Part Number Hot Search : 
1000T RF2196 RTD15 RC4156M E004870 P0703 6032T F536LAR
Product Description
Full Text Search
 

To Download MSM54V24616 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 in im el Pr
Semiconductor MSM54V24616
Semiconductor 131,072-Word 16-Bit 2-bank SYNCHRONOUS DYNAMIC RAM
MSM54V24616
y ar
DESCRIPTION
The MSM54V24616 is a 131,072-word 16-bit 2-bank synchronous dynamic RAM, fabricated in OKI's CMOS silicon gate process technology. The device operates at 3.3 V. The inputs and outputs are LVTTL compatible. This device can operate up to 125MHz by using synchronous interface.
FEATURES
* * * * * * * * * * * * * * * * * 131,072-words 16-bit 2 banks configuration Single 3.3 V10% power supply LVTTL compatible inputs and outputs All input signals are latched at rising edge of system clock Auto precharge and controlled precharge Internal pipelined operation: column address can be changed every clock cycle Dual internal banks controlled by A9 (Bank Address: BA) Independent byte operation via DQML and DQMU Programmable burst sequence (Sequential / Interleave) Programmable burst length (1, 2, 4, 8 and full page) Programmable CAS latency (1, 2 and 3) Programmable Write burst (Burst write / Single write) Burst stop function (full-page burst) Power Down operation and Active Power Down (Clock Suspend) operation Auto refresh and Self refresh capability Refresh period: 1,024 cycles / 16 ms Package options: 50-pin plastic TSOP (type II) (TSOPII50-P-400-0.80-K) (Product : MSM54V24616-xxTS-K) xx indicates speed rank.
PRODUCT FAMILY
Family MSM54V24616-8 MSM54V24616-10 MSM54V24616-12 Max. Frequency 125 MHz 100 MHz 83MHz Access Time (Max.) tAC1 22 ns 27 ns 32 ns tAC2 10 ns 12 ns 15 ns tAC3 7 ns 9 ns 10 ns Power Dissipation Operating (Max.) Standby (Max.) 648 mW 540 mW 468 mW 7.2 mW
1
MSM54V24616
Semiconductor
PIN CONFIGURATION (TOP VIEW)
VCC DQ0 DQ1 VSS(Q) DQ2 DQ3 VCC(Q) DQ4 DQ5 VSS(Q) DQ6 DQ7 VCC(Q) DQML WE CAS RAS CS A9 A8 A0 A1 A2 A3 VCC
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
50 VSS 49 DQ15 48 DQ14 47 VSS(Q) 46 DQ13 45 DQ12 44 VCC(Q) 43 DQ11 42 DQ10 41 VSS(Q) 40 DQ9 39 DQ8 38 VCC(Q) 37 NC 36 DQMU 35 CLK 34 CKE 33 NC 32 NC 31 NC 30 A7 29 A6 28 A5 27 A4 26 VSS
50-Pin Plastic TSOP (II) (K Type)
Pin Name CLK CS CKE A0 - A8 A9 RAS CAS WE
Function System Clock Chip Select Clock Enable Address Bank Select Address Row Address Strobe Column Address Strobe Write Enable
Pin Name DQML / DQMU DQ0 - DQ15 VCC VSS VCC(Q) VSS(Q) NC
Function Data Input/Output Mask Data Input/Output Power Supply (3.3 V) Ground (0 V) Data Output Power Supply (3.3 V) Data Output Ground (0 V) No Connection
Note:
The same power supply voltage must be provided to every VCC pin and VCC(Q)pin. The same GND voltage level must be provided to every VSS pin and VSS(Q) pin.
3
Semiconductor
MSM54V24616
PIN DESCRIPTION
CLK CS CKE Fetches all inputs at the "H" edge. Disables or enables device operation by asserting or deactivating all inputs except CLK, CKE, DQMU and DQML. Masks system clock to deactivate the subsequent CLK operation. If CKE is deactivated, system clock will be masked that the subsequent CLK operation is deactivated. CKE should be asserted at least one cycle prior to a new command. Address Row & column multiplexed. Row address: RA0 - RA8 Column address: CA0 - CA7 A9 RAS CAS WE DQML DQMU DQ0 - DQ15 Masks the read data of two clocks later when DQMU / DQML is set "H" at the "H" edge of the clock signal. Masks the write data of the same clock when DQMU / DQML is set "H" at the "H" edge of the clock signal. Data inputs/outputs are multiplexed on the same pin. Functionality depends on the combination. For details, see the function truth table. Selects bank to be activated during row address latch time and selects bank for precharge and read/ write during column address latch time. A9= "L" : Bank A, A9= "H" : Bank B
3
MSM54V24616
Semiconductor
BLOCK DIAGRAM
CKE CLK CS RAS CAS WE DQML DQMU
Timing Register
Programing Register
Latency & Burst Controller
I/O Controller
Bank Controller
A9
A0-A9
Internal Col. Address Counter
Input Data Register
8
Input Buffers
16 16
8
Column Address Buffers
Column Decoders
Sense Amplifier Internal Row Address Counter
16
Read Data Register
16
16
Output Buffers
DQ0-DQ15
Row Decoders
Word Drivers
2Mb Memory Cells 2Mb Memory Cells
9
Row Address Buffers
9
Row Decoders
Word Drivers
Sense Amplifier
Column Decoders
5
Semiconductor
MSM54V24616
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings
(Voltages referenced to VSS) Parameter Voltage on Any Pin Relative to VSS VCC Supply Voltage Storage Temperature Power Dissipation Short Circuit Current Operating Temperature Symbol VIN, VOUT VCC, VCCQ Tstg PD* IOS Topr Rating -0.5 to 4.6 -0.5 to 4.6 -55 to 150 1 50 0 to 70 Unit V V C W mA C
*: Ta = 25C Recommended Operating Conditions
(Voltages referenced to VSS = 0 V) Parameter Power Supply Voltage Input High Voltage Input Low Voltage Symbol VCC, VCCQ VIH VIL Min. 2.97 2.0 -0.3 Typ. 3.3 -- -- Max. 3.63 VCC + 0.3 0.8 Unit V V V
Capacitance
(VCC = 3.3 V 0.3 V, Ta = 25C, f = 1 MHz) Parameter Input Capacitance (A0 - A9) Input Capacitance (CLK, CKE, CS, RAS, CAS, WE, DQML, DQMU) Input/Output Capacitance (DQ0 - DQ15) Symbol CIN1 CIN2 COUT Typ. -- -- -- Max. 5 5 7 Unit pF pF pF
5
MSM54V24616
Semiconductor
DC Characteristics
Condition Parameter Symbol Bank -- -- -- -- One Bank Active CKE -- -- -- -- Others IOH = -2 mA IOL = 2 mA -- -- Version -8 -10 -12 Unit Note Min. Max. Min. Max. Min. Max. 2.4 -- 2.4 -- 2.4 -- V -- 0.4 -- 0.4 -- 0.4 V mA mA -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -- 130 -- 110 --
Output High Voltage VOH Output Low Voltage Input Leakage Current Output Leakage Current VOL ILI ILO ICC1 Average Power Supply Current (Operating)
CKE VIH tCC = min tRC = min No Burst CKE VIH tCC = min tRC = min tRRD = min No Burst CKE VIH tCC = min CKE VIL tCC = min
90 mA 1, 2
ICC1D Both Banks Active
-- 180 -- 150 -- 130 mA 1, 2
Power Supply Current (Stand by)
ICC2
Both Banks Precharge
--
55
--
45
--
40 mA
3
Average Power ICC3P One Bank Active Supply Current (Active Stand by Power Down Mode) Average Power ICC3N One Bank Active Supply Current (Active Stand by Non Power Down Mode) Power Supply Current (Burst) Power Supply Current (Auto-Refresh) Average Power Supply Current (Self-Refresh) Average Power Supply Current (Power down) ICC4 ICC5 Both Banks Active One Bank Active Both Banks Precharge Both Banks Precharge
--
5
--
5
--
5
mA
3
CKE VIH tCC = min -- 75 -- 65 -- 55 mA 3
CKE VIH tCC = min CKE VIH tCC = min tRC = min CKE VIL tCC = min
-- 150 -- 130 -- 110 mA 1, 2
-- 120 -- 100 --
80 mA
2
ICC6
-- CKE VIL tCC = min --
2
--
2
--
2
mA
ICC7
2
--
2
--
2
mA
Notes:
1. Measured with outputs open. 2. Address and data can be changed once or not be changed during one cycle. 3. Address and data can be changed once or not be changed during two cycles.
7
Semiconductor
MSM54V24616
Mode Set Address Keys
Operation Code A9 0 0 1 1 A8 0 1 0 1 TM
Burst Read and Burst Write
CAS Latency A6 0 0 0 0 1 1 1 1 A5 0 0 1 1 0 0 1 1 A4 0 1 0 1 0 1 0 1 CL Reserved 1 2 3 Reserved Reserved Reserved Reserved 0 1
Burst Type A3 BT Sequential Interleave A2 0 0 0 0 1 1 1 1 A1 0 0 1 1 0 0 1 1
Burst Length A0 0 1 0 1 0 1 0 1 BT = 0 1 2 4 8 BT = 1 1 2 4 8
Reserved
Burst Read and Single Write
Reserved
Reserved Reserved Reserved Reserved Reserved Reserved Full Page Reserved
Note:
A7 should stay "L" during mode set cycle.
MSM54V24616 series has two types of power on sequence. POWER ON SEQUENCE 1 1. With inputs in NOP state, turn on the power supply and start the system clock. 2. After the VCC voltage has reached the specified level, pause for 200 ms or more with the input kept in NOP state. 3. Issue the precharge all bank command. 4. Apply an Auto-refresh eight or more times. 5. Enter the mode register setting command. POWER ON SEQUENCE 2 1. With inputs in NOP state, turn on the power supply and start the system clock. 2. After the VCC voltage has reached the specified level, pause for 100 ms or more with the input kept in NOP state. 3. Issue the precharge all bank command. 4. Enter the mode register setting command. 5. Apply an Auto-refresh two or more times.
7
MSM54V24616
Semiconductor
AC Characteristics 1
Note 1, 2 Parameter CL = 3 Clock Cycles Time CL = 2 CL = 1 CL = 3 Access Time from CL = 2 Clock CL = 1 Clock "H" Pulse Time Clock "L" Pulse Time Input Setup Time Input Hold Time Output Low Impedance Time form Clock Output High Impedance Time form Clock Output Hold from Clock RAS Cycle Time RAS Precharge Time RAS Active Time RAS to CAS Delay Time Write Recovery Time tAC tCH tCL tSI tHI tOLZ tOHZ tOH tRC tRP tRAS tRCD tWR tCC Symbol
MSM54V24616-8 MSM54V24616-10 MSM54V24616-12
Min. 8 12 24 -- -- -- 2.5 2.5 2.5 1 3 -- 3 72 24 48 24 16 16 16 -- 8 1
Max. -- -- -- 7 10 22 -- -- -- -- -- 6 -- -- -- 105 -- -- -- -- 16 -- 5
Min. 10 15 30 -- -- -- 3 3 3 1 3 -- 3 90 30 60 30 20 20 20 -- 10 1
Max. -- -- -- 9 12 27 -- -- -- -- -- 8 -- -- -- 105 -- -- -- -- 16 -- 5
Min. 12 18 36 -- -- -- 4 4 3 1.5 3 -- 3 108 36 72 36 24 24 24 -- 12 1
Max. -- -- -- 10 15 32 -- -- -- -- -- 10 -- -- -- 105 -- -- -- -- 16 -- 5
Unit Note ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ms ns ns 3 3, 4 3, 4 3, 4
Write Command Input Time tOWD form Output RAS to RAS Bank Active Delay Time Refresh Time Power-down Exit Set-up Time Input Level Transition Time tRRD tREF tPDE tT
9
Semiconductor
MSM54V24616
AC Characteristics 2
Note 1, 2 Parameter CL tCK CAS to CAS Delay Time (Min.) Clock Disable Time from CKE Data Output High Impedance Time from DQM lCCD lCKE lDOZ Symbol
MSM54V24616-8 MSM54V24616-10 MSM54V24616-12
Unit Note
3 8 1 1 2 0 0 3 2 1 3
2 12 1 1 2 0 0 2 1 1 3
1 24 1 1 2 0 0 1 0 1 3
3 10 1 1 2 0 0 3 2 1 3
2 15 1 1 2 0 0 2 1 1 3
1 30 1 1 2 0 0 1 0 1 3
3 12 1 1 2 0 0 3 2 1 3
2 18 1 1 2 0 0 2 1 1 3
1 36 1 1 2 0 0 1 0 1 3 ns Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle
Data Input Mask Time from DQM lDOD Data Input Time from Write Command lDWD
Data Output High Impedance Time from lROH Precharge Command
Burst stop to output valid data hold
lBSR
Burst stop to write data ignore lBSW Active Command Input Time from Mode lMRD Register Set Command Input (Min.)
9
MSM54V24616
Semiconductor
Notes : 1. AC measurements assume tT = 1 ns. 2. The reference level for timing of input signals is 1.4 V. 3. Output load.
1.4 V Z = 50 W Output 30 pF 50 W
4. An access time is measured at 1.4 V. 5. If tT is longer than 1ns, the reference level for timing of input signals is VIH and VIL.
11
Semiconductor TIMING WAVEFORM
Read & Write Cycle (Same Bank) @ CAS Latency = 2, Burst Length = 4
0
CLK
CKE CS RAS
CAS
ADDR
A9
A8 DQ
WE
DQML DQMU
, ,,, ,
MSM54V24616
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
tRC
tRP
tRCD
Ra
Ca0
Rb
Cb0
Ra
Rb
tOH
Qa0
Qa1
Qa2
Qa3
Db0
Db1
Db2
Db3
tAC
tOHZ
tWR
Row Active
Read Command
Row Active
Write Command
Precharge Command
Precharge Command
11
MSM54V24616
Semiconductor
Single Bit Read-Write-Read Cycle (Same Page) @ CAS Latency = 2, Burst Length = 4
tCH
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
CLK
,,, ,,
tCC tCL CKE CS High tHI tHI tSI RAS tSI tHI lCCD CAS tSI tSI tSI ADDR
Ra Ca Cb Cc
tHI
tHI
A9
BS
BS
BS
BS
BS
A8
Ra
tAC
tHI
DQ
Qa
Db
Qc
tOLZ
tSI
tOH tOHZ tOWD
tHI
WE
tSI
DQML DQMU
Row Active
Write Command
Precharge Command
Read Command
Read Command
13
Semiconductor *Notes:
MSM54V24616
1. When CS is set "High" at a clock transition from "Low" to "High", all inputs except CKE and DQML, DQMU are invalid. 2. When issuing an active, read or write command, the bank is selected by A9.
A9 0 1 Active, read or write Bank A Bank B
3. The auto precharge function is enabled or disabled by the A8 input when the read or write command is issued.
A8 0 1 0 1 A9 0 0 1 1 Operation After the end of burst, bank A holds the active status. After the end of burst, bank A is precharged automatically. After the end of burst, bank B holds the active status. After the end of burst, bank B is precharged automatically.
4. When issuing a precharge command, the bank to be precharged is selected by the A8 and A9 inputs.
A8 0 0 1 A9 0 1 X Operation Bank A is precharged. Bank B is precharged. Both bank A and B are precharged.
5. The input data and the write command are latched by the same clock (Write latency = 0). 6. The output is forced to high impedance by (1 CLK + tOHZ) after DQML or DQMU entry.
13
MSM54V24616
Semiconductor
Page Read & Write Cycle (Same Bank) @ CAS Latency = 2, Burst Length = 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
CLK
CKE CS
RAS
CAS
ADDR
A9
A8
DQ
WE
DQML DQMU
*Notes:
, , ,,,, , , , , , , ,
17 18 19
High
Bank A Active
lCCD
Ca0
Cb0
Cc0
Cd0
Qa0
Qa1
Qb0
Qb1
Dc0
Dc1
Dd0
tWR *Note2
*Note1
Read Command
Read Command
Write Command
Write Command
Precharge Command
1. To write data before a burst read ends, DQMi should be asserted three cycles prior to the write command, to avoid bus contention. 2. To assert row precharge before a burst write ends, wait tWR after the last write data input. Input data during the precharge input cycle will be masked internally.
15
,,,, , , , , , ,
Read & Write Cycle with Auto Precharge @ Burst Length = 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Semiconductor
MSM54V24616
CLK
CKE CS
High
RAS
tRRD
CAS
ADDR
Ra
Rb
Ca
Cb
A9
A8
Ra
Rb
WE
CAS Latency = 1
DQ
Qa0
Qa1
Qa2
Qa3
Db0
Db1
Db2
Db3
DQML DQMU
A-Bank Precharge Start
CAS Latency = 2
DQ
Qa0
Qa1
Qa2
Qa3
Db0
Db1
Db2
Db3
DQML DQMU
A-Bank Precharge Start
CAS Latency = 3
DQ
Qa0
Qa1
Qa2
Qa3
Db0
Db1
Db2
Db3
A-Bank Precharge Start
tWR
DQML DQMU
Row Active (A-Bank)
A Bank Read with Auto Precharge Row Active (B-Bank)
B Bank Write with Auto Precharge
B Bank Precharge Start Point
15
MSM54V24616
Bank Interleave Random Row Read Cycle @ CAS Latency = 2, Burst Length = 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
CLK
CKE CS RAS
CAS
ADDR
A9
A8 DQ
WE
DQML DQMU
, , , ,, , ,
18 19
Semiconductor
High
tRC
tRRD
RAa
CAa
RBb
CBb
RAc
CAc
RAa
RBb
RAc
QAa0 QAa1 QAa2 QAa3
QBb1 QBb2 QBb3 QBb4
QAc0 QAc1 QAc2 QAc3
Row Active (A-Bank)
Read Command (A-Bank)
Read Command (B-Bank)
Read Command (A-Bank)
Row Active (B-Bank)
Precharge Command (A-Bank)
Precharge Command (B-Bank) Row Active (A-Bank)
17
Semiconductor
MSM54V24616
,,,, , , , ,,
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Bank Interleave Random Row Write Cycle @ CAS Latency = 2, Burst Length = 4
CLK
CKE CS
High
RAS
CAS
ADDR
RAa
CAa
RBb
CBb
RAc
CA
A9
A8
RAa
RBb
RAc
DQ
DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3
DAc0 DAc1
WE
DQML DQMU
Row Active (A-Bank)
Row Active (B-Bank)
Write Command (A-Bank)
Precharge Command (A-Bank) Write Command (B-Bank)
Write Command (A-Bank)
Row Active (A-Bank)
Precharge Command (A-Bank)
Precharge Command (B-Bank)
17
MSM54V24616
Bank Interleave Page Read Cycle @ CAS Latency = 2, Burst Length = 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CLK
CKE CS
RAS
CAS
ADDR
A9
A8
DQ
WE
DQML DQMU
*Note:
, ,,, , ,
16 17 18 19
Semiconductor
High
*Note1
RAa
CAa
RBb
CBb
CAc
CBd
CAe
RAa
RAa
QAa0 QAa1 QAa2 QAa3 QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1
lROH
Row Active (A-Bank)
Row Active (B-Bank)
Read Command (B-Bank)
Precharge Command (A-Bank)
Read Command (A-Bank)
Read Command (B-Bank)
Read Command (A-Bank)
Read Command (A-Bank)
1. CS is ignored when RAS, CAS and WE are high at the same cycle.
19
,,, ,, , , , , ,
Semiconductor MSM54V24616 Bank Interleave Page Write Cycle @ CAS Latency = 2, Burst Length = 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
CLK
CKE CS
High
RAS
CAS
ADDR
RAa
CAa
RBb
CBb
CAc
CBd
A9
A8
RAa
RAb
DQ
DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3 DAc0 DAc1 DBd0
WE
DQML DQMU
Row Active (A-Bank)
Row Active (B-Bank)
Write Command (B-Bank)
Write Command (A-Bank)
Write Command (B-Bank)
Write Command (A-Bank)
Precharge Command (Both Bank)
19
MSM54V24616
Semiconductor
,,, , ,
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Bank Interleave Random Row Read/Write Cycle @ CAS Latency = 2, Burst Length = 4
CLK
CKE CS
High
RAS
CAS
ADDR
RAa
CAa
RBb
CBb
RAc
CAc
A9
A8
RAa
RBb
RAc
DQ
QAa0 QAa1 QAa2 QAa3
DBb0 DBb1 DBb2 DBb3
QAc0 QAc1 QAc2 QAc3
WE
DQML DQMU
Row Active (A-Bank)
Row Active (B-Bank)
Write Command (B-Bank)
Read Command (A-Bank)
Read Command (A-Bank)
Precharge Command (A-Bank)
Row Active (A-Bank)
21
Semiconductor
MSM54V24616
Bank Interleave Page Read/Write Cycle @ CAS Latency = 2, Burst Length = 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
CLK
CKE CS RAS
CAS
ADDR
A9
A8 DQ
WE
DQML DQMU
, , ,,,, ,
High
CAa0 CBb0 CAc0 QAa0 QAa1 QAa2 QAa3 DBb0 DBb1 DBb2 DBb3 QAc0 QAc1 QAc2 QAc3 Read Command (A-Bank) Write Command (B-Bank) Read Command (A-Bank)
21
MSM54V24616
Semiconductor
Clock Suspension & DQM Operation Cycle @ CAS Latency = 2, Burst Length = 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
*Note1
*Note1
CKE CS RAS
CAS
ADDR
Ra
Ca
Cb
Cc
A9
A8 DQ0 - 7
Ra
Qa0
Qa1
Qa2
Qb0
Qb1
Dc0
Dc2
*Note4 DQ8 - 15
tOHZ
tOHZ
*Note3
Dc1
Qa0
Qa2
Qa3
Qb0
Qb1
Dc0
*Note2
WE
DQML
*Note4 DQMU
Row Active
Read Command
Read DQM
CLOCK Suspension
Read Command
CLK
*Notes:
, , ,, , ,,
Read DQM Read DQM Write Command Write DQM CLOCK Suspension Write DQM
1. 2. 3. 4.
When CKE is deactivated, the next clock cycle will be ignored. When DQMs are asserted, the read data after two clock cycles will be masked. When DQMs are asserted, the write data in the same clock cycle will be masked. When DQML is set High, the input/output data of DQ0 - DQ7 will be masked. When DQMU is set High, the input/output data of DQ8 - DQ15 will be masked.
23
Semiconductor Read Interruption by Precharge Command @ Burst Length = 8
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MSM54V24616
CLK
CKE CS RAS
CAS
ADDR
A9
A8 WE
CAS Latency = 1
DQ
DQML DQMU
CAS Latency = 2
DQ
DQML DQMU
CAS Latency = 3
DQ
DQML DQMU
*Note:
When CAS latency = n, and if row precharge is asserted before a burst read ends, then the read data will not output after the n clock cycle of precharge command.
,, ,,, ,, , ,, ,, ,
16 17 18 19
High
Ra
Ca
Ra
*Note
Qa0
Qa1
Qa2
Qa3
Qa4
Qa5
*Note
Qa0
Qa1
Qa2
Qa3
Qa4
Qa5
*Note
Qa0
Qa1
Qa2
Qa3
Qa4
Qa5
Row Active
Read Command
Precharge Command
23
,,, , , ,,
MSM54V24616 Semiconductor Full Page Burst Read Cycle @ CAS Latency = 2, Burst Length = Full page
0 1 2 3 4 5 6 7 8 9 260 261 262 263 264 265 266 267 268
CLK
CKE CS
High
High
RAS
CAS
ADDR
Ra
Ca
A9
A8
Ra
DQ
Qa0
Qa1
Qa2
Qa3
Qa4
Qa254 Qa255 Qa0
Qa1
Qa2
Qa3
Qa4
IBSR
WE
DQM
Row Active
Burst stop Command
Read Command
Precharge Command
25
,,, , , ,,
Semiconductor MSM54V24616 Full Page Burst Write Cycle @ CAS Latency = 2, Burst Length = Full page
0 1 2 3 4 5 6 7 8 9 260 261 262 263 264 265 266 267 268
CLK
CKE CS
High
High
RAS
CAS
ADDR
Ra
Ca
A9
A8
Ra
DQ
Da0
Da1
Da2
Da3
Da4
Da5
Da6
Da1
Da2
Da3
Da4
Da5
Da6
IBSW
WE
DQM
Row Active
Burst stop Command
Write Command
Precharge Command
25
MSM54V24616 Burst Read Single Write Cycle @ CAS Latency = 2, Burst Length = 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Semiconductor
, , ,, , ,
15 16 17 18 19
CLK
CKE CS
High
RAS
CAS
ADDR
RAa
CAa
RBb
CAb
CBa
A9
A8
RAa
RBb
DQ
QAa0 QAa1 QAa2 QAa3
DAb0
QBa0 QBa1 QBa2 QBa3
WE
DQM
Row Active (A-Bank)
Row Active (B-Bank)
Write Command (A-Bank)
Precharge Command (A-Bank)
Read Command (A-Bank)
Read Command (B-Bank)
Precharge Command (B-Bank)
27
, ,, , , ,
Semiconductor MSM54V24616 Power Down Mode @ CAS Latency = 2, Burst Length = 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
CLK
tSI *Note1
CKE CS
*Note2 tPDE tSI
tSI
RAS
CAS
ADDR
Ra
Ca
A9
A8
Ra
DQ
Qa0
Qa1
Qa2
WE
DQML DQMU
Row Active
Power-down Entry
Power-down Exit
Clock Suspention Entry
Clock Suspention Exit Read Command
Precharge Command
*Notes:
1. When both banks are in precharge state, and if CKE is set low, then the MSM54V24616 enters powerdown mode and maintains the mode while CKE is low. 2. To release the circuit from power-down mode, set CKE high for longer than tPDE, and the inputs will be set within the same cycle.
27
MSM54V24616
Self Refresh Cycle
0 1 2
CLK
CKE CS RAS
CAS
ADDR
A9
A8 DQ
WE
DQML DQMU
, , ,,, ,
Semiconductor
tRCmin. tSI tPDE
Ra BS Ra
Hi - Z
Hi - Z
Self Refresh Entry
Self Refresh Exit
Row Active
29
Semiconductor Mode Register Set Cycle
0 1 2 3 4 5 6
MSM54V24616
Auto Refresh Cycle
0 1 2 3 4 5 6 7 8 9 10 11 12
CLK
CKE CS RAS
CAS
ADDR
DQ
WE
DQML DQMU
,, , ,, ,
High High lMRD tRC
key Ra
Hi - Z
Hi - Z
MRS
New Command
Auto Refresh
Auto Refresh
29
MSM54V24616
Semiconductor
FUNCTION TRUTH TABLE (Table 1) (1/2)
Current State1 Idle CS RAS CAS WE BA H L L L L L L L Row Active H L L L L L L Read H L L L L L L L Write H L L L L L L L Read with Auto Precharge H L L L L L L Write with Auto Precharge H L L L L L L X H H H L L L L X H H H L L L X H H H H L L L X H H H H L L L X H H H H L L X H H H H L L X H H L H H L L X H L L H H L X H H L L H H L X H H L L H H L X H H L L H L X H H L L H L X H L X H L H L X X H L H L X X H L H L H L X X H L H L H L X X H L H L X X X H L H L X X X X BA BA BA BA X X X BA BA BA BA BA X X X BA BA BA BA BA X X X BA BA X BA X X X BA BA X BA X X X BA BA BA BA X ADDR X X X CA RA A8 X OP Code X X CA, A8 CA, A8 RA A8 X X X X CA, A8 CA, A8 RA A8 X X X X CA, A8 CA, A8 RA A8 X X X X CA, A8 X RA, A8 X X X X CA, A8 X RA, A8 X NOP NOP ILLEGAL 2 ILLEGAL 2 Row Active NOP 4 Auto-Refresh or Self-Refresh 5 Mode Register write NOP NOP Read Write ILLEGAL 2 Precharge ILLEGAL NOP (Continue Row Active after Burst ends) NOP (Continue Row Active after Burst ends) Burst stop (Full page), NOP (BL=1, 2, 4 and 8) Term Burst, start new Burst Read Term Burst, start new Burst Write ILLEGAL 2 Term Burst, execute Row Precharge ILLEGAL NOP (Continue Row Active after Burst ends) NOP (Continue Row Active after Burst ends) Burst stop (Full page), NOP (BL=1, 2, 4 and 8) Term Burst, Start new Burst Read Term Burst, start new Burst write ILLEGAL 2 Term Burst, executo Row Precharge ILLEGAL NOP (Continue Burst to End and enter Row Precharge) NOP (Continue Burst to End and enter Row Precharge) ILLEGAL 2 ILLEGAL 2 ILLEGAL ILLEGAL 2 ILLEGAL NOP (Continue Burst to End and enter Row Precharge) NOP (Continue Burst to End and enter Row Precharge) ILLEGAL 2 ILLEGAL 2 ILLEGAL ILLEGAL 2 ILLEGAL Action
31
Semiconductor
MSM54V24616
FUNCTION TRUTH TABLE (Table 1) (2/2)
Current State1 CS RAS CAS WE BA Precharge H L L L L L L Write Recovery H L L L L L L Row Active H L L L L L L Refresh H L L L L Mode Register Access H L L L L X H H H L L L X H H H L L L X H H H L L L X H H L L X H H H L X H H L H H L X H H L H H L X H H L H H L X H L H L X H H L X X H L X H L X X H L X H L X X H L X H L X X X X X X X H L X X X X BA BA BA BA X X X BA BA BA BA X X X BA BA BA BA X X X X X X X X X X X ADDR X X X CA RA A8 X X X X CA RA A8 X X X X CA RA A8 X X X X X X X X X X X NOP --> Idle after tRP NOP --> Idle after tRP ILLEGAL 2 ILLEGAL 2 ILLEGAL 2 NOP 4 ILLEGAL NOP NOP ILLEGAL 2 ILLEGAL 2 ILLEGAL 2 ILLEGAL 2 ILLEGAL NOP --> Row Active after tRCD NOP --> Row Active after tRCD ILLEGAL 2 ILLEGAL 2 ILLEGAL 2 ILLEGAL 2 ILLEGAL NOP --> Idle after tRC NOP --> Idle after tRC ILLEGAL ILLEGAL ILLEGAL NOP NOP ILLEGAL ILLEGAL ILLEGAL Action
ABBREVIATIONS RA = Row Address CA = Column Address Notes:
BA = Bank Address AP = Auto Precharge
NOP = No OPeration command
1. All inputs will be enabled when CKE is set high for at least 1 cycle prior to the inputs. 2. Illegal to bank in specified state, but may be legal in some cases depending on the state of bank selection. 3. Satisfy the timing of tCCD and tWR to prevent bus contention. 4. NOP to bank precharging or in idle state. Precharges activated bank by BA or A8. 5. Illegal if any bank is not idle.
31
MSM54V24616
Semiconductor
FUNCTION TRUTH TABLE for CKE (Table 2)
Current State (n) CKEn-1 Self Refresh
6
CKEn x H H H H H L X H H H H H L H L L L L L L L L H L H L
CS RAS CAS WE X H L L L L X X H L L L L X X H L L L L L L X X X X X X X H H H L X X X H H H L X X X H H H L L L X X X X X X X H H L X X X X H H L X X X X H H L H L L X X X X X X X H L X X X X X H L X X X X X H L X L H L X X X X X
ADDR X X X X X X X X X X X X X X X X X X X X X X X X X X X INVALID
Action Exit Self Refresh --> ABI Exit Self Refresh --> ABI ILLEGAL ILLEGAL ILLEGAL NOP (Maintain Self Refresh) INVALID Exit Power Down --> ABI Exit Power Down --> ABI ILLEGAL ILLEGAL ILLEGAL 7 NOP (Continue power down mode) Refer to Table 1 Enter Power Down Enter Power Down ILLEGAL ILLEGAL ILLEGAL Enter Self Refresh ILLEGAL NOP Refer to Operations in Table 1 Begin Clock Suspend Next Cycle Enaole Clock of Next Cycle Continue Clock Suspension
H L L L L L L
Power Down 6
H L L L L L L
All Banks Idle 7 (ABI)
H H H H H H H H L
Any State Other than Listed Above
H H L L
Notes:
6. If a minimam set-up time tPDE is satisfied when CKE transitions from "L" to "H", CKE operates asynchronously so that a command can be input in the same internal clock cycle. 7. Power-down and self refresh can be entered only when all the banks are in an idle state.
32


▲Up To Search▲   

 
Price & Availability of MSM54V24616

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X