![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD-60022B IR2130D Features n Hermetic n Floatingchanneldesignedforbootstrap 3-PHASE DRIVER Product Summary VOFFSET IO+/VOUT ton/off (typ.) Deadtime (typ.) 400V max. 200 mA / 420 mA 10 - 20V 675 & 425 ns 0.9 s n n n n n n operation Fully operational to +400V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for all channels Over-current shutdown turns off all six drivers Independent half-bridge drivers Matched propagation delay for both channels Outputs in phase with inputs Description The IR2130D is a high voltage, high speed power MOSFET and IGBT driver with three independent high and low side referenced output channels. Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with 5V CMOS or LSTTL outputs. A groundreferenced operational amplifier provides analog feedback of bridge current via an external current sense resistor. A current trip function which terminates all six outputs is also derived from this resistor. An open drain FAULT signal indicates if an overcurrent or undervoltage shutdown has occurred. The output driverhgre a high pulse current buffer stage designed for minimum driver cross-con duction. Propagation delays are matched to simplify use at high frequencies. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operate up to 400 volts. Absolute Maximum Ratings Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to Vso. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Symbol VB1,2,3 VS1,2,3 VHO1,2,3 VCC VSO VLO1,2,3 VIN VFLT VCAO VCAdVS/dt PD RthJA Tj TS TL Parameter High Side Floating Supply Absolute Voltage High Side Floating Supply Offset Voltage High Side Output Voltage Low Side Fixed Supply Voltage Low Side Driver Return Low Side Output Voltage Logic Input Voltage (HIN, LIN & SD) Fault Output Voltage Operational Amplifier Output Voltage Operational amplifier Inverting Input Voltage Allowable Offset Supply Voltage Transient (Fig. 16) Package Power Dissipation @ TA< = 25C (Fig. 19) Thermal Resistance, Junction to Ambient Junction Temperature Storage Temperatue Lead Temperature (Soldering, 10 seconds) Weight Min. Max. Units -0.3 VS1,2,3 + 20 VSO - 5 VSO + 400 VS1,2,3 - 0.3 VS1,2,3 + 0.3 -0.3 20 -5 V CC + 0.3 VSO - 0.3 VCC + 0.3 -0.3 VCC + 0.3 -0.3 VCC + 0.3 -0.3 VCC + 0.3 -0.3 VCC + 0.3 -- 50 -- 1.5 -- 70 -55 125 -55 150 -- 300 6.1 (typical) V V/nS W C/W C g www.irf.com 1 3/1/00 IR2130D Recommended Operating Conditions The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to VS0. The VS offset rating is tested with all supplies biased at 15V differential. Symbol VB1,2,3 VS1,2,3 VHO1,2,3 VCC VSS VLO1,2,3 VIN VFLT VCAO VCA- Parameter High Side Floating Supply Voltage High Side Floating Supply Offset Voltage High Side Output Voltage Low Side Fixed Supply Voltage Logic Ground Low Side Output Voltage Logic Input Voltage (HIN, LIN & SD) Fault Output Voltage Operational Amplifier Output Voltage Operational Amplifier Inverting Input Voltage Min. VS1,2,3 + 10 V SO - 5 VS1,2,3 10 -5 0 V SS VSS VSS VSS Max. VS1,2,3 + 20 VSO + 400 VB1,2,3 20 5 VCC VSS + 5 VCC 5 5 Units V Dynamic Electrical Characteristics VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS, CL = 1000 pF unless otherwise specified. Tj = 25C Tj = -55 to 125C 850 125 550 55 1.3 -- -- -- -- 0.25 -- -- -- -- -- 2.7 1.5 850 175 600 85 1.5 1100 1000 -- -- -- -- -- Symbol ton tr toff tf DT titrip tflt tfltclr tflt,in tbl SR+ SR- Parameter Turn-On Propagation Delay (all six channels) Turn-On Rise Time (all six channels) Turn-Off Propagation Delay (all six channels) Turn-Off Fall Time (all six channels) Deadtime (LS Turn-off to HS Turn-on & HS Turn-off to LS Turn-on) ITRIP to Output Shutdown Prop. Delay ITRIP to FAULT Indication Delay LIN1, 2, 3 To FAULT Clear Time Input Filter Time (all six inputs) ITRIP Blanking Time Amplifier Slew Rate (+) Amplifier Slew Rate (-) Min. Typ. Max. Min. Max. Units Test Conditions 500 -- 300 -- 0.4 400 335 5.5 -- -- 4.4 2.4 675 80 425 35 0.9 CL= 1000pF VS1,2,3 = 0 to 400 V V IN = 0 & 5 V ns s ns ns s ns ns V/s V/s 660 920 590 845 10 12.5 310 -- 400 -- 6.2 -- 3.2 -- CL = 1000pF, VIN = 0 & 5V CL = 1000pF, VIN, VITRIP = 0 & 5V VIN = 0 & 5V VITRIP = 1V Typical Connection 4 2 www.irf.com IR2130D Static Electrical Characteristics VBIAS (VCC , VBS1, 2, 3) = 15V, VSO1, 2, 3 = VSS unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six logic input leads: HIN1, 2, 3 & LIN1, 2, 3. The VO and IO parameters are referenced to VSO1, 2, 3. Tj = 25C Tj=55-125C Units A mA A nA V mV mV nA CA- = 2.5V VSO = CA- = 0.2V Symbol ILK IQBS IQCC IIN+ IINIITRIP + IITRIPVIN,IH VIN,IL VIT,TH+ VOS Ron,FLT ICAVCCUV+ VCCUVVBSUV+ VBSUVIO+ IOVOH,Amp VOL,Amp ISRC,Amp ISNK,Amp CMRR PSRR VOH VOL Parameter Offset Supply Leakage Currents Quiescent VBS Supply Current Quiescent VCC Supply Current Logic "1" Input Bias Current(OUT= HI) Logic "0" Input Bias Current(OUT=LO) "High" ITRIP Bias Current "Low" ITRIP Bias Current Logic "0" Input Voltage( OUT = LO ) Logic "1" Input Voltage ( OUT = HI ) ITRIP Input Positive Going Threshold Amplifier Input Offset Voltage FAULT- Low On Resistance CA- Input Bias Current VCC Supply Undervoltage Positive Going Threshold VCC Supply Undervoltage Negative Going Threshold VBS Supply Undervoltage Positive Going Threshold VBS Supply Undervoltage Negative Going Threshold Output High Short Circuit Pulsed Current Output Low Short Circuit Pulsed Current Amplifier High Level Output Voltage Amplifier Low Level Output Voltage Amplifier Output Source Current Amplifier Output Sink Current Amplifier Common Mode Rejection Ratio Amplifier Power Supply Rejection Ratio High Level Output Voltage Low Level Output Voltage Min. -- -- -- -- -- -- -- -- -- 400 -- -- -- 8.3 8.0 7.5 7.1 200 420 5.0 -- 2.3 1.0 60 55 -- -- Typ. -- 15 3.0 450 225 75 -- -- -- 490 -- 55 0.5 9.0 8.7 8.4 8.0 250 500 5.2 2.5 4.0 2.1 80 75 -- -- Max. Min. Max. 50 30 4.0 650 400 150 100 -- -- 580 30 75 4.0 10.6 10.5 9.2 8.8 -- -- 5.4 20 -- -- -- -- 100 100 -- -- -- -- -- -- -- 2.2 -- 350 -- -- -- 8.0 7.7 -- -- -- -- 4.9 -- 1.5 0.5 -- -- -- -- 500 45 6.0 1050 -- -- 170 -- 0.8 580 -- 150 4.0 10.7 10.5 -- Test Conditions VB = VS=400V VIN = 0V or 5V VIN = 0V or 5V VIN = 0V VIN = 5V ITRIP = 5V ITRIP =0V V V -- -- -- 5.6 20 -- -- -- -- 100 100 mV dB mA V mV mA VOUT = VIN- = 0V PW <= 10S VOUT =15, VIN- =5V PW <= 10S CA- = 0V, VSO =1V CA- = 1V, VSO =0V CA- = 0V, VSO =1V, CAO=4V CA- = 1V, VSO =0V,CAO=2V CA- =VSO =0.1V & 5V CA- = VSO =0.2V VCC = 10V & 20V VIN- = 0V, IO = 0A VIN- = 5V, IO = 0A www.irf.com 3 IR2130D Static Electrical Characteristics Continued VBIAS (VCC, VBS1, 2, 3) = 15V, VSO1, 2, 3 = VSS unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six logic input leads: HIN1, 2, 3 & LIN1, 2, 3. The VO and IO parameters are referenced to VSO1, 2, 3. Tj = 25C Tj = 55 to 125C Symbol IO+,Amp IO-,Amp Circuit Parameter Amplifier Output High Short Circuit Amplifier Output High Short Circuit Circuit Min. -- -- Typ. 4.5 3.2 Max. 6.5 5.2 Min. Max. -- -- 8.0 7.0 Units Test Conditions CA- = 0V, VSO = 5V VCAO = 0V CA- = 5V, VSO = 0V VCAO = 5V 4 www.irf.com IR2130D HIN1,2,3 4 LIN1,2,3 ITRIP FAULT HO1,2,3 LO1,2,3 Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit HIN1,2,3 HIN1,2,3 LIN1,2,3 50% 50% 50% 50% LIN1,2,3 ton tr 90% 50% 50% toff 90% tf LO1,2,3 HO1,2,3 DT DT HO1,2,3 LO1,2,3 10% 10% Figure 3. Deadtime Waveform Definitions Figure 4. Input/Output Switching Time Waveform Definitions 50% LIN1,2,3 V CC 50% ITRIP V S0 CA50% 50% + V SS CAO FAULT LO1,2,3 50% tflt titrip tfltclr V SS Figure 5. Overcurrent Shutdown Switching Time Waveform Definitions Figure 6. Diagnostic Feedback Operational Amplifier Circuit www.irf.com 5 IR2130D 3V CA0V VS0 15V VCC + CAO V SS 50 pF + 15V V S0 CA+ V SS 20k 1k V CC CAO T1 3V V 0V 10% 90% T2 0.2V SR- = T2 T1 Figure 7. Operational Amplifier Slew Rate Measurement SR+ = V V VOS = VCAO 21 - 0.2V Figure 8. Operational Amplifier Input Offset Voltage Measurement V CC 15V VCC CAVS0 CAO + V SS 0.2V + V S0 CA- + V SS 20k CAO 1k Measure V CAO1 at VS0 = 0.1V VCAO2 at VS0 = 5V CMRR = -20*LOG (VCAO1-0.1V) - (V CAO2-5V) 4.9V (dB) Measure VCAO1 at VCC = 10V VCAO2 at VCC = 20V (10V) (21) Figure 10. Operational Amplifier Power Supply Rejection Ratio Measurements 1.50 PSRR = -20* LOG VCAO1 - VCAO2 Figure 9. Operational Amplifier Common Mode Rejection Ratio Measurements 1.50 1.20 Turn-On Delay Time (s) Max. 1.20 Turn-On Delay Time (s) 0.90 Typ. 0.90 Max. Typ. 0.60 Min. 0.60 Min. 0.30 0.30 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 11A. Turn-On Time vs. Temperature Figure 11B. Turn-On Time vs. Voltage 6 www.irf.com IR2130D 1.00 1.00 0.80 Turn-Off Delay Time (s) Turn-Off Delay Time (s) 0.80 0.60 Max. 0.60 Max. Typ. 0.40 Typ. 0.40 Min. Min. 0.20 0.20 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 12A. Turn-Off Time vs. Temperature Figure 12B. Turn-Off Time vs. Voltage 250 250 200 Turn-On Rise Time (ns) Turn-On Rise Time (ns) 200 Max. 150 150 100 Max. 100 Typ. Typ. 50 50 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 13A. Turn-On Rise Time vs. Temperature Figure 13B. Turn-On Rise Time vs. Voltage 125 125 100 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) 100 75 75 Max. 50 Max. Typ. 50 Typ. 25 25 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 14A. Turn-Off Fall Time vs. Temperature Figure 14B. Turn-Off Fall Time vs. Voltage www.irf.com 7 IR2130D 1.50 1.50 ITRIP to Output Shutdown Delay Time (s) 1.20 Max. ITRIP to Output Shutdown Delay Time (s) 1.20 Max. 0.90 Typ. 0.90 Typ. 0.60 Min. 0.60 Min. 0.30 0.30 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 15A. ITRIP to Output Shutdown Time vs. Temperature Figure 15B. ITRIP to Output Shutdown Time vs. Voltage 1.50 1.50 ITRIP to FAULT Indication Delay Time (s) 1.20 Max. ITRIP to FAULT Indication Delay Time (s) 1.20 0.90 Typ. 0.90 Max. 0.60 Min. 0.60 Typ. Min. 0.30 0.30 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 16A. ITRIP to FAULT Indication Time vs. Temperature Figure 16B. ITRIP to FAULT Indication Time vs. Voltage 25.0 25.0 LIN1,2,3 to FAULT Clear Time (s) LIN1,2,3 to FAULT Clear Time (s) 20.0 20.0 15.0 Max. 15.0 Max. 10.0 Typ. Min. 10.0 Typ. Min. 5.0 5.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (C) 0.0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 17A. LIN1,2,3 to FAULT Clear Time vs. Temperature Figure 17B. LIN1,2,3 to FAULT Clear Time vs. Voltage 8 www.irf.com IR2130D 7.50 7.50 6.00 6.00 Deadtime (s) Deadtime (s) 4.50 Max. 4.50 Max. 3.00 Typ. 3.00 Typ. 1.50 Min. 1.50 Min. 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 18A. Deadtime vs. Temperature Figure 18B. Deadtime vs. Voltage 10.0 10.0 8.0 Amplifier Slew Rate + (V/s) Typ. 8.0 Amplifier Slew Rate + (V/s) Typ. 6.0 Min. 6.0 Min. 4.0 4.0 2.0 2.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (C) 0.0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 19A. Amplifier Slew Rate (+) vs. Temperature Figure 19B. Amplifier Slew Rate (+) vs. Voltage 5.00 5.00 4.00 Amplifier Slew Rate - (V/s) Amplifier Slew Rate - (V/s) Typ. 4.00 Typ. 3.00 Min. 3.00 Min. 2.00 2.00 1.00 1.00 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 20A. Amplifier Slew Rate (-) vs. Temperature Figure 20B. Amplifier Slew Rate (-) vs. Voltage www.irf.com 9 IR2130D 5.00 5.00 4.00 Logic "0" Input Threshold (V) Logic "0" Input Threshold (V) 4.00 3.00 Min. 3.00 Min. 2.00 2.00 1.00 1.00 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 21A. Logic "0" Input Threshold vs. Temperature Figure 20B. Logic "0" Input Threshold vs. Voltage 5.00 5.00 4.00 Logic "1" Input Threshold (V) Logic "1" Input Threshold (V) Max. 4.00 3.00 3.00 2.00 2.00 1.00 1.00 Max. 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 22A. Logic "1" Input Threshold vs. Temperature Figure 22B. Logic "1" Input Threshold vs. Voltage 750 750 ITRIP Input Positive Going Threshold (mV) 600 Max. ITRIP Input Positive Going Threshold (mV) 600 Max. Typ. Typ. 450 Min. 450 Min. 300 300 150 150 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 23A. ITRIP Input Positive Going Threshold Temperature vs. Figure 23B. ITRIP Input Positive Going Threshold Voltage vs. 10 www.irf.com IR2130D 1.00 1.00 0.80 High Level Output Voltage (V) High Level Output Voltage (V) Max. 0.80 0.60 0.60 0.40 0.40 0.20 0.20 Max. 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 24A. High Level Output vs. Temperature Figure 24B. High Level Output vs. Voltage 1.00 1.00 0.80 Low Level Output Voltage (V) Low Level Output Voltage (V) Max. 0.80 0.60 0.60 0.40 0.40 0.20 0.20 Max. 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 25A. Low Level Output vs. Temperature Figure 25B. Low Level Output vs. Voltage 500 500 Offset Supply Leakage Current (A) Offset Supply Leakage Current (A) 400 400 300 300 200 200 100 Max. 100 Max. 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 0 100 200 300 400 500 600 VB Boost Voltage (V) Figure 26A. Offset Supply Leakage Current vs. Temperature Figure 26B. Offset Supply Leakage Current vs. Voltage www.irf.com 11 IR2130D 100 100 80 VBS Supply Current (A) VBS Supply Current (A) Max. 80 60 60 40 40 20 Typ. 20 Max. Typ. 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 27A. VBS Supply Current vs. Temperature Figure 27B. VBS Supply Current vs. Voltage 10.0 10.0 8.0 VCC Supply Current (mA) VCC Supply Current (mA) 8.0 6.0 6.0 4.0 Max. Typ. 4.0 Max. 2.0 2.0 Typ. 0.0 -50 -25 0 25 50 75 100 125 Temperature (C) 0.0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 28A. VCC Supply Current vs. Temperature Figure 28B. VCC Supply Current vs. Voltage 1.25 1.25 1.00 Logic "1" Input Bias Current (mA) Logic "1" Input Bias Current (mA) 1.00 0.75 0.75 0.50 Max. Typ. 0.50 Max. Typ. 0.25 0.25 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 29A. Logic "1" Input Current vs. Temperature Figure 29A. Logic "1" Input Current vs. Voltage 12 www.irf.com IR2130D 1.25 1.25 1.00 Logic "0" Input Bias Current (mA) Logic "0" Input Bias Current (mA) 1.00 0.75 0.75 0.50 Max. 0.50 0.25 Typ. 0.25 Max. Typ. 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 30A. Logic "0" Input Current vs. Temperature Figure 30B. Logic "0" Input Current vs. Voltage 500 500 400 "High" ITRIP Bias Current (A) "High" ITRIP Bias Current (A) 400 300 300 200 Max. 200 Max. 100 Typ. 100 Typ. 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 31A. "High" ITRIP Current vs. Temperature Figure 31B. "High" ITRIP Current vs. Voltage 250 500 200 "Low" ITRIP Bias Current (A) "Low" ITRIP Bias Current (nA) 400 150 300 100 Max. 200 50 100 Max. 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 32A. "Low" ITRIP Current vs. Temperature Figure 32B. "Low" ITRIP Current vs. Voltage www.irf.com 13 IR2130D 11.0 11.0 10.0 VBS Undervoltage Lockout + (V) VBS Undervoltage Lockout - (V) 10.0 9.0 Max. 9.0 Max. Typ. 8.0 Min. 8.0 Typ. 7.0 7.0 Min. 6.0 -50 -25 0 25 50 75 100 125 Temperature (C) 6.0 -50 -25 0 25 50 75 100 125 Temperature (C) Figure 33. VBS Undervoltage (+) vs. Temperature Figure 34. VBS Undervoltage (-) vs. Temperature 11.0 11.0 10.0 VCC Undervoltage Lockout + (V) VCC Undervoltage Lockout - (V) Max. 10.0 Max. 9.0 Typ. 9.0 Typ. Min. 8.0 8.0 Min. 7.0 7.0 6.0 -50 -25 0 25 50 75 100 125 Temperature (C) 6.0 -50 -25 0 25 50 75 100 125 Temperature (C) Figure 35. VCC Undervoltage (+) vs. Temperature Figure 36. VCC Undervoltage (-) vs. Temperature 250 250 FAULT- Low On Resistance (ohms) 150 FAULT- Low On Resistance (ohms) 200 200 150 100 100 Max. Typ. Max. 50 Typ. 50 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 37A. FAULT Low On Resistance vs. Temperature Figure 37B. FAULT Low On Resistance vs. Voltage 14 www.irf.com IR2130D 500 500 400 Output Source Current (mA) Output Source Current (mA) 400 300 Typ. Min. 300 200 200 Typ. 100 100 Min. 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 38A. Output Source Current vs. Temperature Figure 38B. Output Source Current vs. Voltage 750 750 600 Output Sink Current (mA) Typ. 625 Output Sink Current (mA) Min. 500 450 375 Typ. 300 250 Min. 150 125 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 39A. Output Sink Current vs. Temperature Figure 39B. Output Sink Current vs. Voltage 50 50 Amplifier Input Offset Voltage (mV) Max. 30 Amplifier Input Offset Voltage (mV) 40 40 30 Max. 20 20 10 10 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 40A. Amplifier Input Offset vs. Temperature Figure 40B. Amplifier Input Offset vs. Voltage www.irf.com 15 IR2130D 10.0 10.0 8.0 CA- Input Bias Current (nA) CA- Input Bias Current (nA) 8.0 6.0 6.0 4.0 Max. 4.0 Max. 2.0 2.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (C) 0.0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 41A. CA- Input Current vs. Temperature Figure 41B. CA- Input Current vs. Voltage 100 100 80 Amplifier CMRR (dB) Typ. 80 Amplifier CMRR (dB) Typ. 60 Min. 60 Min. 40 40 20 20 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 42A. Amplifier CMRR vs. Temperature Figure 42B. Amplifier CMRR vs. Voltage 100 100 80 Typ. 80 Amplifier PSRR (dB) Typ. Amplifier PSRR (dB) 60 Min. 60 Min. 40 40 20 20 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 43A. Amplifier PSRR vs. Temperature Figure 43B. Amplifier PSRR vs. Voltage 16 www.irf.com IR2130D 6.00 6.00 Amplifier High Level Output Voltage (V) Amplifier High Level Output Voltage (V) 5.70 5.70 5.40 Max. 5.40 Max. Typ. Typ. 5.10 Min. 5.10 Min. 4.80 4.80 4.50 -50 -25 0 25 50 75 100 125 Temperature (C) 4.50 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 44A. Amplifier High Level Output vs. Temperature Figure 44B. Amplifier High Level Output vs. Voltage 100 100 Amplifier Low Level Output Voltage (mV) 80 Amplifier Low Level Output Voltage (mV) 80 60 60 40 40 20 Max. 20 Max. 0 -50 -25 0 25 50 75 100 125 Temperature (C) 0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 45A. Amplifier Low Level Output vs. Temperature Figure 45B. Amplifier Low Level Output vs. Voltage 10.0 10.0 Amplifier Output Source Current (mA) 6.0 Typ. Amplifier Output Source Current (mA) 8.0 8.0 6.0 4.0 Min. 4.0 Typ. 2.0 2.0 Min. 0.0 -50 -25 0 25 50 75 100 125 Temperature (C) 0.0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 46A. Amplifier Output Source Current vs. Temperature Figure 46B. Amplifier Output Source Current vs. Voltage www.irf.com 17 IR2130D 5.00 5.00 Amplifier Output Sink Current (mA) Amplifier Output Sink Current (mA) 4.00 4.00 3.00 Typ. 3.00 2.00 Min. 2.00 Typ. Min. 1.00 1.00 0.00 -50 -25 0 25 50 75 100 125 Temperature (C) 0.00 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 47A. Amplifier Output Sink Current vs. Temperature Figure 47B. Amplifier Output Sink Current vs. Voltage 15.0 15.0 Output High Short Circuit Current (mA) 9.0 Max. Output High Short Circuit Current (mA) 12.0 12.0 9.0 6.0 Typ. 6.0 Max. 3.0 3.0 Typ. 0.0 -50 -25 0 25 50 75 100 125 Temperature (C) 0.0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 48A. Amplifier Output High Short Circuit Current vs. Temperature Figure 48B. Amplifier Output High Short Circuit Current vs. Voltage 15.0 15.0 Output Low Short Circuit Current (mA) 9.0 Output Low Short Circuit Current (mA) 12.0 12.0 9.0 6.0 Max. 6.0 Max. Typ. 3.0 3.0 Typ. 0.0 -50 -25 0 25 50 75 100 125 Temperature (C) 0.0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 49A. Amplifier Output Low Short Circuit Current vs. Temperature Figure 49B. Amplifier Output Low Short Circuit Current vs. Voltage 18 www.irf.com IR2130D 50 480V 50 480V 45 Junction Temperature (C) Junction Temperature (C) 45 40 320V 40 320V 35 160V 35 160V 30 0V 30 0V 25 25 20 1E+2 1E+3 Frequency (Hz) 1E+4 1E+5 20 1E+2 1E+3 Frequency (Hz) 1E+4 1E+5 Figure 50. IR2130 TJ vs. Frequency (IRF820) RGATE = 33W, VCC = 15V Figure 51. IR2130 T J vs. Frequency (IRF830) RGATE = 20W, VCC = 15V 100 140 480V 120 80 Junction Temperature (C) Junction Temperature (C) 100 320V 60 480V 320V 80 160V 60 0V 40 160V 40 0V 20 1E+2 1E+3 Frequency (Hz) 1E+4 1E+5 20 1E+2 1E+3 Frequency (Hz) 1E+4 1E+5 Figure 52. IR2130 TJ vs. Frequency (IRF840) RGATE = 15W, VCC = 15V Figure 53. IR2130 T J vs. Frequency (IRF450) RGATE = 10W, VCC = 15V 0.0 -3.0 VS Offset Supply Voltage (V) Typ. -6.0 -9.0 -12.0 -15.0 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 54. Maximum VS Negative Offset vs. VBS Supply Voltage www.irf.com 19 IR2130D Functional Block Diagram Lead Definitions Lead Symbol Description HIN1,2,3 LIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), out of phase Logic inputs for low side gate driver output (LO1,2,3), out of phase Indicates over-current or undervoltage lockout (low side) has occurred, negative logic Low side and logic fixed supply Input for over-current shutdown Output of current amplifier Negative input of current amplifier Logic ground High side floating supplies High side gate drive outputs High side floating supply returns Low side gate drive outputs Low side return and positive input of current amplifier FAULT VCC ITRIP CAO CAVSS VB1,2,3 HO1,2,3 VS1,2,3 LO1,2,3 VS0 20 www.irf.com IR2130D Case Outline and dimensions - MO038AB LEAD ASSIGNMENT IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTER: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 3/00 www.irf.com 21 |
Price & Availability of IR2130D
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |