![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD - 95869 IRF9910 HEXFET(R) Power MOSFET Applications l Dual SO-8 MOSFET for POL converters in desktop, servers, graphics cards, game consoles and set-top box VDSS 20V RDS(on) max Q1 13.4m:@VGS = 10V Q2 9.3m:@VGS = 10V ID 10A 12A Benefits l Very Low RDS(on) at 4.5V VGS l Low Gate Charge l Fully Characterized Avalanche Voltage and Current l 20V VGS Max. Gate Rating 6 * 6 * ' ' ' ' SO-8 Absolute Maximum Ratings Parameter VDS VGS ID @ TA = 25C ID @ TA = 70C IDM PD @TA = 25C PD @TA = 70C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current 10 8.3 83 2.0 1.3 0.016 -55 to + 150 W/C C Q1 Max. 20 20 Q2 Max. Units V 12 9.9 98 W A c Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Thermal Resistance Parameter RJL RJA Junction-to-Drain Lead Junction-to-Ambient Typ. --- --- Max. 20 62.5 Units C/W fg Notes through are on page 10 www.irf.com 1 04/28/04 IRF9910 Static @ T J = 25C (unless otherwise specified) Parameter BV DSS V DSS /TJ Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Q1&Q2 Q1 Q2 Q1 Q2 V GS(th) V GS(th)/TJ I DSS I GSS gfs Qg Q gs1 Q gs2 Q gd Q godr Q sw Q oss t d(on) tr t d(off) tf C iss C oss C rss Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Q gs2 + Q gd) Output Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Q1&Q2 Q1 Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Min. 20 --- --- --- --- --- --- 1.65 --- --- --- --- --- --- 19 27 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. --- 0.0061 0.014 10.7 14.6 7.4 9.1 --- -4.9 -5.0 --- --- --- --- --- --- 7.4 15 2.6 4.3 0.85 1.4 2.5 5.4 1.5 3.9 3.4 6.8 4.0 8.7 6.3 8.3 10 14 9.2 15 4.5 7.5 900 1860 290 600 140 310 Max. --- --- --- 13.4 18.3 9.3 11.3 2.55 --- --- 1.0 100 100 -100 --- --- 11 23 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. --- --- Min. Q1&Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 --- --- --- --- --- --- --- --- --- Typ. --- --- --- --- --- 11 16 3.1 4.9 Max. 2.5 83 98 1.0 1.0 17 24 4.7 7.3 Units A A V ns nC Units V V/C Conditions V GS = 0V, ID = 250A Reference to 25C, ID = 1mA V GS = 10V, ID = 10A V GS = 4.5V, ID = 8.3A V GS = 10V, ID = 12A V GS = 4.5V, ID = 9.8A V DS = V GS , ID = 250A R DS(on) Static Drain-to-Source On-Resistance m e e e e V mV/C A nA S V DS = 16V, V GS = 0V V DS = 16V, V GS = 0V, TJ = 125C V GS = 20V V GS = -20V V DS = 10V, ID = 8.3A V DS = 10V, ID = 9.8A nC Q1 V DS = 10V V GS = 4.5V, ID = 8.3A Q2 V DS = 10V V GS = 4.5V, ID = 9.8A nC V DS = 10V, V GS = 0V Q1 V DD = 16V, V GS = 4.5V ID = 8.3A ns Q2 V DD = 16V, V GS = 4.5V ID = 9.8A Clamped Inductive Load V GS = 0V V DS = 10V = 1.0MHz pF Avalanche Characteristics Parameter Single Pulse Avalanche Energy E AS Avalanche Current I AR Diode Characteristics Param eter d Q1 Max. 33 8.3 Q2 Max. 26 9.8 Conditions Units mJ A IS I SM V SD t rr Q rr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)A Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25C, I S = 8.3A, V GS = 0V TJ = 25C, I S = 9.8A, V GS = 0V Q1 TJ = 25C, I F = 8.3A, V DD = 10V, di/dt = 100A/s Q2 TJ = 25C, I F = 9.8A, V DD = 10V, di/dt = 100A/s D e e e S 2 e www.irf.com Typical Characteristics Q1 - Control FET 10000 IRF9910 Q2 - Synchronous FET TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V ID, Drain-to-Source Current (A) 10000 TOP VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 1000 100 10 1 0.1 2.5V BOTTOM ID, Drain-to-Source Current (A) 1000 100 10 1 2.5V BOTTOM 60s PULSE WIDTH Tj = 25C 0.1 0.01 0.1 1 0.01 0.1 1 10 100 V DS, Drain-to-Source Voltage (V) 60s PULSE WIDTH Tj = 25C 10 100 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 10000 Fig 2. Typical Output Characteristics 10000 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 1000 BOTTOM VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V TOP 1000 BOTTOM VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 100 10 1 0.1 0.1 1 10 100 V DS, Drain-to-Source Voltage (V) 2.5V 60s PULSE WIDTH Tj = 150C 100 10 2.5V 1 60s PULSE WIDTH Tj = 150C 0.1 0.1 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics 100 Fig 3. Typical Output Characteristics ID, Drain-to-Source Current () T = 150C J 10 ID, Drain-to-Source Current () 100 10 T = 25C J 1 T = 25C J 1 T = 150C J V = 10V DS 60s PULSE WIDTH 0.1 2 3 4 5 6 V = 10V DS 60s PULSE WIDTH 0.1 1 2 3 4 5 VGS, Gate-to-Source Voltage (V) Fig 5. Typical Transfer Characteristics VGS, Gate-to-Source Voltage (V) Fig 6. Typical Transfer Characteristics www.irf.com 3 IRF9910 Q1 - Control FET 10000 VGS = 0V, C iss rss oss =C =C =C gs f = 1 MHZ +C gd ,C ds SHORTED Typical Characteristics Q2 - Synchronous FET 100000 VGS = 0V, f = 1 MHZ C =C +C , C SHORTED iss gs gd ds C rss oss =C =C gd ds +C gd C, Capacitance(pF) gd ds +C gd C, Capacitance(pF) C C 10000 C 1000 C iss C iss C oss 1000 C oss C rss C rss 100 1 10 100 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Capacitance Vs.Drain-to-Source Voltage VGS, Gate-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance Vs.Drain-to-Source Voltage VGS, Gate-to-Source Voltage (V) 6.0 5.0 4.0 3.0 2.0 1.0 0.0 0 5 10 15 20 I = 9.8A D V = 16V DS V = 10V DS 6.0 I = 8.3A D 5.0 4.0 3.0 2.0 1.0 0.0 V = 16V DS V = 10V DS 0 1 2 3 4 5 6 7 8 9 10 QG Total Gate Charge (nC) Fig. 9. Gate-to-Source Voltage vs Typical Gate Charge QG Total Gate Charge (nC) Fig. 10. Gate-to-Source Voltage vs Typical Gate Charge ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 1000 OPERATION IN THIS AREA LIMITED BY R (on) DS 1000 OPERATION IN THIS AREA LIMITED BY R (on) DS 100 10 1 0.1 0 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 11. Maximum Safe Operating Area 100 10 1 0.1 0 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 12. Maximum Safe Operating Area 100sec 1msec 10msec T = 25C A Tj = 150C Single Pulse 100sec 1msec 10msec T = 25C A Tj = 150C Single Pulse 4 www.irf.com Typical Characteristics Q1 - Control FET I = 10A D V = 10V GS IRF9910 Q2 - Synchronous FET I = 12A D V = 10V GS 1.0 R DS(on) , Drain-to-Source On Resistance R DS(on) , Drain-to-Source On Resistance 1.5 1.5 (Normalized) (Normalized) 1.0 0.5 -60 -40 -20 0 20 40 60 80 100120140160 TJ , Junction Temperature (C) 0.5 -60 -40 -20 0 20 40 60 80 100120140160 TJ , Junction Temperature (C) Fig 13. Normalized On-Resistance vs. Temperature 100 ISD, Reverse Drain Current (A) Fig 14. Normalized On-Resistance vs. Temperature 100 ISD, Reverse Drain Current (A) T = 150C J T = 150C J 10 10 T = 25C J T = 25C J 1 1 V = 0V GS V = 0V GS 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSD, Source-to-Drain Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 15. Typical Source-Drain Diode Forward Voltage Fig 16. Typical Source-Drain Diode Forward Voltage , Drain-to -Source On Resistance (m) DS(on) R DS(on), Drain-to -Source On Resistance (m) 40 35 30 25 20 15 10 5 0 2 3 4 5 6 7 8 9 10 TJ = 25C T = 125C J I = 10A D 25 ID = 12A 20 15 T = 125C J 10 T = 25C J 5 R 0 2 3 4 5 6 7 8 9 10 VGS, Gate -to -Source Voltage (V) Fig 17. Typical On-Resistance vs. Gate Voltage Fig 18. Typical On-Resistance vs. Gate Voltage VGS, Gate -to -Source Voltage (V) www.irf.com 5 IRF9910 Q1 - Control FET 12 10 ID , Drain Current (A) Typical Characteristics Q2 - Synchronous FET 14 12 ID , Drain Current (A) 10 8 6 4 2 0 8 6 4 2 0 25 50 75 100 125 150 25 50 75 100 125 150 TA , Ambient Temperature (C) TA , Ambient Temperature (C) Fig 19. Maximum Drain Current vs. Ambient Temperature 2.5 VGS(th) Gate threshold Voltage (V) Fig 20. Maximum Drain Current vs. Ambient Temperature 2.5 VGS(th) Gate threshold Voltage (V) 2.0 ID = 250A 1.5 2.0 ID = 250A 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 1.0 -75 -50 -25 0 25 50 75 100 125 150 TJ , Temperature ( C ) TJ , Temperature ( C ) Fig 21. Threshold Voltage vs. Temperature EAS , Single Pulse Avalanche Energy (mJ) 140 I Fig 22. Threshold Voltage vs. Temperature EAS , Single Pulse Avalanche Energy (mJ) 120 I 120 100 80 60 40 20 0 25 50 75 TOP BOTTOM D 2.2A 2.6A 8.3A 100 80 60 40 20 0 25 50 75 TOP BOTTOM D 5.5A 6.2A 9.8A 100 125 150 100 125 150 Starting T , Junction Temperature (C) J Fig 23. Maximum Avalanche Energy vs. Drain Current Fig 24. Maximum Avalanche Energy vs. Drain Current Starting T , Junction Temperature (C) J 6 www.irf.com IRF9910 100 D = 0.50 Thermal Response ( Z thJA ) 10 0.20 0.10 0.05 0.02 0.01 J J 1 R1 R1 2 R2 R2 R3 R3 3 R4 R4 C 1 2 3 4 4 1 Ri (C/W) 1.688 14.468 30.264 16.106 i (sec) 0.000230 0.105807 1.001500 29.90000 0.1 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Ci= i/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 1E-005 0.0001 0.001 0.01 0.1 1 10 100 0.001 1E-006 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Current Regulator Same Type as D.U.T. 50K V(BR)DSS 15V 12V .2F .3F tp DRIVER D.U.T. VDS L + V - DS VGS RG 20V VGS D.U.T IAS tp + - VDD A 3mA 0.01 I AS IG ID Current Sampling Resistors Fig 26. Unclamped Inductive Test Circuit and Waveform LD VDS Fig 27. Gate Charge Test Circuit + V DD D.U.T VGS Pulse Width < 1s Duty Factor < 0.1% 90% VDS 10% VGS td(on) tr td(off) tf Fig 28. Switching Time Test Circuit Fig 29. Switching Time Waveforms www.irf.com 7 IRF9910 D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V + Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt - - + RG * dv/dt controlled by RG * Driver same type as D.U.T. * I SD controlled by Duty Factor "D" * D.U.T. - Device Under Test V DD VDD + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple 5% ISD * VGS = 5V for Logic Level Devices Fig 30. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs Id Vds Vgs Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 31. Gate Charge Waveform 8 www.irf.com IRF9910 SO-8 Package Details Dimensions are shown in millimeters (inches) 9 6 ' & ! % " $ 7 9DH 6 6 i DI8C@T HDI H6Y $"! %'' # " &$ '( (' ! (' (%' HDGGDH@U@ST HDI H6Y "$ &$ "" ( #' !$ $ !$ $ % @ $ # C !$Ab dA 6 p 9 @ r r C #(& $ $AA76TD8 !$AA76TD8 !!'# !## (( % A (% $ A' "' # !&AA76TD8 %"$AA76TD8 $' %! !$ # A $ !& A' %Y r F G r 6 FAA#$ 8 Ab#dA 'YAG & 'YAp 'YAi !$Ab dA 6 867 IPU@T) AA9DH@ITDPIDIBAEAUPG@S6I8DIBAQ@SA6TH@A #$H ((# !AA8PIUSPGGDIBA9DH@ITDPI)AHDGGDH@U@S "AA9DH@ITDPITA6S@ATCPXIADIAHDGGDH@U@STAbDI8C@Td #AAPVUGDI@A8PIAPSHTAUPAE@9@8APVUGDI@AHT !66 $AAA9DH@ITDPIA9P@TAIPUADI8GV9@AHPG9AQSPUSVTDPIT AAAAAHPG9AQSPUSVTDPITAIPUAUPA@Y8@@9A $Ab%d %AAA9DH@ITDPIA9P@TAIPUADI8GV9@AHPG9AQSPUSVTDPIT AAAAAHPG9AQSPUSVTDPITAIPUAUPA@Y8@@9A!$Ab d &AAA9DH@ITDPIADTAUC@AG@IBUCAPAAG@69AAPSATPG9@SDIBAUP AAAAA6ATV7TUS6U@ APPUQSDIU 'YA&!Ab!'d %#%Ab!$$d "YA !&Ab$d 'YA &'Ab&d SO-8 Part Marking @Y6HQG@)AUCDTADTA6IADSA& AHPTA@U 96U@A8P9@AXX A2AG6TUA9DBDUAPAAUC@A@6S XXA2AX@@F GPUA8P9@ Q6SUAIVH7@S 9 DIU@SI6UDPI6G S@8UDAD@S GPBP www.irf.com <:: ;;;; ) IRF9910 SO-8 Tape and Reel Dimensions are shown in millimeters (inches) TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25C, Q1: L = 0.95mH RG = 25, IAS = 8.3A; Q2: L = 0.54mH RG = 25, IAS = 9.8A. Pulse width 400s; duty cycle 2%. When mounted on 1 inch square copper board. R is measured at TJ approximately 90C. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/04 10 www.irf.com |
Price & Availability of IRF9910
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |