![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD - 96919A IRF7904PBF HEXFET(R) Power MOSFET Applications l Dual SO-8 MOSFET for POL Converters in Notebook Computers, Servers, Graphics Cards, Game Consoles and Set-Top Box VDSS 30V RDS(on) max Q1 16.2m:@VGS = 10V Q2 10.8m:@VGS = 10V ID 7.6A 11A Benefits l Very Low RDS(on) at 4.5V VGS l Low Gate Charge l Fully Characterized Avalanche Voltage and Current l 20V VGS Max. Gate Rating l Improved Body Diode Reverse Recovery l 100% Tested for RG l Lead-Free B 9 T AA9! T AA9! T AA9! SO-8 T! T! B! Absolute Maximum Ratings Parameter VDS VGS ID @ TA = 25C ID @ TA = 70C IDM PD @TA = 25C PD @TA = 70C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range 7.6 6.1 61 1.4 0.9 0.011 -55 to + 150 Q1 Max. 30 20 Q2 Max. Units V 11 8.9 89 2.0 1.3 0.016 W/C C W A c Thermal Resistance RJL RJA Parameter Junction-to-Drain Lead g Junction-to-Ambient fg Q1 Max. 20 90 Q2 Max. 20 62.5 Units C/W www.irf.com 1 02/08/06 IRF7904PBF Static @ TJ = 25C (unless otherwise specified) BVDSS VDSS/TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Q1&Q2 Q1 Q2 Q1 Q2 VGS(th) VGS(th)/TJ IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Q1&Q2 Q1 Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Min. 30 --- --- --- --- --- --- 1.35 --- --- --- --- --- --- 17 23 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. --- 0.024 0.024 11.4 14.5 8.6 10 --- -5.0 -5.0 --- --- --- --- --- --- 7.5 14 2.2 3.7 0.6 1.1 2.5 4.8 2.2 4.4 3.1 5.9 4.5 9.1 3.2 2.9 6.9 7.8 7.3 10 10 15 3.2 4.6 910 1780 190 390 94 180 Max. --- --- --- 16.2 20.5 10.8 13 2.25 --- --- 1.0 150 100 -100 --- --- 11 21 --- --- --- --- --- --- --- --- --- --- --- --- 4.8 4.4 --- --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. --- --- Min. --- --- --- --- --- --- --- --- --- --- Typ. --- --- --- --- --- --- 11 16 2.6 6.9 Max. 1.8 2.5 61 88 1.0 1.0 17 24 3.9 10 Conditions Units VGS = 0V, ID = 250A V V/C Reference to 25C, ID = 1mA VGS = 10V, ID = 7.6A VGS = 4.5V, ID = 6.1A VGS = 10V, ID = 11A VGS = 4.5V, ID = 8.8A Q1: VDS = VGS, ID = 25A V mV/C Q2: VDS = VGS, ID = 50A m A nA S VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125C VGS = 20V VGS = -20V VDS = 15V, ID = 6.1A VDS = 15V, ID = 8.8A RDS(on) Static Drain-to-Source On-Resistance e e e e nC Q1 VDS = 15V VGS = 4.5V, ID = 6.1A Q2 VDS = 15V VGS = 4.5V, ID = 8.8A nC VDS = 16V, VGS = 0V Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Q1 VDD = 15V, VGS = 4.5V ID = 6.1A ns Q2 VDD = 15V, VGS = 4.5V ID = 8.8A Clamped Inductive Load VGS = 0V VDS = 15V = 1.0MHz pF Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current d Q1 Max. 140 6.1 Q2 Max. 250 8.8 Units mJ A Diode Characteristics IS ISM VSD trr Qrr Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)A Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Units Conditions A MOSFET symbol showing the integral reverse A p-n junction diode. TJ = 25C, IS = 6.1A, VGS = 0V V TJ = 25C, IS = 8.8A, VGS = 0V Q1 TJ = 25C, IF = 6.1A, ns VDD = 15V, di/dt = 100A/s nC Q2 TJ = 25C, IF = 8.8A, VDD = 15V, di/dt = 100A/s e e e e 2 www.irf.com Typical Characteristics Q1 - Control FET 100 TOP IRF7904PBF Q2 - Synchronous FET 100 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 10 BOTTOM VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 10 TOP 1 1 2.5V BOTTOM VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 2.5V 60s PULSE WIDTH Tj = 25C 10 100 60s PULSE WIDTH Tj = 25C 0.1 0.1 1 10 100 0.1 0.1 1 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 100 TOP Fig 2. Typical Output Characteristics 100 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) BOTTOM VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V TOP 10 10 2.5V BOTTOM VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 2.5V 60s PULSE WIDTH Tj = 150C 1 0.1 1 10 100 60s PULSE WIDTH Tj = 150C 1 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics 100.0 100.0 Fig 4. Typical Output Characteristics ID, Drain-to-Source Current() 10.0 ID, Drain-to-Source Current() 10.0 TJ = 150C TJ = 150C 1.0 TJ = 25C 1.0 TJ = 25C VDS = 15V 60s PULSE WIDTH 0.1 1.0 2.0 3.0 4.0 5.0 VDS = 15V 60s PULSE WIDTH 0.1 1.0 2.0 3.0 4.0 5.0 VGS, Gate-to-Source Voltage (V) VGS, Gate-to-Source Voltage (V) Fig 5. Typical Transfer Characteristics Fig 6. Typical Transfer Characteristics www.irf.com 3 IRF7904PBF Q1 - Control FET 10000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Typical Characteristics Q2 - Synchronous FET 10000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd C, Capacitance (pF) 1000 Ciss C, Capacitance (pF) Coss = Cds + Cgd Ciss 1000 Coss 100 Crss Coss Crss 10 1 10 100 100 1 10 100 VDS, Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage Fig 8. Typical Capacitance vs. Drain-to-Source Voltage 12 VGS, Gate-to-Source Voltage (V) 12 ID= 6.1A 10 8 6 4 2 0 0 5 VGS, Gate-to-Source Voltage (V) VDS = 24V VDS= 15V ID= 8.8A 10 8 6 4 2 0 VDS= 24V VDS= 15V 10 15 20 0 5 10 15 20 25 30 35 QG Total Gate Charge (nC) QG Total Gate Charge (nC) Fig 9. Typical Gate Charge vs. Gate-to-Source Voltage 1000 Fig 10. Typical Gate Charge vs. Gate-to-Source Voltage 1000 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) OPERATION IN THIS AREA LIMITED BY R DS (on) 100 1msec 10 10msec 1 100msec 0.1 TA = 25C Tj = 150C Single Pulse 0.10 1.00 10.00 100.00 100sec OPERATION IN THIS AREA LIMITED BY R DS(on) 100 1msec 10 10msec 1 100msec 0.1 TA = 25C Tj = 150C Single Pulse 0.10 1.00 10.00 100.00 100sec 0.01 0.01 0.01 0.01 VDS , Drain-toSource Voltage (V) VDS , Drain-toSource Voltage (V) Fig 11. Maximum Safe Operating Area Fig 12. Maximum Safe Operating Area 4 www.irf.com Typical Characteristics Q1 - Control FET 1.5 IRF7904PBF Q2 - Synchronous FET 1.5 RDS(on) , Drain-to-Source On Resistance (Normalized) RDS(on) , Drain-to-Source On Resistance (Normalized) ID = 7.6A VGS = 10V ID = 11A VGS = 10V 1.0 1.0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (C) TJ , Junction Temperature (C) Fig 13. Normalized On-Resistance vs. Temperature 100.0 Fig 14. Normalized On-Resistance vs. Temperature 100.0 ISD, Reverse Drain Current (A) ISD, Reverse Drain Current (A) 10.0 TJ = 150C TJ = 150C 10.0 1.0 1.0 TJ = 25C TJ = 25C VGS = 0V 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 VGS = 0V 0.1 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 VSD, Source-to-Drain Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 15. Typical Source-Drain Diode Forward Voltage ( RDS (on), Drain-to -Source On Resistance m) 40 Fig 16. Typical Source-Drain Diode Forward Voltage ( RDS (on), Drain-to -Source On Resistance m) 25 ID = 7.6A 35 ID = 11A 20 30 25 15 TJ = 125C 20 TJ = 125C 10 15 TJ = 25C 5 2.0 4.0 6.0 8.0 10.0 10 2.0 4.0 6.0 TJ = 25C 8.0 10.0 VGS, Gate-to-Source Voltage (V) VGS, Gate-to-Source Voltage (V) Fig 17. Typical On-Resistance vs.Gate Voltage Fig 18. Typical On-Resistance vs.Gate Voltage www.irf.com 5 IRF7904PBF Q1 - Control FET 8 Typical Characteristics Q2 - Synchronous FET 12 10 ID , Drain Current (A) ID , Drain Current (A) 25 50 75 100 125 150 6 8 4 6 4 2 2 0 0 25 50 75 100 125 150 TJ , Ambient Temperature (C) TJ , Ambient Temperature (C) Fig 19. Maximum Drain Current vs. Ambient Temp. 2.6 Fig 20. Maximum Drain Current vs. Ambient Temp. 2.2 VGS(th) Gate threshold Voltage (V) 2.2 VGS(th) Gate threshold Voltage (V) 1.8 ID = 250A 1.8 ID = 250A 1.4 1.4 1.0 -75 -50 -25 0 25 50 75 100 125 150 1.0 -75 -50 -25 0 25 50 75 100 125 150 TJ , Temperature ( C ) TJ , Temperature ( C ) Fig 21. Threshold Voltage vs. Temperature EAS, Single Pulse Avalanche Energy (mJ) 600 Fig 22. Threshold Voltage vs. Temperature EAS, Single Pulse Avalanche Energy (mJ) 1200 500 ID TOP 0.34A 0.48A BOTTOM 6.1A 1000 ID 0.57A 0.77A BOTTOM 8.8A TOP 400 800 300 600 200 400 100 200 0 25 50 75 100 125 150 0 25 50 75 100 125 150 Starting TJ, Junction Temperature (C) Starting TJ , Junction Temperature (C) Fig 23. Maximum Avalanche Energy vs. Drain Current Fig 24. Maximum Avalanche Energy vs. Drain Current 6 www.irf.com IRF7904PBF 100 Thermal Response ( ZthJA ) 10 D = 0.50 0.20 0.10 0.05 0.02 0.01 J R1 R1 J 1 2 R2 R2 R3 R3 3 C 3 1 0.1 1 2 Ri (C/W) i (sec) 17.122 0.018925 53.325 0.74555 19.551 39.2 Ci= i/Ri Ci= i/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q1) 100 D = 0.50 Thermal Response ( ZthJA ) 10 0.20 0.10 0.05 0.02 0.01 J R1 R1 J 1 2 R2 R2 R3 R3 3 C 3 1 0.1 Ri (C/W) i (sec) 10.908 0.02108 34.35 17.15 1.1482 39.7 1 2 0.01 Ci= i/Ri Ci= i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 26. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q2) Fig 27. Layout Diagram www.irf.com 7 IRF7904PBF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V + Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt - + RG * * * * dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Body Diode Forward Drop Inductor Curent Inductor Current Ripple 5% ISD * VGS = 5V for Logic Level Devices Fig 28. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs V(BR)DSS 15V tp DRIVER VDS L RG VGS 20V D.U.T IAS tp + V - DD A 0.01 I AS Fig 29a. Unclamped Inductive Test Circuit LD VDS Fig 29b. Unclamped Inductive Waveforms VDS 90% + VDD D.U.T 10% VGS Pulse Width < 1s Duty Factor < 0.1% VGS td(on) tr td(off) tf Fig 30a. Switching Time Test Circuit Current Regulator Same Type as D.U.T. Fig 30b. Switching Time Waveforms Id Vds Vgs 50K 12V .2F .3F VGS -3mA IG ID Current Sampling Resistors Fig 31a. Gate Charge Test Circuit 8 + D.U.T. - VDS Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 31b. Gate Charge Waveform www.irf.com IRF7904PBF SO-8 Package Details 9 6 ' & ! % " $ 7 9DH 6 6 i p 9 @ r r C F G DI8C@T HDI H6Y $"! %'' # (' ! " &$ (' (%' '( #(& $ $AA76TD8 !$AA76TD8 !!'# !## (( (% $ % A' A HDGGDH@U@ST HDI H6Y &$ "$ !$ $ "" ( !$ $ #' # "' !&AA76TD8 %"$AA76TD8 %! $' $ !$ !& # A A' % @ $ # C !$Ab dA 6 %Y r r 6 FAA#$ 8 Ab#dA 'YAG & 'YAp 'YAi !$Ab dA 6 867 IPU@T) AA9DH@ITDPIDIBAEAUPG@S6I8DIBAQ@SA6TH@A #$H ((# !AA8PIUSPGGDIBA9DH@ITDPI)AHDGGDH@U@S "AA9DH@ITDPITA6S@ATCPXIADIAHDGGDH@U@STAbDI8C@Td #AAPVUGDI@A8PIAPSHTAUPAE@9@8APVUGDI@AHT !66 $AAA9DH@ITDPIA9P@TAIPUADI8GV9@AHPG9AQSPUSVTDPIT AAAAAHPG9AQSPUSVTDPITAIPUAUPA@Y8@@9A $Ab%d %AAA9DH@ITDPIA9P@TAIPUADI8GV9@AHPG9AQSPUSVTDPIT AAAAAHPG9AQSPUSVTDPITAIPUAUPA@Y8@@9A!$Ab d &AAA9DH@ITDPIADTAUC@AG@IBUCAPAAG@69AAPSATPG9@SDIBAUP AAAAA6ATV7TUS6U@ APPUQSDIU 'YA&!Ab!'d %#%Ab!$$d "YA !&Ab$d 'YA &'Ab&d SO-8 Part Marking @Y6HQG@)AUCDTADTA6IADSA& AHPTA@U DIU@SI6UDPI6G S@8UDAD@S GPBP ;;;; ) 96U@A8P9@AXX QA2A9@TDBI6U@TAG@69AS@@ QSP9V8UAPQUDPI6G A2AG6TUA9DBDUAPAAUC@A@6S XXA2AX@@F 6A2A6TT@H7GATDU@A8P9@ GPUA8P9@ Q6SUAIVH7@S www.irf.com 9 IRF7904PBF SO-8 Tape and Reel Dimensions are shown in millimeters (inches) TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25C, Q1: L = 7.7mH RG = 25, IAS = 6.1A; Q2: L = 6.5mH RG = 25, IAS = 8.8A. Pulse width 400s; duty cycle 2%. When mounted on 1 inch square copper board. R is measured at TJ approximately 90C. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 02/06 10 www.irf.com WWW..COM Copyright (c) Each Manufacturing Company. All Datasheets cannot be modified without permission. This datasheet has been download from : www..com 100% Free DataSheet Search Site. Free Download. No Register. Fast Search System. www..com |
Price & Availability of IRF7904PBF
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |