Part Number Hot Search : 
31DQ0312 NJU7370F ON2573 P6KE36 BT137S 06033 54HC3 ACM1602
Product Description
Full Text Search
 

To Download RFG50N06 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 RFG50N06, RFP50N06, RF1S50N06SM
Data Sheet January 2002
50A, 60V, 0.022 Ohm, N-Channel Power MOSFETs
These N-Channel power MOSFETs are manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers, and relay drivers. These transistors can be operated directly from integrated circuits. Formerly developmental type TA49018.
Features
* 50A, 60V * rDS(ON) = 0.022 * Temperature Compensating PSPICE(R) Model * Peak Current vs Pulse Width Curve * UIS Rating Curve * 175oC Operating Temperature
Symbol
D
Ordering Information
PART NUMBER RFG50N06 RFP50N06 RF1S50N06SM PACKAGE TO-247 TO-220AB TO-263AB BRAND RFG50N06 RFP50N06 F1S50N06
S G
NOTE: When ordering, use the entire part number. Add the suffix, 9A, to obtain the TO-263AB variant in tape and reel, i.e. RF1S50N06SM9A.
Packaging
JEDEC STYLE TO-247
SOURCE DRAIN GATE DRAIN (BOTTOM SIDE METAL) DRAIN (FLANGE)
JEDEC TO-220AB
SOURCE DRAIN GATE
JEDEC TO-263AB
GATE SOURCE
DRAIN (FLANGE)
(c)2002 Fairchild Semiconductor Corporation
RFG50N06, RFP50N06, RF1S50N06SM Rev. B
RFG50N06, RFP50N06, RF1S50N06SM
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified RFG50N06, RFP50N06 RF1S50N06SM 60 60 20 50 (Figure 5) (Figure 6) 131 0.877 -55 to 175 300 260 UNITS V V V A
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Continuous Drain Current (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, see Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg
W W/oC oC
oC oC
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE: 1. TJ = 25oC to 150oC.
Electrical Specifications
PARAMETER
TC = 25oC, Unless Otherwise Specified SYMBOL BVDSS VGS(TH) IDSS TEST CONDITIONS ID = 250A, VGS = 0V (Figure 11) VGS = VDS, ID = 250A (Figure 10) VDS = 60V, VGS = 0V VGS = 20V ID = 50A, VGS = 10V (Figures 9) VDD = 30V, ID = 50A RL = 0.6, VGS = 10V RGS = 3.6 (Figure 13) TC = 25oC TC = 150oC MIN 60 2 VGS = 0 to 20V VGS = 0 to 10V VGS = 0 to 2V VDD = 48V, ID = 50A, RL = 0.96 Ig(REF) = 1.45mA (Figure 13) (Figure 3) TO-247 TO-220, TO-263 TYP 12 55 37 13 125 67 3.7 2020 600 200 MAX 4 1 50 100 0.022 95 75 150 80 4.5 1.14 30 62 UNITS V V A A nA ns ns ns ns ns ns nC nC nC pF pF pF
oC/W oC/W oC/W
Drain to Source Breakdown Voltage Gate to Source Threshold Voltage Zero Gate Voltage Drain Current
Gate to Source Leakage Current Drain to Source On Resistance Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time Total Gate Charge Gate Charge at 10V Threshold Gate Charge Input Capacitance Output Capacitance Reverse Transfer Capacitance Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient
IGSS rDS(ON) tON td(ON) tr td(OFF) tf tOFF Qg(TOT) Qg(10) Qg(TH) CISS COSS CRSS RJC RJA
VDS = 25V, VGS = 0V f = 1MHz (Figure 12)
Source to Drain Diode Specifications
PARAMETER Source to Drain Diode Voltage Reverse Recovery Time SYMBOL VSD trr ISD = 50A ISD = 50A, dISD/dt = 100A/s TEST CONDITIONS MIN TYP MAX 1.5 125 UNITS V ns
(c)2002 Fairchild Semiconductor Corporation
RFG50N06, RFP50N06, RF1S50N06SM Rev. B
RFG50N06, RFP50N06, RF1S50N06SM Typical Performance Curves
1.2 POWER DISSIPATION MULTIPLIER 1.0 ID , DRAIN CURRENT (A) 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 TC , CASE TEMPERATURE (oC) 150 175
Unless Otherwise Specified
60 50 40 30 20 10 0 25 50 75 100 125 150 175 TC , CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE
2 1 THERMAL IMPEDANCE 0.5 0.2 0.1 0.1 0.05 0.02 0.01 SINGLE PULSE 0.01 -5 10 10-4 10-3 10-2 10-1 t1 , RECTANGULAR PULSE DURATION (s) t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC x RJC + TC 100 101 t1 PDM
ZJC, NORMALIZED
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
400
TJ = MAX RATED SINGLE PULSE TC = 25oC IDM , PEAK CURRENT (A)
103
FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT CAPABILITY AS FOLLOWS: VGS = 20V 175 - T C I = I 25 ----------------------- 150
ID , DRAIN CURRENT (A)
100 100s 1ms 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) VDSS(MAX) = 60V 1 1 10 VDS , DRAIN TO SOURCE VOLTAGE (V) 10ms 100ms DC 100
VGS = 10V 102 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 40 10-3 10-2 10-1 100 101 102 t, PULSE WIDTH (ms) 103 104 TC = 25oC
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
FIGURE 5. PEAK CURRENT CAPABILITY
(c)2002 Fairchild Semiconductor Corporation
RFG50N06, RFP50N06, RF1S50N06SM Rev. B
RFG50N06, RFP50N06, RF1S50N06SM Typical Performance Curves
300 IAS, AVALANCHE CURRENT (A)
Unless Otherwise Specified (Continued)
125 VGS = 10V
STARTING TJ = 25oC
ID , DRAIN CURRENT (A)
100
100
VGS = 8V
PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TC = 25oC VGS = 7V
75
10
STARTING TJ = 150oC If R = 0 tAV = (L) (IAS) / (1.3 RATED BVDSS - VDD)
50
VGS = 6V VGS = 5V VGS = 4V
25
1 0.01
If R 0 tAV = (L/R) ln [(IAS*R) / (1.3 RATED BVDSS - VDD) + 1] 0.1 1 10
0 0 1.5 3.0 4.5 6.0 7.5 VDS , DRAIN TO SOURCE VOLTAGE (V)
tAV, TIME IN AVALANCHE (ms)
NOTE: Refer to Fairchild Application Notes 9321 and 9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY FIGURE 7. SATURATION CHARACTERISTICS
125
NORMALIZED DRAIN TO SOURCE ON RESISTANCE
ID, DRAIN CURRENT (A)
100
PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VDD = 15V
-55oC
25oC
2.5
2.0
PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 50A
175oC 75
1.5
50
1.0
25
0.5
0 0 1 2 3 4 5 6 7 8 9 10 VGS , GATE TO SOURCE VOLTAGE (V)
0 -80
-40
0
40
80
120
160
200
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 8. TRANSFER CHARACTERISTICS
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE
2.0 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250A NORMALIZED GATE THRESHOLD VOLTAGE 1.5
2.0 ID = 250A 1.5
1.0
1.0
0.5
0.5
0 -80
-40
0
40
80
120
160
200
0 -80
-40
0
40
80
120
160
200
TJ , JUNCTION TEMPERATURE (oC)
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE
(c)2002 Fairchild Semiconductor Corporation
RFG50N06, RFP50N06, RF1S50N06SM Rev. B
RFG50N06, RFP50N06, RF1S50N06SM Typical Performance Curves
4000 VDS , DRAIN TO SOURCE VOLTAGE (V) VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS = CDS + CGD CISS 2000
Unless Otherwise Specified (Continued)
60 VDD = BVDSS 45 VDD = BVDSS 7.5 10 VGS , GATE TO SOURCE VOLTAGE (V)
C, CAPACITANCE (pF)
3000
30 0.75 BVDSS 0.50 BVDSS 15 0.75 BVDSS 0.50 BVDSS
5.0
1000
COSS CRSS
0.25 BVDSS 0.25 BVDSS RL = 1.2 Ig(REF) = 1.45mA VGS = 10V 20 Ig(REF) Ig(ACT) t, TIME (s) 80 Ig(REF) Ig(ACT)
2.5
0 0 5 10 15 20 25 VDS , DRAIN TO SOURCE VOLTAGE (V)
0
0
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 13. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT
Test Circuits and Waveforms
VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP RG IAS VDD tP VDS VDD
+
0V
IAS 0.01
0 tAV
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
tON VDS VDS VGS RL
+
tOFF td(OFF) tr tf 90%
td(ON)
90%
DUT RGS VGS
-
VDD
0
10% 90%
10%
VGS 0 10%
50% PULSE WIDTH
50%
FIGURE 16. SWITCHING TIME TEST CIRCUIT
FIGURE 17. SWITCHING WAVEFORMS
(c)2002 Fairchild Semiconductor Corporation
RFG50N06, RFP50N06, RF1S50N06SM Rev. B
RFG50N06, RFP50N06, RF1S50N06SM Test Circuits and Waveforms
VDS RL VDD VDS VGS = 20V VGS
+
(Continued)
Qg(TOT)
Qg(10) VDD VGS VGS = 2V 0 Qg(TH) Ig(REF) 0 VGS = 10V
DUT Ig(REF)
FIGURE 18. GATE CHARGE TEST CIRCUIT
FIGURE 19. GATE CHARGE WAVEFORMS
(c)2002 Fairchild Semiconductor Corporation
RFG50N06, RFP50N06, RF1S50N06SM Rev. B
RFG50N06, RFP50N06, RF1S50N06SM PSPICE Electrical Model
.SUBCKT RFP50N06 2 1 3 REV 2/22/93
*NOM TEMP = 25oC
CA 12 8 3.68e-9 CB 15 14 3.625e-9 CIN 6 8 1.98e-9
5
DBODY 7 5 DBDMOD DBREAK 5 11DBKMOD DPLCAP 10 5 DPLCAPMOD EBREAK 11 7 17 18 64.59 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTO 20 6 18 8 1 IT 8 17 1
10
ESG + GATE 1 LGATE 9 20 RGATE EVTO + 18 8 6 8
DPLCAP 16
RDRAIN DBREAK
DRAIN 2 LDRAIN
6
VTO
+
MOS2 21 MOS1 11 17 EBREAK 18 RSOURCE +
DBODY
RIN
CIN 8
7 LSOURCE 3 SOURCE 18 RVTO
S1A
S2A 14 13 S2B 13 CB 14 + 5 EDS 8 IT 15 17 RBREAK
LDRAIN 2 5 1e-9 LGATE 1 9 5.65e-9 LSOURCE 3 7 4.13e-9 MOS1 16 6 8 8 MOSMOD M=0.99 MOS2 16 21 8 8 MOSMOD M=0.01 RBREAK 17 18 RBKMOD 1 RDRAIN 5 16 RDSMOD 1e-4 RGATE 9 20 0.690 RIN 6 8 1e9 RSOURCE 8 7 RDSMOD 12e-3 RVTO 18 19 RVTOMOD 1 S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD VBAT 8 19 DC 1 VTO 21 6 0.678
CA
12
13 8 S1B
19 VBAT +
+ EGS 6 -8
-
-
.MODEL DBDMOD D (IS=9.85e-13 RS=4.91e-3 TRS1=2.07e-3 TRS2=2.51e-7 CJO=2.05e-9 TT=4.33e-8) .MODEL DBKMOD D (RS=1.98e-1 TRS1=2.35E-4 TRS2=-3.83e-6) .MODEL DPLCAPMOD D (CJO=1.42e-9 IS=1e-30 N=10) .MODEL MOSMOD NMOS (VTO=3.65 KP=35 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL RBKMOD RES (TC1=1.23e-3 TC2=-2.34e-7) .MODEL RDSMOD RES (TC1=5.01e-3 TC2=1.49e-5) .MODEL RVTOMOD RES (TC1=-5.03e-3 TC2=-5.16e-6) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-6.75 VOFF=-2.5) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2.5 VOFF=-6.75) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2.7 VOFF=2.3) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=2.3 VOFF=-2.7) .ENDS NOTE: For further discussion of the PSPICE model consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; authors, William J. Hepp and C. Frank Wheatley.
(c)2002 Fairchild Semiconductor Corporation
RFG50N06, RFP50N06, RF1S50N06SM Rev. B
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACExTM BottomlessTM CoolFETTM CROSSVOLTTM DenseTrenchTM DOMETM EcoSPARKTM E2CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM
DISCLAIMER
FAST (R) FASTrTM FRFETTM GlobalOptoisolatorTM GTOTM HiSeCTM ISOPLANARTM LittleFETTM MicroFETTM MicroPakTM MICROWIRETM
OPTOLOGICTM OPTOPLANARTM PACMANTM POPTM Power247TM PowerTrench (R) QFETTM QSTM QT OptoelectronicsTM Quiet SeriesTM SILENT SWITCHER (R)
SMART STARTTM STAR*POWERTM StealthTM SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 SyncFETTM TinyLogicTM TruTranslationTM UHCTM UltraFET (R)
VCXTM
STAR*POWER is used under license
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life systems which, (a) are intended for surgical implant into support device or system whose failure to perform can the body, or (b) support or sustain life, or (c) whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system, or to affect its safety or with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Preliminary
First Production
No Identification Needed
Full Production
Obsolete
Not In Production
This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. H4


▲Up To Search▲   

 
Price & Availability of RFG50N06

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X