400TD25S
300
Load Current ( A )
200 S q u a re w a v e :
D u ty c y c le : 5 0 % T J = 12 5C T sink = 9 0 C G a te d riv e a s s p e c ifie d
P o w e r D is s ip a tio n = 1 8 4 W
6 0 % o f ra te d v o lta g e
100
Id eal diod es
0 0.1 1 10
A
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
1000
1000
I C , Collector-to-Emitter Current (A)
T = 150 o C J 125C
I C , Collector-to-Emitter Current (A)
125C TJ = 150 o C
TJ = 25 o C
100
TJ = 25 oC
100 1.0
V = 15V 20s PULSE WIDTH
GE 80s 1.5 2.0
10 5 6
V = 50V 5s PULSE WIDTH
CC CE 80s
25V
7
8
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
GA400TD25S
500
2.0
Maximum DC Collector Current ( A )
400
VCE , Collector-to-Emitter Voltage(V)
V = 15V 80 us PULSE WIDTH
GE
IC = 800 A
300
1.5
200
IC = 400 A IC = 200 A
1.0 -60 -40 -20 0 20 40 60 80 100 120 140 160
100
0 25 50 75 100 125
A
150
TC , Case Temperature (C)
TJ , Junction Temperature ( C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
0.1
T h e rm a l R e s p o n s e (Z th JC )
D = 0.5 0
0.20 0.10
0.01
0.05 0.0 2 0.0 1 S IN G LE P U LS E (T H E R M A L R E S P O N S E )
P DM
t
1 t2
Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC
0.001 0.0001
A
1000
0.001
0.01
0.1
1
10
100
t 1 , R e cta ng ula r P u lse D u ratio n (se c)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
GA400TD25S
60000
50000
VGE , Gate-to-Emitter Voltage (V)
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC 400V VCC = 200V I C = 440A
16
C, Capacitance (pF)
40000
Cies
12
30000
8
20000
C oes
10000
4
C res
1 10 100
0
0 0 400 800 1200 1600
VCE , Collector-to-Emitter Voltage (V)
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
60
Total Switching Losses (mJ)
50
Total Switching Losses (mJ)
V CC = 150V V GE = 15V 125C TJ = 25 C 55 I C = 400A
1000
RG1=15;R G2 = 0 G = Ohm VGE = 15V VCC = 150V
45
100
IC = 800 A IC = 400 A IC = 200 A
40
35
30 0 10 20 30 40
10 -60 -40 -20
0
20
40
60
80 100 120 140 160
RG ,, Gate Resistance ( (Ohm) RG Gate Resistance )
TJ , Junction Temperature ( C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
GA400TD25S
100
IC , Collector-to-Emitter Current ( A )
Total Switching Losses (mJ)
RG1 =15;RG2 = 0 G = Ohm T J =125C 150 C VCC = 150V 80 VGE = 15V
1000
V G E E 20V G= T J = 125C V C E m easured at term inal (Peak V oltage)
800
60
600
SAFE OPERATING AREA
40
400
20
200
0 0 200 400 600 800 1000
0 0 100 200
A
300
I C , Collector-to-emitter Current (A)
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
Fig. 12 - Reverse Bias SOA
1000
12000
I F = 800A
Instantaneous Forward Current - IF ( A )
I F = 400A
10000
I F = 200A
TJ = 12 5C
8000
QRR - ( nC)
TJ = 25 C
100
6000
4000
2000
10 0.0 0.5 1.0 1.5 2.0 2.5
A
VR = 15 0V T J = 1 25 C T J = 2 5C
0 400 500 600 700 800 900
A
F o rw a rd V o lta g e D ro p - V F M ( V )
di f /dt - (A/ s)
Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current
Fig. 14 - Typical Stored Charge vs. dif/dt
6
www.irf.com
GA400TD25S
300 100
I F = 800A I F = 400A I F = 200A
80
I F = 800A I F = 400A I F = 200A
200
trr - ( ns )
IRRM - ( A )
100
60
40
20
0 400
VR = 15 0V T J = 1 25 C T J = 2 5C
500 600 700 800 900
A
V R = 15 0V T J = 12 5 C T J = 25 C
0 400 500 600 700 800 900
A
di f /dt - (A/ s)
di f /dt - (A/ s)
Fig. 15 - Typical Reverse Recovery vs. dif/dt
Fig. 16 - Typical Recovery Current vs. dif/dt
www.irf.com
7
GA400TD25S
90% Vge +Vge
Vce
Ic
10% Vce Ic
9 0 % Ic 5 % Ic
td (o ff)
tf
Eoff =
Vce Ic dt
t1 + 5 S V c e ic d t t1
Fig. 17 - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1 t2
Fig. 18 - Test Waveforms for Circuit of Fig. 17, Defining Eoff,
td(off), tf
G A T E V O L T A G E D .U .T . 1 0 % +V g +Vg
trr Ic
Q rr =
trr id ddt Ic t tx
tx 10% Vcc Vce Vcc 1 0 % Ic 9 0 % Ic D UT VO LTAG E AN D CU RRE NT Ip k Ic
1 0 % Irr V cc
V pk Irr
D IO D E R E C O V E R Y W A V E FO R M S td (o n ) tr 5% Vce t2 Vce d E o n = V ce ieIc t dt t1 t2 D IO D E R E V E R S E REC OVERY ENER GY t3 t4
E re c =
t4 V d idIc t dt Vd d t3
t1
Fig. 19 - Test Waveforms for Circuit of Fig. 17,
Defining Eon, td(on), tr
Fig. 20 - Test Waveforms for Circuit of Fig. 17,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
GA400TD25S
V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 21. Macro Waveforms for Figure 17's Test Circuit
RL= 0 - 480V
150V 4 X IC @25C
Figure 22. Pulsed Collector Current TestCircuit
www.irf.com
9
GA400TD25S
Notes:
Q Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature.
R See fig. 17 S For screws M6. T Pulse width 80s; single shot.
Case Outline -- DUAL INT-A-PAK
107.30 106.30 3X M6 8 [.314] MAX. 4.185] [4.224 93.30 3.673 92.70 [3.650] 28.60 2X 27.40 1.079] [1.126 4X 6.60 5.40 11 10 48.30 47.70 1.878] [1.902 8 9 1 2 3 6 7 5 4 2X 15.59 14.39 .567] [.614 4X FAS T ON T AB (110) 2.8 x 0.5 [.110 x .020] 48.50 47.50 1.870] [1.909 8.00 6.60 .260] [.315 31.00 29.60 5.50 4.50 1.165] [1.220 .213] [.260 NOT ES: 1. ALL DIMENSIONS ARE SHOWN IN MILLIMET ERS [INCHES]. 2. CONT ROLLING DIMENS ION: MILLIMET ER.
6.80 4X O 6.20
[
.267 .244]
[
.217 .177]
24.00 23.00
.906] [.945 2.303] [2.343 62.70 2.468 61.70 [2.429] 59.50 58.50
0.15 [.0059] CONVEX 104.50 103.50 4.075] [4.114
Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/02
10
www.irf.com


▲Up To Search▲   

 
Price & Availability of GA400TD25S

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X