![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD - 94825 IRF3315PBF Advanced Process Technology Dynamic dv/dt Rating 175C Operating Temperature Fast Switching Fully Avalanche Rated Lead-Free Description Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. HEXFET(R) Power MOSFET D VDSS = 150V RDS(on) = 0.082 G S ID = 21A TO-220AB Absolute Maximum Ratings Parameter ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C VGS EAS IAR EAR dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 srew Max. 21 15 84 94 0.63 20 350 12 9.4 2.5 -55 to + 175 300 (1.6mm from case ) 10 lbf*in (1.1N*m) Units A W W/C V mJ A mJ V/ns C Thermal Resistance Parameter RJC RCS RJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Typ. --- 0.50 --- Max. 1.6 --- 62 Units C/W 11/10/03 IRF3315PBF Electrical Characteristics @ TJ = 25C (unless otherwise specified) Parameter Drain-to-Source Breakdown Voltage V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage gfs Forward Transconductance V(BR)DSS IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. 150 --- --- 2.0 17 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. --- 0.187 --- --- --- --- --- --- --- --- --- --- 9.6 32 49 38 4.5 7.5 1300 300 160 Max. Units Conditions --- V VGS = 0V, ID = 250A --- V/C Reference to 25C, ID = 1mA 0.082 VGS = 10V, ID = 12A 4.0 V VDS = VGS, ID = 250A --- S VDS = 50V, ID = 12A 25 VDS = 150V, VGS = 0V A 250 VDS = 120V, VGS = 0V, TJ = 125C 100 VGS = 20V nA -100 VGS = -20V 95 ID = 12A 11 nC VDS = 120V 47 VGS = 10V, See Fig. 6 and 13 --- VDD = 75V --- ID = 12A ns --- RG = 5.1 --- RD = 5.9, See Fig. 10 D Between lead, --- 6mm (0.25in.) nH G from package --- and center of die contact S --- VGS = 0V --- pF VDS = 25V --- = 1.0MHz, See Fig. 5 Source-Drain Ratings and Characteristics IS ISM V SD t rr Q rr ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol 21 --- --- showing the A G integral reverse --- --- 84 S p-n junction diode. --- --- 1.3 V TJ = 25C, IS = 12A, VGS = 0V --- 174 260 ns TJ = 25C, IF = 12A --- 1.2 1.7 C di/dt = 100A/s Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 ) Starting TJ = 25C, L = 4.9mH RG = 25, IAS = 12A. (See Figure 12) ISD 12A, di/dt 140A/s, VDD V(BR)DSS, TJ 175C Pulse width 300s; duty cycle 2%. IRF3315PBF 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP 100 I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP 10 4.5V 10 4.5V 1 0.1 20s PULSE WIDTH TJ = 25 C 1 10 100 1 0.1 20s PULSE WIDTH TJ = 175 C 1 10 100 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 100 3.0 I D , Drain-to-Source Current (A) TJ = 175 C RDS(on) , Drain-to-Source On Resistance (Normalized) TJ = 25 C ID = 21A 2.5 2.0 10 1.5 1.0 0.5 1 V DS = 50V 20s PULSE WIDTH 4 5 6 7 8 9 10 0.0 -60 -40 -20 0 VGS = 10V 20 40 60 80 100 120 140 160 180 VGS , Gate-to-Source Voltage (V) TJ , Junction Temperature ( C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature IRF3315PBF 3000 2500 VGS , Gate-to-Source Voltage (V) VGS = 0V, f = 1MHz Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd Coss = Cds + Cgd 20 ID = 12 A 16 VDS = 120V VDS = 75V VDS = 30V C, Capacitance (pF) 2000 Ciss 12 1500 Coss 1000 8 Crss 500 4 0 1 10 100 0 FOR TEST CIRCUIT SEE FIGURE 13 0 20 40 60 80 100 VDS , Drain-to-Source Voltage (V) QG , Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 100 1000 ISD , Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY RDS(on) 10 TJ = 25 C TJ = 175 C ID , Drain Current (A) 100 10us 100us 10 1ms 1 0.1 0.2 V GS = 0 V 0.5 0.8 1.1 1.4 1 TC = 25 C TJ = 175 C Single Pulse 1 10 100 10ms 1000 VSD ,Source-to-Drain Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area IRF3315PBF 25 VDS VGS RD 20 ID , Drain Current (A) RG D.U.T. + -VDD 15 10V Pulse Width 1 s Duty Factor 0.1 % 10 Fig 10a. Switching Time Test Circuit 5 VDS 90% 0 25 50 75 100 125 150 175 TC , Case Temperature ( C) Fig 9. Maximum Drain Current Vs. Case Temperature 10% VGS td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms 10 Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.10 0.1 0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) PDM t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.01 0.1 1 0.01 0.00001 0.0001 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case IRF3315PBF 1000 EAS , Single Pulse Avalanche Energy (mJ) TOP 800 15V BOTTOM ID 4.9A 8.5A 12A VDS L DRIVER 600 RG 20V D.U.T IAS tp + V - DD 400 A 0.01 200 Fig 12a. Unclamped Inductive Test Circuit 0 25 Starting TJ , Junction Temperature ( C) 50 75 100 125 150 175 V(BR)DSS tp Fig 12c. Maximum Avalanche Energy Vs. Drain Current I AS Fig 12b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50K QG 12V .2F .3F 10 V QGS QGD VGS 3mA D.U.T. + V - DS VG Charge IG ID Current Sampling Resistors Fig 13a. Basic Gate Charge Waveform Fig 13b. Gate Charge Test Circuit IRF3315PBF Peak Diode Recovery dv/dt Test Circuit D.U.T + Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer + + - RG * * * * dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test + VDD Driver Gate Drive P.W. Period D= P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt VDD Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple 5% ISD * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFETS IRF3315PBF TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048) 4 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 3 LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 21- GATE DRAIN 1- GATE 32- DRAINSOURCE 2- COLLECTOR 3- EMITTER 3- SOURCE 4 - DRAIN LEAD ASSIGNMENTS HEXFET 14.09 (.555) 13.47 (.530) 4- DRAIN 4.06 (.160) 3.55 (.140) 4- COLLECTOR 3X 3X 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) M BAM 3X 0.55 (.022) 0.46 (.018) 0.36 (.014) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 2.92 (.115) 2.64 (.104) 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 ASSEMBLED O N WW 19, 1997 IN THE ASSEMBLY LINE "C" INTERNATIO NAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER Note: "P" in assembly line position indicates "Lead-Free" DATE CODE YEAR 7 = 1997 WEEK 19 LINE C Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.11/03 |
Price & Availability of IRF3315PBF
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |