![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
DATA SHEET Compound Field Effect Power Transistor PA1520B N-CHANNEL POWER MOS FET ARRAY SWITCHING USE DESCRIPTION The PA1520B is N-channel Power MOS FET Array that built in 4 circuits designed for solenoid, motor and lamp driver. 26.8 MAX. 10 PACKAGE DIMENSIONS in millimeters 4.0 FEATURES * 4 V driving is possible * Large Current and Low On-state Resistance ID (DC) = 2.0 A RDS (on) 1 0.17 MAX. (VGS = 10 V, ID = 1 A) RDS (on) 1 0.25 MAX. (VGS = 4 V, ID = 1 A) * Low Input Capacitance Ciss = 220 pF TYP. 2.54 1.4 0.60.1 1.4 0.50.1 ORDERING INFORMATION Type Number Package 10 Pin SIP 3 1 2 3 4 5 6 7 8 9 10 CONNECTION DIAGRAM 5 7 9 PA1520BH ABSOLUTE MAXIMUM RATINGS (TA = 25 C) Drain to Source Voltage Gate to Source Voltage Drain Current (DC) Drain Current (pulse) Total Power Dissipation Total Power Dissipation Channel Temperature Storage Temperature Notes 1. VGS = 0 3. PW 10 s, Duty Cycle 1 % 3. 4 circuits, TA = 25 C VDSSNote 1 VGSSNote 2 ID(DC) ID(pulse)Note 3 PT1Note 4 PT2Note 5 TCH Tstg 30 20 2.0 8.0 28 3.5 150 -55 to +150 V V A/unit A/unit W W C C 2 1 4 6 8 10 ELECTRODE CONNECTION 2, 4, 6, 8 : Gate 3, 5, 7, 9 : Drain 1, 10 : Source 2. VDS = 0 4. 4 circuits, TC = 25 C The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device is actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device. Document No. G10598EJ2V0DS00 (2nd edition) Date Published December 1995 P Printed in Japan (c) 10 MIN. 2.5 1995 PA1520B ELECTRICAL CHARACTERISTICS (TA = 25 C) CHARACTERISTIC Drain Leakage Current Gate Leakage Current Gate Cutoff Voltage Forward Transfer Admittance Drain to Source On-State Resistance SYMBOL IDSS IGSS VGS(off) | Yfs | RDS(on)1 RDS(on)2 Input Capacitance Output Capacitance Reverse Transfer Capacitance Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Total Gate Charge Gate to Source Charge Gate to Drain Charge Body Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Ciss Coss Crss td(on) tr td(off) tr QG QGS QGD VF(S-D) trr Qrr IF = 2.0 A, VGS = 0 IF = 2.0 A, VGS = 0, di/dt = 50 A/s VGS = 10 V, ID = 2.0 A, VDD = 24 V . ID = 1.0 A, VGS = 10 V, VDD = 15 V, . RL = 15 TEST CONDITIONS VDS = 30 V, VGS = 0 VGS = 20 V, VDS = 0 VDS = 10 V, ID = 1.0 mA VDS = 10 V, ID = 1.0 A VGS = 10 V, ID = 1.0 A VGS = 4.0 V, ID = 1.0 A VDS = 10 V, VGS = 0, f = 1.0 MHz 1.0 1.0 0.10 0.13 220 220 90 27 125 590 500 14 2 5.5 1.0 640 3.4 0.17 0.25 MIN. TYP. MAX. 10 10 2.0 UNIT A A V S pF pF pF ns ns ns ns nC nC nC V ns C Test Circuit 1 Switching Time D.U.T. RL VGS VGS Wave Form PG. RG RG = 10 0 ID 10 % VGS (on) 90 % VDD 90 % 90 % ID ID Wave Form VGS 0 t t = 1 s Duty Cycle 1 % 0 10 % td (on) ton tr td (off) toff 10 % tf Test Circuit 2 Gate Charge D.U.T. IG = 2 mA RL PG. 50 VDD 2 PA1520B CHARACTERISTICS (TA = 25 C) TOTAL POWER DISSIPATION vs. AMBIENT TEMPERATURE 6 PT - Total Power Dissipation - W PA1520BH TOTAL POWER DISSIPATION vs. CASE TEMPERATURE 30 PT - Total Power Dissipation - W Under same dissipation in each circuit 4 Circuits operation 20 3 Circuits operation 2 Circuits operation 1 Circuit operation 10 NEC ,, ,, ,, 4 3 2 1 0 5 Laed Print Circuit Boad Under same dissipation in each circuit 4 Circuits operation 3 Circuits operation 2 Circuits operation 1 Circuit operation 50 100 150 TC is grease Temperature on back surface 0 50 100 TC - Case Temperature - C 150 TA - Ambient Temperature - C FORWARD BIAS SAFE OPERATING AREA 100 dT - Percentage of Rated Power - % 100 80 60 40 20 DERATING FACTOR OF FORWARD BIAS SAFE OPERATING AREA ID - Drain Current - A 10 n) RD S(o Lim ite G d (V S= 10 V) ID(Pulse) 50 m PW = 1 m s 10 m ID(DC) s 10 0 s 1 DC m s 0.1 0.1 TC = 25 C Single Pulse 1 10 100 0 20 40 60 80 100 120 140 160 VDS - Drain to Source Voltage - V TC - Case Temperature - C DRAIN CURRENT vs. DRAIN TO SOURCE VOLTAGE 10 VGS = 20 V 10 V VGS = 4 V 6 Pulsed FORWARD TRANSFER CHARACTERISTICS 100 Pulsed VDS = 10 V ID - Drain Current - A 6 8 ID - Drain Current - A 10 1.0 TA = 125 C 75 C 25 C -25 C 4 0.1 2 0 2 4 0 0.5 1.0 1.5 2.0 VGS- Gate to Source Voltage - V VDS - Drain to Source Voltage - V 3 PA1520B TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH 1 000 Single Pulse. For each Circuit Rth(CH-A) 4Circuits 3Circuits 2Circuits 1Circuit rth(t) - Transient Thermal Resistance - C/W 100 Rth(CH-C) 10 1.0 0.1 100 1m 10 m 100 m 1 10 100 1 000 PW - Pulse Width - sec FORWARD TRANSFER ADMITTANCE vs. DRAIN CURRENT yfs - Forward Transfer Admittance - S 100 VDS = 10 V Pulsed TA = -25 C 25 C 75 C 125 C RDS(on) - Drain to Source On-State Resistance - m DRAIN TO SOURCE ON-STATE RESISTANCE vs. GATE TO SOURCE VOLTAGE 300 Pulsed 10 200 ID = 0.4 A 1A 2A 1.0 100 0.1 0.1 1.0 ID- Drain Current - A 10 0 10 VGS - Gate to Source Voltage - V 20 RDS(on) - Drain to Source On-State Resistance - m DRAIN TO SOURCE ON-STATE RESISTANCE vs. DRAIN CURRENT VGS(off) - Gate to Source Cutoff Voltage - V 300 Pulsed 2 GATE TO SOURCE CUTOFF VOLTAGE vs. CHANNEL TEMPERATURE VDS = 10 V ID = 1 mA 200 VGS = 4 V 1 100 VGS = 10 V 0 1.0 ID - Drain Current - A 10 0 - 50 0 50 100 150 TCH - Channel Temperature - C 4 PA1520B RDS(on) - Drain to Source On-State Resistance - m DRAIN TO SOURCE ON-STATE RESISTANCE vs. CHANNEL TEMPERATURE 200 VGS = 4 V 150 VGS =10 V 100 SOURCE TO DRAIN DIODE FORWARD VOLTAGE Pulsed ISD - Diode Forward Current - A 10 VGS = 10 V 1.0 VGS = 0 0.1 50 ID = 1 A 0 50 100 150 TCH - Channel Temperature - C CAPACITANCE vs. DRAIN TO SOURCE VOLTAGE 1 000 0 - 50 0.01 0 0.5 1.0 1.5 VSD - Source to Drain Voltage - V SWITCHING CHARACTERISTICS 1 000 td(on), tr, td(off), tf - Switching Time - ns Ciss, Coss, Crss - Capacitance - pF Coss Ciss Crss 100 VGS = 0 f = 1 MHz td(off) tf 100 tr td(on) 10 0.01 0.1 1.0 10 0.1 VDD 15 V VGS = 10 V RG =10 10 1 10 100 VDS - Drain to Source Voltage - V REVERSE RECOVERY TIME vs. DRAIN CURRENT 10 000 trr - Reverse Recovery time - ns VDS - Drain to Source Voltage - V ID - Drain Current - A di/dt = 50 A/ s VGS = 0 20 8 6 4 2 1000 10 VDS 0 0 2 6 10 0 14 100 0.01 0.1 1.0 10 ID - Drain Current - A Qg - Gate Charge - nC VGS - Gate to Source Voltage - V DYNAMIC INPUT/OUTPUT CHARACTERISTICS 30 12 ID = 2 A VGS 10 D = 6 15 V V 24 V VD 5 PA1520B REFERENCE Document Name NEC semiconductor device reliability/quality control system Quality grade on NEC semiconductor devices Semiconductor device mounting technology manual Semiconductor device package manual Guide to quality assurance for semiconductor devices Semiconductor selection guide Power MOS FET features and application switching power supply Application circuits using Power MOS FET Safe operating area of Power MOS FET Document No. TEI-1202 IEI-1209 IEI-1207 IEI-1213 MEI-1202 MF-1134 TEA-1034 TEA-1035 TEA-1037 6 PA1520B [MEMO] 7 PA1520B [MEMO] No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance. Anti-radioactive design is not implemented in this product. M4 94.11 8 |
Price & Availability of UPA1520B
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |