Part Number Hot Search : 
NTD4970N 2SC4115 OL2225 3G0329 EM3000XS UF808F HC573 21N60
Product Description
Full Text Search
 

To Download ON2277 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MOTOROLA
SEMICONDUCTOR
TECHNICAL DATA
Designer'sTM Data Sheet
Surface Mount Silicon Zener Diodes
Plastic SOD 123 Package
* * * * * *
Three complete series of Zener Diodes are offered in the convenient, surface mount plastic SOD-123 package. These devices provide a convenient alternative to the leadless 34 package style. 500 mW Rating on FR-4 or FR-5 Board Package Designed for Optimal Automated Board Assembly Corrosion Resistant Finish, Easily Solderable ESD Rating of Class 3 (exceeding 16 kV) per the Human Body Model Small Package Size for High Density Applications Available in 8 mm Tape and Reel Add "T1" to the device number to order the 7 inch / 3000 unit reel. Add "T3" to the device number to order the 13 inch / 10,000 unit reel. * Wafer Fab Location: Phoenix, Arizona Assembly/Test Location: Seremban, Malaysia MMSZ2V4T1 thru MMSZ75T1
MMSZ2V4T1 SERIES
PLASTIC SURFACE MOUNT ZENER DIODES 500 MILLIWATTS 1.8 - 91 VOLTS
1 1: CATHODE 2: ANODE
2
* Specified Similar to European BZV55C Series * Wide Voltage Range -- 2.4 to 75 Volts
CASE 425, STYLE 1 PLASTIC
DEVICE RATING (TA = 25C unless otherwise noted)
Rating Power Dissipation on FR-4 or FR-5 Board [1] Derate above TL = 75C Thermal Resistance Junction to Lead [2] Thermal Resistance Junction to Ambient [2] Junction Temperature Range Storage Temperature Range Lead Solder Temperature - Maximum (10 sec. duration)
[1] FR-4 or FR-5 = 3.5 x 1.5 inches, using the Motorola minimum recommended footprint as shown in Figure 11. [2] Thermal Resistance measurement obtained via Infrared Scan Method Designer's Data for "Worst Case'' Conditions -- The Designer's Data Sheet permits the design of most circuits entirely from the information presented. Limit curves -- representing boundaries on device characteristics -- are given to facilitate "worst case'' design. Designer's is a trademark of Motorola, Inc. Thermal Clad is a trademark of the Bergquist Company. Preferred devices are Motorola recommended choices for future use and best overall value.
Symbol PD -- RJL RJA TJ Tstg --
Value 500 6.7 150 340 -55 to +150 -55 to +150 260
Unit mW mW/C C/W C C C
Motorola TVS/Zener Device Data
500 mW Leadless (SOD-123) Data Sheet 7-1
MMSZ2V4T1 Series
ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted), (VF = 0.9 V Max. @ IF = 10 mA for all types)
Zener Voltage VZ1 (Volts) @ IZT1 = 5 mA [1][2] Type T Number MMSZ2V4T1 MMSZ2V7T1 MMSZ3V0T1 MMSZ3V3T1 MMSZ3V6T1 MMSZ3V9T1 MMSZ4V3T1 MMSZ4V7T1 MMSZ5V1T1 MMSZ5V6T1 Marking M ki T1 T2 T3 T4 T5 U1 U2 U3 U4 U5 V1 V2 V3 V4 V5 A1 A2 A3 A4 A5 X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4 Y5 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Nom 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 10 11 12 13 15 16 18 20 22 24 27 30 33 36 39 43 47 51 56 62 68 75 Min 2.28 2.57 2.85 3.14 3.42 3.71 4.09 4.47 4.85 5.32 5.89 6.46 7.13 7.79 8.65 9.50 10.45 11.40 12.35 14.25 15.20 17.10 19.00 20.80 22.80 25.65 28.50 31.35 34.20 37.05 40.85 44.65 48.45 53.20 58.90 64.60 71.25 Max 2.52 2.84 3.15 3.47 3.78 4.10 4.52 4.94 5.36 5.88 6.51 7.14 7.88 8.61 9.56 10.50 11.55 12.60 13.65 15.75 16.80 18.90 21.00 23.10 25.20 28.35 31.50 34.65 37.80 40.95 45.15 49.35 53.55 58.80 65.10 71.40 78.75 Max Zener Impedance ZZT1 @ IZT1 = 5 mA [3] 100 100 95 95 90 90 90 80 60 40 10 15 15 15 15 20 20 25 30 30 40 45 55 55 70 80 80 80 90 130 150 170 180 200 215 240 255 Max Reverse Leakage Current IR A 50 20 10 5 5 3 3 3 2 1 3 2 1 0.7 0.5 0.2 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 @ VR Volts 1 1 1 1 1 1 1 2 2 2 4 4 5 5 6 7 8 8 8 10.5 11.2 12.6 14 15.4 16.8 18.9 21 23.1 25.2 27.3 30.1 32.9 35.7 39.2 43.4 47.6 52.5 Zener Voltage VZ2 (Volts) @ IZT2 = 1 mA [1] Min 1.7 1.9 2.1 2.3 2.7 2.9 3.3 3.7 4.2 4.8 5.6 6.3 6.9 7.6 8.4 9.3 10.2 11.2 12.3 13.7 15.2 16.7 18.7 20.7 22.7 25 27.8 30.8 33.8 36.7 39.7 43.7 47.6 51.5 57.4 63.4 69.4 Max 2.1 2.4 2.7 2.9 3.3 3.5 4.0 4.7 5.3 6.0 6.6 7.2 7.9 8.7 9.6 10.6 11.6 12.7 14.0 15.5 17.0 19.0 21.1 23.2 25.5 28.9 32 35 38 41 46 50 54 60 66 72 79 Max Zener Impedance ZZT2 @ IZT1 = 1 mA [3] 600 600 600 600 600 600 600 500 480 400 150 80 80 80 100 150 150 150 170 200 200 225 225 250 250 300 300 325 350 350 375 375 400 425 450 475 500
MMSZ6V2T1 MMSZ6V8T1 MMSZ7V5T1 MMSZ8V2T1 MMSZ9V1T1
MMSZ10T1 MMSZ11T1 MMSZ12T1 MMSZ13T1 MMSZ15T1 MMSZ16T1 MMSZ18T1 MMSZ20T1 MMSZ22T1 MMSZ24T1 MMSZ27T1 MMSZ30T1 MMSZ33T1 MMSZ36T1 MMSZ39T1 MMSZ43T1 MMSZ47T1 MMSZ51T1 MMSZ56T1 MMSZ62T1 MMSZ68T1 MMSZ75T1
[1] Zener voltage is measured with the zener current applied for PW = 1.0 ms. [2] All part numbers shown indicate a V tolerance of 5%. Z [3] Z ZT1 and ZZT2 are measured by dividing the AC voltage drop across the device by the AC current applied. The specified limits are for IZ(AC) = 0.1 IZ(DC), [3] with the AC frequency = 1 kHz. [4] The zener impedance, Z ZT2, for the 27 through 75 volt types is tested at 0.5 mA rather than the test current of 0.1 mA used for VZ2.
500 mW Leadless (SOD-123) Data Sheet 7-2
Motorola TVS/Zener Device Data
MMSZ2V4T1 Series
TYPICAL CHARACTERISTICS
VZ, TEMPERATURE COEFFICIENT (mV/C) VZ, TEMPERATURE COEFFICIENT (mV/C) 8 7 6 5 4 3 2 1 0 -1 -2 -3 VZ @ IZT TYPICAL TC VALUES FOR MMSZ5221BT1 SERIES 100 TYPICAL TC VALUES FOR MMSZ5221BT1 SERIES
VZ @ IZT 10
2
3
4
5 6 7 8 9 10 VZ, NOMINAL ZENER VOLTAGE (V)
11
12
1
10 VZ, NOMINAL ZENER VOLTAGE (V)
100
Figure 1. Temperature Coefficients (Temperature Range - 55C to +150C)
Figure 2. Temperature Coefficients (Temperature Range - 55C to +150C)
1.2 P D, POWER DISSIPATION (WATTS) 1.0 0.8 0.6 0.4 0.2 0 PD versus TL PD versus TA
1000 Ppk , PEAK SURGE POWER (WATTS) RECTANGULAR WAVEFORM, TA = 25C 100
10
0
25
50 75 100 T, TEMPERATURE (C)
125
150
1 0.1
1
10 PW, PULSE WIDTH (ms)
100
1000
Figure 3. Steady State Power Derating
Figure 4. Maximum Nonrepetitive Surge Power
1000 Z ZT, DYNAMIC IMPEDANCE ( ) TJ = 25C IZ(AC) = 0.1 IZ(DC) f = 1 kHz
1000 IF, FORWARD CURRENT (mA) 75 V (MMSZ5267BT1) 91 V (MMSZ5270BT1) 100
IZ = 1 mA 100 5 mA 20 mA 10
10
150C 1 1 10 VZ, NOMINAL ZENER VOLTAGE 100 1 0.4 0.5
75C 25C 0.6
0C 1.1 1.2
0.7 0.8 0.9 1.0 VF, FORWARD VOLTAGE (V)
Figure 5. Effect of Zener Voltage on Zener Impedance
Figure 6. Typical Forward Voltage
Motorola TVS/Zener Device Data
500 mW Leadless (SOD-123) Data Sheet 7-3
MMSZ2V4T1 Series
TYPICAL CHARACTERISTICS
1000 0 V BIAS 1 V BIAS C, CAPACITANCE (pF) 100 BIAS AT 50% OF VZ NOM 10 TA = 25C I R , LEAKAGE CURRENT ( A) 1000 100 10 1 0.1 0.01 0.001 + 25C - 55C 0 10 20 30 40 50 60 70 VZ, NOMINAL ZENER VOLTAGE (V) 80 90 +150C
0.0001 1 1 10 VZ, NOMINAL ZENER VOLTAGE (V) 100 0.00001
Figure 7. Typical Capacitance
Figure 8. Typical Leakage Current
100 TA = 25C I Z , ZENER CURRENT (mA) I Z , ZENER CURRENT (mA) 10
100 TA = 25C 10
1
1
0.1
0.1
0.01
0
2
4 6 8 VZ, ZENER VOLTAGE (V)
10
12
0.01
10
30
50 70 VZ, ZENER VOLTAGE (V)
90
Figure 9. Zener Voltage versus Zener Current (VZ Up to 12 V)
Figure 10. Zener Voltage versus Zener Current (12 V to 91 V)
500 mW Leadless (SOD-123) Data Sheet 7-4
Motorola TVS/Zener Device Data
MMSZ2V4T1 Series
INFORMATION FOR USING THE SOD-123 SURFACE MOUNT PACKAGE
MINIMUM RECOMMENDED FOOTPRINTS FOR SURFACE MOUNT APPLICATIONS Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to ensure proper solder connection interface between the board and the package. The minimum recommended footprint for the SOD-123 is shown at the right. The SOD-123 package can be used on existing surface mount boards which have been designed for the leadless 34 package style. The footprint compatibility makes conversion from leadless 34 to SOD-123 straightforward.
0.91 0.036
2.36 0.093 4.19 0.165
Figure 11. Minimum Recommended Footprint
SOD-123 POWER DISSIPATION
The power dissipation of the SOD-123 is a function of the pad size. This can vary from the minimum pad size for soldering to a pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by TJ(max), the maximum rated junction temperature of the die, RJA, the thermal resistance from the device junction to ambient; and the operating temperature, TA. Using the values provided on the data sheet for the SOD-123 package, PD can be calculated as follows: TJ(max) - TA RJA ratings table on the data sheet. Substituting these values into the equation for an ambient temperature TA of 25C, one can calculate the power dissipation of the device which in this case is 0.37 watts. PD = 150C - 25C = 0.37 watts 340C/W
PD =
The values for the equation are found in the maximum
The 340C/W for the SOD-123 package assumes using recommended footprint shown on FR-4 glass epoxy printed circuit board. Another alternative is to use a ceramic substrate or an aluminum core board such as Thermal CladTM. By using an aluminum core board material such as Thermal Clad, the power dissipation can be doubled using the same footprint.
GENERAL SOLDERING PRECAUTIONS
The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected. * Always preheat the device. * The delta temperature between the preheat and soldering should be 100C or less.* * When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference shall be a maximum of 10C.
* The soldering temperature and time shall not exceed * When shifting from preheating to soldering, the maximum * After soldering has been completed, the device should be
allowed to cool naturally for at least three minutes. Gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress. * Mechanical stress or shock should not be applied during cooling * Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device. temperature gradient shall be 5C or less. 260C for more than 10 seconds.
Motorola TVS/Zener Device Data
500 mW Leadless (SOD-123) Data Sheet 7-5
EEEE EEEE EEEE EEEE EEEE
1.22 0.048
mm inches
MMSZ2V4T1 Series
Zener Voltage Regulator Diodes -- Surface Mounted
500 mW SOD-123
A H
1
K
B
2.36 0.093 4.19 0.165
2
E J
SOD-123 Footprint
MILLIMETERS MIN MAX 1.40 1.80 2.55 2.85 0.95 1.35 0.50 0.70 0.25 -- 0.00 0.10 -- 0.15 3.55 3.85 INCHES MIN MAX 0.055 0.071 0.100 0.112 0.037 0.053 0.020 0.028 0.010 -- 0.000 0.004 -- 0.006 0.140 0.152
D
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 425-01 THRU -03 OBSOLETE, NEW STANDARD 425-04.
DIM A B C D E H J K
CASE 425 PLASTIC
(Refer to Section 10 for Surface Mount, Thermal Data and Footprint Information.)
MULTIPLE PACKAGE QUANTITY (MPQ) REQUIREMENTS
Package Option Tape and Reel Tape and Reel Type No. Suffix T1(1) T3(2) MPQ (Units) 3K 10K
NOTE: 1. The numbers on the suffixes indicate the following: NOTE: 1. 1. 7 Reel. Cathode lead toward sprocket hole. NOTE: 1. 2. 13 Reel. Cathode lead toward sprocket hole.
(Refer to Section 10 for more information on Packaging Specifications.)
500 mW Leadless (SOD-123) Data Sheet 7-6
Motorola TVS/Zener Device Data
EEEE EEEE EEEE EEEE
STYLE 1: PIN 1. CATHODE 2. ANODE
EEEE EEEE EEEE EEEE
C
0.91 0.036
1.22 0.048
AAAA AAAA
mm inches


▲Up To Search▲   

 
Price & Availability of ON2277

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X