![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
GP1A35RV GP1A35RV s Features 1. 2-phase ( A, B ) digital output 2. High sensing accuracy ( Disk slit pitch: 0.22mm, Moire stripe application ) 3. TTL compatible output 4. Compact and light High Sensing Accuracy OPIC Photointerrupter with Encoder Functions s Outline Dimensions 0.1 ( Unit : mm ) Internal connection diagram 2 - 2.0 1 6 5 4 3 0.8 0.15 2.0 0.15 12.0 OPIC 2 s Applications 6.4 0.15 1 Anode 2 Cathode 3 V OA 4 - R2.6 2.5 0.15 1.4 0.15 2.0 8.8 OPIC 4 V OB 5 GND 6 V CC 4.0 1A35R 10.0MIN. 8.0MIN. 4.4 4 - R1.4 0.15 15.0 0.15 20.2 (7.08) (1.27) 3 2 (2.54) 4 3 - (1.27) *Tolerance: 0.3mm *( ): Reference dimensions 1 5 6 *" OPIC" ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. s Absolute Maximum Ratings Parameter Forward current *1 Peak forward current Input Reverse voltage Power dissipation Supply voltage Output Low level output current Power dissipation Operating temperature Storage temperature *2 Soldering temperature *1 Pulse width<=100 s, Duty ratio= 0.01 ( Ta= 25C ) Symbol IF I FM VR P V CC IOL PO Topr Tstg Tsol *2 For 5 seconds Rating 65 1 6 100 7 20 250 0 to + 70 - 40 to + 80 260 Unit mA A V mW V mA mW C C C " In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device." 6.4 12.0 1. Copiers 2. Electronic typewriters, printers 3. Numerical control machines 3.9+ 0.1 - 0.2 11.4 9.9 7.3+ - 0.15 0.1 GP1A35RV s Electro-optical Characteristics Input Parameter Forward voltage Reverse current Phase A Output Output voltage Phase B Dissipation current Duty ratio Transfer characteristics Phase difference Response speed *3 In the condition that output A and B are low level. *5 AB1 = t AB1 x 360 t AP ( Ta= 25C ) Symbol VF IR V AH V AL V BH V BL ICC *4 A *4 B *5 AB1 tr tf Conditions IF= 30mA VR= 3V VCC= 5V, I F = 30mA IOL = 8mA, I F = 30mA, VCC= 5V VCC= 5V, I F = 30mA IOL= 8mA, I F = 30mA, VCC= 5V *3 V CC = 5V, IF = 30mA IF= 30mA *6 f= 12kHz VCC= 5V IF= 30mA, VCC= 5V *6 f= 12kHz *4 A= High level Low level High level Low level MIN. 2.4 2.4 30 50 - TYP. 1.2 4.9 0.1 4.9 0.1 5 50 90 1.0 1.0 MAX. 1.5 10 0.4 0.4 20 70 130 2.0 2.0 Unit V A V mA % deg. s t AH t BH t AP x 100, B = t BP x 100 *6 Measured under the condition shown in Measurement Conditions. s Output Waveforms Output A ( VOA) t AH t AP Output B ( VOB) t AB1 t BH t BP Rotational direction: Counterclockwise when seen from OPIC light detector Fig. 1 Forward Current vs. Ambient Temperature 100 90 80 Forward current I F ( mA ) 70 65 60 50 40 30 20 10 0 0 25 50 70 75 100 Ambient temperature T a ( C ) Fig. 2 Output Power Dissipation vs. Ambient Temperature 300 250 200 Output power dissipation Po ( mW ) 150 100 50 0 0 25 50 70 75 100 Ambient temperature Ta ( C ) GP1A35RV Fig. 3 Duty Ratio vs. Frequency 0.9 V CC = 5V 0.8 0.7 0.6 Duty ratio 0.5 0.4 0.3 0.2 0.1 1 2 5 Frequency f ( kHz ) 10 20 t BH ( Output B ) t BP I F = 30mA T a = 25C t AH ( Output A ) t AP Phase difference AB1 ( deg. ) Fig. 4 Phase Difference vs. Frequency 130 V CC = 5V 120 I F = 30mA 110 100 90 80 70 60 50 t AB1 AB1 = t x 360 AP T a = 25C 1 2 5 Frequency f ( kHz ) 10 20 Fig. 5 Duty Ratio vs. Ambient Temperature 1.0 0.9 0.8 0.7 Duty ratio 0.6 0.5 0.4 0.3 0.2 0.1 0 0 25 50 75 100 Ambient temperature T a ( C ) t BH ( Output B ) t BP t AH ( Output A ) t AP V CC = 5V I F = 30mA f= 12kHz Fig. 6 Phase Difference vs. Ambient Temperature 140 130 Phase difference AB1 ( deg. ) 120 110 100 90 80 70 60 50 40 0 25 50 75 Ambient temperature Ta ( C ) 100 AB1 = t AB1 t AP x 360 V CC= 5V I F = 30mA f= 12kHz Fig. 7 Duty Ratio vs. Distance ( Xdirection ) 0.9 0.8 0.7 0.6 Duty ratio 0.5 0.4 0.3 0.2 0.1 - 1.0 - 0.5 t BH t BP ( Output B ) VCC = 5V I F = 30mA f= 12kHz Ta = 25C t AH ( Output A ) t AP Fig. 8 Phase Difference vs. Distance ( Xdirection ) 140 130 Phase difference AB1 ( deg. ) 120 110 AB1 = 100 90 80 70 Disk V CC = 5V I F = 30mA f= 12kHz T a = 25C t AB1 t AP x 360 Reference position (-) (+) GP1A35RV 0 0.5 1.0 60 - 1.0 - 0.5 0 0.5 1.0 Distance X ( mm ) ( Shifting encoder ) Distance X ( mm ) ( Shifting encoder ) GP1A35RV Fig. 9 Duty Ratio vs. Distance ( Ydirection ) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 - 1.0 - 0.5 t BH t BP ( Output B ) t AH t AP V CC = 5V I F = 30mA f= 12kHz T a = 25C Fig.10 Phase Difference vs. Distance ( Ydirection ) 130 120 Phase difference AB1 ( deg. ) 110 AB1 = 100 90 80 70 60 Disk GP1A35RV (+) Reference position (-) t AB1 t AP V CC = 5V I F = 30mA f= 12kHz T a = 25C x 360 Duty ratio ( Output A ) 0 0.5 1.0 50 - 1.0 - 0.5 0 0.5 1.0 Distance Y ( mm ) ( Shifting encoder ) Distance Y ( mm ) ( Shifting encoder ) Fig.11 Duty Ratio vs. Distance ( Zdirection ) 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 t BH t BP ( Output B ) V CC = 5V I F = 30mA f = 12kHz T a = 25C Fig.12 Phase Difference vs. Distance ( Zdirection ) 140 130 Phase difference AB1 ( deg. ) V CC = 5V I F = 30mA f= 12kHz T a = 25C t AH t AP ( Output A ) 120 110 100 90 80 70 Duty ratio t AB1 AB1 =x t 360 AP Z ( Detecting side ) Disk OPIC ( Emitting side ) 60 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Distance Z ( mm ) ( Shifting encoder) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Distance Z ( mm ) ( Shifting encoder ) GP1A35RV Measurement Conditions 0.9 ( Number of slit : 400 ) 0.45 4-R1.4 14 R 8.8 15 Q4 12 0.8 2 A 9.9 12.86 Note 2 ) 1A35R 20.2 Detection signal of rotational direction DQ TQ Q3 DQ TQ Q'3 C*W C*C*W 3.8 X R1 6.5 X' 1.4 Disk center 6.4 Note 1 ) 0.3 (12.0) Note 1) Distance between disk surface and case surface in the detector side is 0.3mm. 2 ) Encoder positioning pin is positioned on X-X' axis. Distance between center of disk and portion A of positioning pin is 12.86mm. 3 ) Center of disk slit is R14.0. s Precautions for Use ( 1 ) This module is designed to be operated at I F = 30mA TYP. ( 2 ) Fixing torque : MAX. 0.6N * m ( 3 ) In order to stabilize power supply line, connect a by-pass capacitor of more than 0.01 F between Vcc and GND near the device. ( 4 ) As for other general cautions, refer to the chapter " Precautions for Use" . s Application Circuit ( Detection of Rotational Direction ) A output M B output GP1A35RV R C Q1 DQ TQ Q2 Q'1 3.9 7.3 When gate delay causes pulse noise in Q4 output, apply the CR filter to remove pulse noise. |
Price & Availability of GP1A35RV
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |