Part Number Hot Search : 
H3900 50P03 CC9318P EL7144 BUW12W 3KA18 E2955 TDA6190T
Product Description
Full Text Search
 

To Download UPD161401 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 DATA SHEET
MOS INTEGRATED CIRCUIT
PD161401
256-COLOR, 1/80-DUTY LCD CONTROLLER/DRIVER WITH ON-CHIP RAM
DESCRIPTION
The PD161401 is an LCD controller/driver with RAM and is capable of driving a full-dot LCD. It can display 256 colors on an RGB-STN color LCD. This LCD controller/driver can drive a full-dot LCD of up to 101 x 80 pixel with a single chip.
FEATURES
* LCD driver with on-chip display RAM * Logic power supply operation from +1.8 V to +3.6 V * Internal booster circuit: x 2 to x 7 selectable * Dot display RAM: (101 x 80) x 8 bits * 8 (R, G)/4 (B) grayscales selectable from 17 levels * Full-dot output: 303 segment lines and 80 common lines * Serial interface (SI, SCL) or 8-/16-bit parallel data input (i80 or M68 system interface) * On-chip voltage divider resistor * Selectable bias value: 1/9 to 1/5 * Selectable duty ratio: 1/80, 1/72 and 1/64 (main duty) * On-chip oscillator
ORDERING INFORMATION
Part Number Package Wafer/Chip (supports COF)
PD161401W/P
Remark Purchasing the above chip entail the exchange of documents such as a separate memorandum or product quality, so please contact one of our sales representatives.
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.
Document No. S15726EJ2V0DS00 (2nd Edition) Data Published June 2002 NS CP(K) Printed in Japan
The mark 5 shows major revised points.
(c)
2001
PD161401
CONTENT
1. BLOCK DIAGRAM ................................................................................................................................... 5 2. PIN CONFIGURATION (Pad Layout) ..................................................................................................... 6 3. PIN FUNCTIONS...................................................................................................................................... 12
3.1 Power Supply Pins...........................................................................................................................................12 3.2 Logic Circuit Pins ............................................................................................................................................13 3.3 Driver Pins ........................................................................................................................................................15
4. PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS.................................... 16 5. FUNCTIONAL DESCRIPTION................................................................................................................. 17
5.1 CPU Interface ....................................................................................................................................................17 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Selecting interface type...........................................................................................................................17 Parallel interface .....................................................................................................................................17 Serial interface........................................................................................................................................19 Chip select ..............................................................................................................................................19 Accessing display data RAM and internal registers ................................................................................19
5.2 Display Data RAM ............................................................................................................................................21 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 Display data RAM ...................................................................................................................................21 X address circuit .....................................................................................................................................21 Y address circuit .....................................................................................................................................23 Column address circuit ...........................................................................................................................24 Common scan circuit ..............................................................................................................................25 Display data latch circuit .........................................................................................................................28 Arbitrary address area access (window access mode (WAS)) ...............................................................28
5.3 Screen Processing...........................................................................................................................................30 5.3.1 5.3.2 Blink/reverse display circuit.....................................................................................................................30 Example of setting blink area..................................................................................................................33
5.4 Oscillator ..........................................................................................................................................................33 5.5 Display Timing Generator ...............................................................................................................................35 5.6 Power Supply Circuit .......................................................................................................................................37 5.6.1 5.6.2 5.6.3 5.6.4 5.6.5 Power supply circuit ................................................................................................................................37 Booster circuit .........................................................................................................................................37 Voltage regulator circuit ..........................................................................................................................39 Level voltage control by operational amplifier .........................................................................................42 Application example of power supply circuit ...........................................................................................44
5.7 Driving LCD ......................................................................................................................................................48 5.7.1 2 Full-dot pulse modulation........................................................................................................................48
Data Sheet S15726EJ2V0DS
PD161401
5.7.2 5.7.3 5.7.4 5.7.5 Grayscale palette....................................................................................................................................51 Setting of display size .............................................................................................................................52 Setting of LCD N-line inversion and M-line shift......................................................................................52 Reverse driving between frames ............................................................................................................54
5.8 Display Mode....................................................................................................................................................55 5.8.1 Selecting display mode ...........................................................................................................................55
5.8.2 Screen scrolling .......................................................................................................................................58 5.8.3 Scroll setting examples ............................................................................................................................59 5.9 Reset .................................................................................................................................................................61
6. COMMANDS ............................................................................................................................................ 63
6.1 Control Register 1 (R0)....................................................................................................................................64 6.2 Control Register 2 (R1)....................................................................................................................................65 6.3 Reset Command Register (R3) .......................................................................................................................66 6.4 X Address Register (R4) ..................................................................................................................................66 6.5 Y Address Register (R5) ..................................................................................................................................66 6.6 MIN.*X Address Register (R7) .........................................................................................................................67 6.7 MAX.*X Address Register (R8) ........................................................................................................................67 6.8 MIN.*Y Address Register (R9) .........................................................................................................................67 6.9 MAX.*Y Address Register (R10) ......................................................................................................................68 6.10 Display Memory Access Register (R12).......................................................................................................68 6.11 Main Duty Setting Register (R14) .................................................................................................................69 6.12 Main Duty N-line Inversion Register (R15)...................................................................................................69 6.13 Main Duty M-line Shift Register (R16) ..........................................................................................................70 6.14 Sub-duty Setting Register (R17) ...................................................................................................................71 6.15 Sub-duty N-line Inversion Register (R18) ....................................................................................................72 6.16 Sub-duty M-line Shift Register (R19)............................................................................................................73 6.17 COM Scanning Address Setting Register (R21)..........................................................................................74 6.18 Sub-duty Start Address Register (R22)........................................................................................................77 6.19 Scroll Fixed Area Position Register (R23) ...................................................................................................78 6.20 Scroll Fixed Area Width Register (R27) .......................................................................................................78 6.21 Scroll Step Number Register (R31) ..............................................................................................................79 6.22 Blink/Reverse Setting Register (R37)...........................................................................................................80 6.23 Complementary Color Blink X Address Register (R38) ..............................................................................80 6.24 Complementary Color Blink Start Line Address Register (R39)................................................................81 6.25 Complementary Color Blink End Line Address Register (R40) .................................................................81 6.26 Complementary Color Blink Data Memory Register (R41) .........................................................................82 6.27 Specified Color Blink X Address Register (R42) .........................................................................................82 6.28 Specified Color Blink Start Line Address Register (R43) ...........................................................................83 6.29 Specified Color Blink End Line Address Register (R44) ............................................................................83 6.30 Specified Color Blink Data Memory Register (R45) ....................................................................................84 6.31 Specified Color Setting Register (R46) ........................................................................................................84
Data Sheet S15726EJ2V0DS
3
PD161401
6.32 Reverse X Address Register (R47) ...............................................................................................................84 6.33 Reverse Start Line Address Register (R48) .................................................................................................85 6.34 Reverse End Line Address Register (R49) ..................................................................................................85 6.35 Reverse Data Memory Access Register (R50).............................................................................................86 6.36 Power System Control Register 1 (R52) ......................................................................................................87 6.37 Power System Control Register 2 (R53) ......................................................................................................88 6.38 Power System Control Register 3 (R54) ......................................................................................................89 6.39 Power System Control Register 4 (R55) ......................................................................................................90 6.40 Power System Control Register 5 (R56) ......................................................................................................91 6.41 Main Electronic Volume Register (R57) .......................................................................................................92 6.42 Sub-electronic Volume Register (R58).........................................................................................................92 6.43 RAM Test Mode Setting Register (R61)........................................................................................................93 6.44 Driving Mode Select Register (R64) .............................................................................................................93 6.45 Main R Grayscale Data Registers (R65 to R72) ...........................................................................................94 6.46 Main G Grayscale Data Registers (R73 to R80) ...........................................................................................95 6.47 Main B Grayscale Data Registers (R81 to R84) ...........................................................................................96 6.48 Sub R Grayscale Data Registers (R85 to R92).............................................................................................97 6.49 Sub G Grayscale Data Registers (R93 to R100) ..........................................................................................98 6.50 Sub B Grayscale Data Registers (R101 to R104).........................................................................................99
7. PD161401 REGISTER LIST ................................................................................................................ 100 8. POWER SEQUENCE............................................................................................................................. 102
8.1 Power ON Sequence (with Internal Power Supply, Power ON Display ON) ........................................103 8.2 Power OFF Sequence (with Internal Power Supply) ...................................................................................105 8.3 Power ON Sequence (with External Driving Power Supply, Power ON Display ON)...........................106 8.4 Power OFF Sequence (with External Driving Power Supply).....................................................................107 8.5 Flow of VOUT and VLCD Voltages from Power ON to Power OFF .................................................................108 8.6 Flow of VOUT and VLCD Voltages in Display Output and HALT/Standby Modes.........................................109
9. USING RAM TEST MODE ..................................................................................................................... 110 10. ELECTRICAL SPECIFICATIONS........................................................................................................ 111 11. CPU INTERFACE (Reference Example)............................................................................................ 120
4
Data Sheet S15726EJ2V0DS
PD161401
1. BLOCK DIAGRAM
SEG1 SEG303 O1 O80
Common driver Segment driver
Segment gray-scale control IFM0 IFM1 /CS1 CS2 /RD(E) /WR(R,/W) D15 to D8 D7(SI) D6(SCL) D5 to D0 RS /DISP TOUT15 to TOUT0 M,/S FR FRSYNC DOF TSTRTST TSTVIHL TPWR0, TPWR1 Data register Data control Address control I/O buffer Graphic control
Common timing generator
Display data latch
Display data RAM 101 x 8 x 80 bits Blink & Inverse data RAM 303 bits Logic Control Circuit
Command decorder OSCIN1 OSCIN2 OSCOUT OSCSYNC
Register
Gray-scale control
VDD1 VDD2
Oscillator circuit
Timing generator
VSS
C1 + C1 , DC/DC converter C5 +C5 , D/A converter Op amp. LCD voltage generator
VOUT VOUT2
VRS IRS
VR
AMPOUTM AMPOUTS
VLCD
VLC1
VLC2
VLC3
VLC4
Remark
/xxx is an active-low signal.
Data Sheet S15726EJ2V0DS
5
PD161401
2. PIN CONFIGURATION (Pad Layout)
* PD161401W/P Chip size: 2.57 x 16.05 mm2 Chip thickness: 485 m (TYP.)
D u m m y O80 D u m m O41 y
713 M1
672 671 Dummy
1
SEG303 SEG302 SEG301
Y X I/O side
SEG194 SEG193 Dummy SEG192 SEG191
SEG3 SEG2 SEG1 Dummy 317 D O40 u m m y O1 D u m m y 360
M2 318
359
6
Data Sheet S15726EJ2V0DS
PD161401
Details of pad and alignment mark Pad type A type Pad size (Al): 39 x 71 m2 TYP. Bump size : 33 x 65 m2 TYP. Bump height: 17 m TYP.
B type Pad size (Al): 93 x 71 m2 TYP. Bump size: 87 x 65 m2 TYP. Bump height: 17 m TYP. Alignment mark (unit: m)
X M1 M2 -1140.00 -1140.00 Y 7560.00 -7560.00
Shape of mark (unit: m)
Mark center
80 (M1) 75 (M2)
Data Sheet S15726EJ2V0DS
7
PD161401
Table 2-1 Pad Layout (1/4) -
Pad No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 Pad Name DUMMY VSS VSS VSS VOUT VOUT VOUT VOUT2 VOUT2 VOUT2 VSS VSS VSS C5- C5- C5- C5+ C5+ C5+ C4- C4- C4- C4+ C4+ C4+ C3- C3- C3- C3+ C3+ C3+ C2- C2- C2- C2+ C2+ C2+ C1- C1- C1- C1+ C1+ C1+ VSS VSS VSS TPWR1 TPWR1 TPWR1 TPWR0 TPWR0 TPWR0 VRS VRS VRS VSS VSS VSS VSS VSS VSS VDD2 VDD2 VDD2 VDD1 VDD1 VDD1 VSS VSS VSS Pad Type B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A Pad Layout [m] X -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 Y 7230.00 7105.00 7060.00 7015.00 6970.00 6925.00 6880.00 6835.00 6790.00 6745.00 6700.00 6655.00 6610.00 6565.00 6520.00 6475.00 6430.00 6385.00 6340.00 6295.00 6250.00 6205.00 6160.00 6115.00 6070.00 6025.00 5980.00 5935.00 5890.00 5845.00 5800.00 5755.00 5710.00 5665.00 5620.00 5575.00 5530.00 5485.00 5440.00 5395.00 5350.00 5305.00 5260.00 5215.00 5170.00 5125.00 5080.00 5035.00 4990.00 4945.00 4900.00 4855.00 4810.00 4765.00 44720.00 4675.00 4630.00 4585.00 4540.00 4495.00 4450.00 4405.00 4360.00 4315.00 4270.00 4225.00 4180.00 4135.00 4090.00 4045.00 Pad No. 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 Pad Name VSS VSS VSS M, /S M, /S M, /S VDD1 VDD1 VDD1 IFM0 IFM0 IFM0 VSS VSS VSS IFM1 IFM1 IFM1 VDD1 VDD1 VDD1 IRS IRS IRS VSS VSS VSS /CS1 /CS1 /CS1 CS2 CS2 CS2 VDD1 VDD1 VDD1 /DISP /DISP /DISP RS RS RS VSS VSS VSS /WR (R, /W) /WR (R, /W) /WR (R, /W) /RD (E) /RD (E) /RD (E) VDD1 VDD1 VDD1 D15 D15 D15 D14 D14 D14 D13 D13 D13 VSS VSS VSS D12 D12 D12 D11 Pad Type A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A Pad Layout [m] X -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 Y 4000.00 3955.00 3910.00 3865.00 3820.00 3775.00 3730.00 3685.00 3640.00 3595.00 3550.00 3505.00 3460.00 3415.00 3370.00 3325.00 3280.00 3235.00 3190.00 3145.00 3100.00 3055.00 3010.00 2965.00 2920.00 2875.00 2830.00 2785.00 2740.00 2695.00 2650.00 2605.00 2560.00 2515.00 2470.00 2425.00 2380.00 2335.00 2290.00 2245.00 2200.00 2155.00 2110.00 2065.00 2020.00 1975.00 1930.00 1885.00 1840.00 1795.00 1750.00 1705.00 1660.00 1615.00 1570.00 1525.00 1480.00 1435.00 1390.00 1345.00 1300.00 1255.00 1210.00 1165.00 1120.00 1075.00 1030.00 985.00 940.00 895.00 Pad No. 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 Pad Name D11 D11 D10 D10 D10 VSS VSS VSS D9 D9 D9 D8 D8 D8 VSS VSS VSS D7 D7 D7 D6 D6 D6 D5 D5 D5 VSS VSS VSS D4 D4 D4 D3 D3 D3 D2 D2 D2 VSS VSS VSS D1 D1 D1 D0 D0 D0 VSS VSS VSS FRSYNC FRSYNC FRSYNC FR FR FR DOF DOF DOF OSCSYNC OSCSYNC OSCSYNC VSS VSS VSS OSCIN1 OSCIN1 OSCIN1 VSS VSS Pad Type A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A Pad Layout [m] X -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 Y 850.00 805.00 760.00 715.00 670.00 625.00 580.00 535.00 490.00 445.00 400.00 355.00 310.00 265.00 220.00 175.00 130.00 85.00 40.00 -5.00 -50.00 -95.00 -140.00 -185.00 -230.00 -275.00 -320.00 -365.00 -410.00 -455.00 -500.00 -545.00 -590.00 -635.00 -680.00 -725.00 -770.00 -815.00 -860.00 -905.00 -950.00 -995.00 -1040.00 -1085.00 -1130.00 -1175.00 -1220.00 -1265.00 -1310.00 -1355.00 -1400.00 -1445.00 -1490.00 -1535.00 -1580.00 -1625.00 -1670.00 -1715.00 -1760.00 -1805.00 -1850.00 -1895.00 -1940.00 -1985.00 -2030.00 -2075.00 -2120.00 -2165.00 -2210.00 -2255.00
8
Data Sheet S15726EJ2V0DS
PD161401
Table 2-1 Pad Layout (2/4) -
Pad No. 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 VSS OSCIN2 OSCIN2 OSCIN2 VSS VSS VSS OSCOUT OSCOUT OSCOUT VSS VSS VSS TSTRTST TSTRTST TSTRTST TSTVIHL TSTVIHL TSTVIHL TOUT15 TOUT15 TOUT15 TOUT14 TOUT14 TOUT14 TOUT13 TOUT13 TOUT13 TOUT12 TOUT12 TOUT12 TOUT11 TOUT11 TOUT11 TOUT10 TOUT10 TOUT10 TOUT9 TOUT9 TOUT9 TOUT8 TOUT8 TOUT8 TOUT7 TOUT7 TOUT7 TOUT6 TOUT6 TOUT6 TOUT5 TOUT5 TOUT5 TOUT4 TOUT4 TOUT4 TOUT3 TOUT3 TOUT3 TOUT2 TOUT2 TOUT2 TOUT1 TOUT1 TOUT1 TOUT0 TOUT0 TOUT0 VSS VSS VSS Pad Name Pad Type A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A Pad Layout [m] X -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 Y -2300.00 -2345.00 -2390.00 -2435.00 -2480.00 -2525.00 -2570.00 -2615.00 -2660.00 -2705.00 -2750.00 -2795.00 -2840.00 -2885.00 -2930.00 -2975.00 -3020.00 -3065.00 -3110.00 -3155.00 -3200.00 -3245.00 -3290.00 -3335.00 -3380.00 -3425.00 -3470.00 -3515.00 -3560.00 -3605.00 -3650.00 -3695.00 -3740.00 -3785.00 -3830.00 -3875.00 -3920.00 -3965.00 -4010.00 -4055.00 -4100.00 -4145.00 -4190.00 -4235.00 -4280.00 -4325.00 -4370.00 -4415.00 -4460.00 -4505.00 -4550.00 -4595.00 -4640.00 -4685.00 -4730.00 -4775.00 -4820.00 -4865.00 -4910.00 -4955.00 -5000.00 -5045.00 -5090.00 -5135.00 -5180.00 -5225.00 -5270.00 -5315.00 -5360.00 -5405.00 Pad No. 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 VSS VSS VSS VSS VSS VSS VR VR VR AMPOUTM AMPOUTM AMPOUTM VSS VSS VSS AMPOUTS AMPOUTS AMPOUTS VSS VSS VSS VLCD VLCD VLCD VLC1 VLC1 VLC1 VLC2 VLC2 VLC2 VLC3 VLC3 VLC3 VLC4 VLC4 VLC4 DUMMY DUMMY O40 O39 O38 O37 O36 O35 O34 O33 O32 O31 O30 O29 O28 O27 O26 O25 O24 O23 O22 O21 O20 O19 O18 O17 O16 O15 O14 O13 O12 O11 O10 O9 Pad Name Pad Type A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A B B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A Pad Layout [m] X -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1144.50 -1060.00 -935.00 -890.00 -845.00 -800.00 -755.00 -710.00 -665.00 -620.00 -575.00 -530.00 -485.00 -440.00 -395.00 -350.00 -305.00 -260.00 -215.00 -170.00 -125.00 -80.00 -35.00 10.00 55.00 100.00 145.00 190.00 235.00 280.00 325.00 370.00 415.00 460.00 Y -5450.00 -5495.00 -5540.00 -5585.00 -5630.00 -5675.00 -5720.00 -5765.00 -5810.00 -5855.00 -5900.00 -5945.00 -5990.00 -6035.00 -6080.00 -6125.00 -6170.00 -6215.00 -6260.00 -6305.00 -6350.00 -6395.00 -6440.00 -6485.00 -6530.00 -6575.00 -6620.00 -6665.00 -6710.00 -6755.00 -6800.00 -6845.00 -6890.00 -6935.00 -6980.00 -7025.00 -7150.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 Pad No. 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 O8 O7 O6 O5 O4 O3 O2 O1 DUMMY DUMMY SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 SEG8 SEG9 SEG10 SEG11 SEG12 SEG13 SEG14 SEG15 SEG16 SEG17 SEG18 SEG19 SEG20 SEG21 SEG22 SEG23 SEG24 SEG25 SEG26 SEG27 SEG28 SEG29 SEG30 SEG31 SEG32 SEG33 SEG34 SEG35 SEG36 SEG37 SEG38 SEG39 SEG40 SEG41 SEG42 SEG43 SEG44 SEG45 SEG46 SEG47 SEG48 SEG49 SEG50 SEG51 SEG52 SEG53 SEG54 SEG55 SEG56 SEG57 SEG58 SEG59 SEG60 Pad Name Pad Type A A A A A A A A B B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A Pad Layout [m] X 505.00 550.00 595.00 640.00 685.00 730.00 775.00 820.00 945.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 Y -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7773.00 -7080.00 -6955.00 -6910.00 -6865.00 -6820.00 -6775.00 -6730.00 -6685.00 -6640.00 -6595.00 -6550.00 -6505.00 -6460.00 -6415.00 -6370.00 -6325.00 -6280.00 -6235.00 -6190.00 -6145.00 -6100.00 -6055.00 -6010.00 -5965.00 -5920.00 -5875.00 -5830.00 -5785.00 -5740.00 -5695.00 -5650.00 -5605.00 -5560.00 -5515.00 -5470.00 -5425.00 -5380.00 -5335.00 -5290.00 -5245.00 -5200.00 -5155.00 -5110.00 -5065.00 -5020.00 -4975.00 -4930.00 -4885.00 -4840.00 -4795.00 -4750.00 -4705.00 -4660.00 -4615.00 -4570.00 -4525.00 -4480.00 -4435.00 -4390.00 -4345.00 -4300.00
Data Sheet S15726EJ2V0DS
9
PD161401
Table 2-1 Pad Layout (3/4) -
Pad No. 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 SEG61 SEG62 SEG63 SEG64 SEG65 SEG66 SEG67 SEG68 SEG69 SEG70 SEG71 SEG72 SEG73 SEG74 SEG75 SEG76 SEG77 SEG78 SEG79 SEG80 SEG81 SEG82 SEG83 SEG84 SEG85 SEG86 SEG87 SEG88 SEG89 SEG90 SEG91 SEG92 SEG93 SEG94 SEG95 SEG96 SEG97 SEG98 SEG99 SEG100 SEG101 SEG102 SEG103 SEG104 SEG105 SEG106 SEG107 SEG108 SEG109 SEG110 SEG111 SEG112 SEG113 SEG114 SEG115 SEG116 SEG117 SEG118 SEG119 SEG120 SEG121 SEG122 SEG123 SEG124 SEG125 SEG126 SEG127 SEG128 SEG129 SEG130 Pad Name Pad Type A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A Pad Layout [m] X 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 Y -4255.00 -4210.00 -4165.00 -4120.00 -4075.00 -4030.00 -3985.00 -3940.00 -3895.00 -3850.00 -3805.00 -3760.00 -3715.00 -3670.00 -3625.00 -3580.00 -3535.00 -3490.00 -3445.00 -3400.00 -3355.00 -3310.00 -3265.00 -3220.00 -3175.00 -3130.00 -3085.00 -3040.00 -2995.00 -2950.00 -2905.00 -2860.00 -2815.00 -2770.00 -2725.00 -2680.00 -2635.00 -2590.00 -2545.00 -2500.00 -2455.00 -2410.00 -2365.00 -2320.00 -2275.00 -2230.00 -2185.00 -2140.00 -2095.00 -2050.00 -2005.00 -1960.00 -1915.00 -1870.00 -1825.00 -1780.00 -1735.00 -1690.00 -1645.00 -1600.00 -1555.00 -1510.00 -1465.00 -1420.00 -1375.00 -1330.00 1285.00 -1240.00 -1195.00 -1150.00 Pad No. 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 SEG131 SEG132 SEG133 SEG134 SEG135 SEG136 SEG137 SEG138 SEG139 SEG140 SEG141 SEG142 SEG143 SEG144 SEG145 SEG146 SEG147 SEG148 SEG149 SEG150 SEG151 SEG152 SEG153 SEG154 SEG155 SEG156 SEG157 SEG158 SEG159 SEG160 SEG161 SEG162 SEG163 SEG164 SEG165 SEG166 SEG167 SEG168 SEG169 SEG170 SEG171 SEG172 SEG173 SEG174 SEG175 SEG176 SEG177 SEG178 SEG179 SEG180 SEG181 SEG182 SEG183 SEG184 SEG185 SEG186 SEG187 SEG188 SEG189 SEG190 SEG191 SEG192 DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY SEG193 Pad Name Pad Type A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A Pad Layout [m] X 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 Y -1105.00 -1060.00 -1015.00 -970.00 -925.00 -880.00 -835.00 -790.00 -745.00 -700.00 -655.00 -610.00 -565.00 -520.00 -475.00 -430.00 -385.00 -340.00 -295.00 -250.00 -205.00 -160.00 -115.00 -70.00 -25.00 20.00 65.00 110.00 155.00 200.00 245.00 290.00 335.00 380.00 425.00 470.00 515.00 560.00 605.00 650.00 695.00 740.00 785.00 830.00 875.00 920.00 965.00 1010.00 1055.00 1100.00 1145.00 1190.00 1235.00 1280.00 1325.00 1370.00 1415.00 1460.00 1505.00 1550.00 1595.00 1640.00 1685.00 1730.00 1775.00 1820.00 1865.00 1910.00 1955.00 2000.00 Pad No. 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 SEG194 SEG195 SEG196 SEG197 SEG198 SEG199 SEG200 SEG201 SEG202 SEG203 SEG204 SEG205 SEG206 SEG207 SEG208 SEG209 SEG210 SEG211 SEG212 SEG213 SEG214 SEG215 SEG216 SEG217 SEG218 SEG219 SEG220 SEG221 SEG222 SEG223 SEG224 SEG225 SEG226 SEG227 SEG228 SEG229 SEG230 SEG231 SEG232 SEG233 SEG234 SEG235 SEG236 SEG237 SEG238 SEG239 SEG240 SEG241 SEG242 SEG243 SEG244 SEG245 SEG246 SEG247 SEG248 SEG249 SEG250 SEG251 SEG252 SEG253 SEG254 SEG255 SEG256 SEG257 SEG258 SEG259 SEG260 SEG261 SEG262 SEG263 Pad Name Pad Type A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A Pad Layout [m] X 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 Y 2045.00 2090.00 2135.00 2180.00 2225.00 2270.00 2315.00 2360.00 2405.00 2450.00 2495.00 2540.00 2585.00 2630.00 2675.00 2720.00 2765.00 2810.00 2855.00 2900.00 2945.00 2990.00 3035.00 3080.00 3125.00 3170.00 3215.00 3260.00 3305.00 3350.00 3395.00 3440.00 3485.00 3530.00 3575.00 3620.00 3665.00 3710.00 3755.00 3800.00 3845.00 3890.00 3935.00 3980.00 4025.00 4070.00 4115.00 4160.00 4205.00 4250.00 4295.00 4340.00 4385.00 4430.00 4475.00 4520.00 4565.00 4610.00 4655.00 4700.00 4745.00 4790.00 4835.00 4880.00 4925.00 4970.00 5015.00 5060.00 5105.00 5150.00
10
Data Sheet S15726EJ2V0DS
PD161401
Table 2-1 Pad Layout (4/4) -
Pad No. 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 SEG264 SEG265 SEG266 SEG267 SEG268 SEG269 SEG270 SEG271 SEG272 SEG273 SEG274 SEG275 SEG276 SEG277 SEG278 SEG279 SEG280 SEG281 SEG282 SEG283 SEG284 SEG285 SEG286 SEG287 SEG288 SEG289 SEG290 SEG291 SEG292 SEG293 SEG294 SEG295 SEG296 SEG297 SEG298 SEG299 SEG300 SEG301 SEG302 SEG303 DUMMY DUMMY O41 O42 O43 O44 O45 O46 O47 O48 O49 O50 O51 O52 O53 O54 O55 O56 O57 O58 O59 O60 O61 O62 O63 O64 O65 O66 O67 O68 Pad Name Pad Type A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A Pad Layout [m] X 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 950.00 825.00 780.00 735.00 690.00 645.00 600.00 555.00 510.00 465.00 420.00 375.00 330.00 285.00 240.00 195.00 150.00 105.00 60.00 15.00 -30.00 -75.00 -120.00 -165.00 -210.00 -255.00 -300.00 -345.00 -390.00 Y 5195.00 5240.00 5285.00 5330.00 5375.00 5420.00 5465.00 5510.00 5555.00 5600.00 5645.00 5690.00 5735.00 5780.00 5825.00 5870.00 5915.00 5960.00 6005.00 6050.00 6095.00 6140.00 6185.00 6230.00 6275.00 6320.00 6365.00 6410.00 6455.00 6500.00 6545.00 6590.00 6635.00 6680.00 6725.00 6770.00 6815.00 6860.00 6905.00 6950.00 7075.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 Pad No. 701 702 703 704 705 706 707 708 709 710 711 712 713 O69 O70 O71 O72 O73 O74 O75 O76 O77 O78 O79 O80 DUMMY Pad Name Pad Type A A A A A A A A A A A A B Pad Layout [m] X -435.00 -480.00 -525.00 -570.00 -615.00 -660.00 -705.00 -750.00 -795.00 -840.00 -885.00 -930.00 -1055.00 Y 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00 7773.00
Data Sheet S15726EJ2V0DS
11
PD161401
3. PIN FUNCTIONS
3.1 Power Supply Pins
Symbol VDD1 Pin Name Logic power supply Pin No. 65 to 67, 77 to 79, 89 to 91,104 to 106, 122 to 124 VDD2 VSS Booster circuit power supply Logic and driver ground pin 2 to 4, 11 to 13, 44 to 46, 56 to 61, 68 to 73, 83 to 85, 95 to 97, 113 to 115, 134 to 136, 146 to 148, 155 to 157, 167 to 169, 179 to 181, 188 to 190, 203 to 205, 209 to 211, 215 to 217, 221 to 223, 278 to 286, 293 to 295, 299 to 301 VOUT, VOUT2 Driver power supply 5 to 7, 8 to 10 - Supply power to the driver (output pins of the internal booster circuit). Connect a 1 F capacitor between GND and these pins. When the internal booster circuit is not used, the driver power can be directly input to the VOUT pin. At this time, leave VOUT2 open. VLCD, VLC1 to VLC4 C1+, C1- C2+, C2- C3+, C3- C4+, C4- C5+, C5- Driver reference power supply Booster capacitor connection pin 302 to 304, 305 to 316 43 to 14 - - Supply the reference power for driving the LCD. Connect a capacitor between GND and these pins when an internal bias is selected. These pins are used to connect capacitors for the internal booster circuit. Connect a 1 F capacitor between the corresponding (+) and (-) pins. - Ground pin for the logic and driver circuits. 62 to 64 - Supplies power to the booster circuit. I/O - Description Supplies power to the logic circuit.
12
Data Sheet S15726EJ2V0DS
PD161401
3.2 Logic Circuit Pins (1/3)
Symbol /CS1, CS2 /RD (E) Read (enable) Pin Name Chip select Pin No. 98 to 100, 101 to 103 119 to 121 Input I/O Input Description These pins are chip select signal pins. When /CS1 = L (CS2 = H), the chip is active, and data/command can be input or output and I/O manipulated. When i80 system parallel data transfer is selected (/RD), read is enabled by this signal. When this pin is L, data is output to the data bus. When M68 system parallel data transfer is selected (E), this pin inputs an enable signal that triggers data write or read. But in the PD161401, the data of the display access memory register, the complementary color blink data memory register, the specified color blink data memory register and the reverse data memory access register (R12, R41, R45, R50) cannot be read. /WR (R,/W) Write (read/write) 116 to 118 Input When i80 system parallel data transfer is selected (/WR), write is enabled by this signal. Data is written at the rising edge of this signal. When M68 system parallel data transfer is selected (R, /W), this pin determines the data transfer direction, as follows: 0: Write 1: Read IFM0, IFM1 Interface selection 86 to 88, 80 to 82 IFM1 L L H H D0 to D15 (SI) (SCL) Data bus (serial input) (serial clock) 187 to 182, 178 to 170, 166 to 158, 154 to 149, 145 to 137, 133 to 125 I/O IFM0 L H L H Serial Setting prohibited i80 series parallel M68 series parallel Interface Mode Input Selects an interface mode
This is a bi-directional data bus connected to an 8- or 16-bit standard CPU bus. When the serial interface mode is selected (IFM1, IFM0 = L, L), D7 functions as a serial data input pin (SI), and D6 serves as a serial clock input pin (SCL). At this time, D0 to D5 and D8 to D15 go into a high-impedance state. When the 8-bit data bus is selected, only D0 to D7 are used, and D8 to D15 go into a high-impedance state. Data is input starting from its higher byte, followed by the lower byte. If the chip is not selected, all D0 to D15 go into a high-impedance state.
RS
Index register/data command selection
110 to 112
Input
This pin is usually connected to the least significant bit of a standard CPU address bus to identify whether data is an index register or data/command. RS = H: Indicates that D0 to D15 are data/command. RS = L: Indicates that D0 to D15 are an index register.
Data Sheet S15726EJ2V0DS
13
PD161401
(2/3)
Symbol /DISP Reset Pin Name Pin No. 107 to 109 I/O Input Description Making /DISP low initializes the DISP flag in the control register 1 (R0) and turns OFF the display. When the serial interface is used, the write counter is also initialized. Making /DISP high enables writing. To light the display after it has been turned OFF by this pin, make /DISP high and set the DISP flag to 1. FR Frame signal 194 to 196 I/O This pin inputs or outputs a liquid crystal AC signal. M,/S = H : Output M,/S = L : Input When two or more PD161401s are used in master/slave mode, the respective FR pins must be connected to each other. FRSYNC Frame sync signal 191 to 193 I/O This pin inputs or outputs a liquid crystal AC sync signal. M,/S = H : Output M,/S = L : Input When two or more PD161401s are used in master/slave mode, the respective FRSYNC pins must be connected to each other. DOF Display blink 197 to 199 I/O This pin controls blinking of the LCD. M,/S = H : Output M,/S = L : Input When two or more PD161401s are used in master/slave mode, the respective DOF pins must be connected to each other. M,/S Master/slave 74 to 76 Input This pin selects master or slave mode. In the master mode, it outputs a timing signal necessary for driving the LCD. In the slave mode, this timing signal is input from an external source to synchronize the LCD. M,/S = L : Slave mode The status of each pin, including this pin, and the power circuit is as follows depending on the status of the M,/S pin. M,/S H L IRS VLCD adjustment 92 to 94 Input
Power Circuit
M,/S = H : Master mode
FR Output Input
FRSYNC Output Input
DOF Output Input
Enabled Disabled
This pin selects the resistor used to adjust the VLCD voltage level. IRS = H: The internal resistor is used. IRS = L: The internal resistor is not used. The VLCD voltage level is adjusted by an external voltage divider resistor connected to the VR pin. This pin is enabled only when the master operation mode is selected. If the slave mode is selected, this pin is fixed to H or L.
14
Data Sheet S15726EJ2V0DS
PD161401
(3/3)
Symbol OSCIN1 OSCIN2 OSCOUT OSCSYNC TOUT0 to TOUT15 TSTRTST, TSTVIHL TPWR0, TPWR1 Test input/output pin Test input pin 224 to 226, 227 to 229 50 to 52, 47 to 49 I/O Input Display clock output Test output Pin Name Oscillation signal pin Pin No. 206 to 208 212 to 214 218 to 220 200 to 202 230 to 277 I/O Input Input Output Output Output Description These pins are connected with a resistor inserted between OSCIN1 and OSCOUT, and between OSCIN2 and OSCOUT. When an external oscillator is used, input a clock signal to the OSCIN pin and leave the OSCOUT pin open. This pin outputs a clock for display. When using the PD161401 in the master or slave mode, refer to 5.4 Oscillator. These pins are used when the PD161401 is in the test mode. Usually, leave these pins open. These pins are used to set the PD161401 in the test mode. Usually, connect these pins to VSS. These pins are used to input/output test signals when the
PD161401 is in the test mode. Usually, leave these pins open.
3.3 Driver Pins
Symbol SEG1 to SEG303 O1 to O80 VRS Common Operational amplifier input 319 to 358, 673 to 712 53 to 55 Input These are the input pins of the operational amplifier that adjusts the LCD driving voltage. VRS is used to input the reference voltage of the amplifier for LCD voltage adjustment. VR is used to connect a feedback resistor for the operational amplifier. VR 287 to 289 The feedback resistor is connected between this pin and GND, AMPOUTM, or AMPOUTS. This pin is enabled only when the internal divider resistor for VLCD voltage adjustment is not used (IRS = L). When the internal divider resistor is used (IRS = H), this pin is not used. AMPOUTM Operational amplifier output 290 to 292 Output These pins are the output pins of the operational amplifier that adjusts the LCD driving voltage. The signals output by these pins are connected to the LCD driving voltage adjuster resistor (refer to AMPOUTS 296 to 298 5.6.3 Voltage regulator circuit) only when the internal resistor for LCD voltage adjustment is not used (IRS = L). It is recommended to connect a capacitor of 0.01 to 0.1 F to these pins to stabilize the output of the internal operational amplifier. DUMMY Dummy pin 1, 317, 318, 359, 360, 553 to 559, 671, 672, 713 - These pins are not connected to the internal circuit. Output These pins output common signals. Pin Name Segment Pin No. 361 to 670 I/O Output Description These pins output segment signals.
Data Sheet S15726EJ2V0DS
15
PD161401
4. PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS
The I/O circuit type of each pin and recommended connection of unused pins are shown in the table below.
Symbol /CS1 CS2 /RD(E) /WR(R,/W) IFM1, IFM0 D0 to D5 D6(SCL) D7(SI) D8 to D15 RS /DISP FR FRSYNC DOF M,/S IRS OSCIN1 OSCIN2 OSCOUT OSCSYNC TOUT0 to TOUT15 TSTRTST TSTVIHL TPWR Schmitt-trigger A Schmitt-trigger A - Input Input I/O Connect this pin to VSS (in normal operation mode). Connect this pin to VSS (in normal operation mode). Leave open. - - - Input Type Schmitt-trigger A Schmitt-trigger A Schmitt-trigger A Schmitt-trigger A Schmitt-trigger A Schmitt-trigger B Schmitt-trigger B Schmitt-trigger B Schmitt-trigger B Schmitt-trigger A Schmitt-trigger C Schmitt-trigger A Schmitt-trigger A Schmitt-trigger A Schmitt-trigger A Schmitt-trigger A Schmitt-trigger A Schmitt-trigger A - - - I/O Input Input Input Input Input I/O I/O I/O I/O Input Input I/O I/O I/O Input Input Input Input Output Output Output Recommended of Unused Pins Connect this pin to VSS. Connect this pin to VDD1. Connect to VDD1 (i80 system interface), or to VDD1 or VSS (serial interface). Connect to VDD1 or VSS (serial interface). Mode setting pin Leave open. - - Leave open. Register setting pin Connect to VDD1. Leave open (in master mode, M,/S = H). Leave open (in master mode, M,/S = H). Leave open (in master mode, M,/S = H). Mode setting pin Mode setting pin Connect to VDD1 or VSS. Connect to VDD1 or VSS. Leave open (when an external clock is used). Leave open. Leave open. - 1 - - - - 2 - - - - 1 1 - - - - - Note - - -
Notes 1. Connect this pin to VDD1 or VSS depending on the mode selected. 2. Input VDD1 or VSS output from the CPU to this pin depending on the mode selected.
Remark Schmitt-trigger A : Schmitt inverter Schmitt-trigger B : Schmitt NAND Schmitt-trigger C : Schmitt inverter (with delay circuit)
16
Data Sheet S15726EJ2V0DS
PD161401
5. FUNCTIONAL DESCRIPTION
5.1 CPU Interface
5.1.1 Selecting interface type The PD161401 transfers data through an 8-bit bi-directional data bus (D7 to D0), a 16-bit bi-directional data bus (D15 to D0), or a serial data input (SI) pin. Interface type can be selected by making the IFM1,IFM0 pin high or low, as shown in the following table.
IFM1 L L H H IFM0 L H L H Interface type Serial data input Setting Prohibited i80 system CPU M68 system CPU
Parallel data input or serial data input can be chosen as by setting the polarity of IFM1 terminal, as shown in the following table.
IFM1 H: Parallel input L: Serial input /CS1, CS2 /CS1, CS2 /CS1, CS2 RS RS RS /RD /RD Note1 /WR /WR Note1 D15 to D8 D15 to D8 Hi-ZNote2 D7 D7 SI D6 D6 SCL D5 to D0 D5 to D0 Hi-ZNote2
Notes 1. Fix these pins to the high or low level. 2. Hi-Z: High impedance 5.1.2 Parallel interface When the parallel interface is selected (IFM = H), an 8-bit bi-directional data bus (D7 to D0) or 16-bit bi-directional data bus (D15 to D0) can be selected by setting the BMOD flag of the control register 2 (R1) to 1 or 0. In addition, the
PD161401 can be directly connected to an i80 or M68 system by making the IFM0 pin high or low as shown in the
following table.
IFM0 H: M68 system CPU L: i80 system CPU /CS1, CS2 /CS1, CS2 /CS1, CS2 RS RS RS /RD E /RD /WR R,/W /WR BMOD 0 1 0 1 D15 to D8 D15 to D8 Hi-ZNote D15 to D8 Hi-ZNote D7 to D0 D7 to D0 D7 to D0 D7 to D0 D7 to D0
Note Hi-Z : High impedance (may be open)
Data Sheet S15726EJ2V0DS
17
PD161401
The data bus signals are identified by the combination of the RS, /RD(E), /WR (R,/W) signals as shown in the following table.
Common RS 1 1 0 0 0/1 R,/W 1 0 1 0 M68 E 1 1 1 1 /RD 0 1 0 1 Other i80 /WR 1 0 1 0 Common BMOD 0 1 0 1 0 1 0 1 Data Bus D15 to D8 Note1 Hi-Z Note2 Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z D7 to D0 Note1 OUT IN IN OUT OUT IN IN Hi-Z - Writes the control index register. Prohibited Writes the display data/register. Reads the register. Function
Remark IN : Input status (cannot be open), OUT : Output status, Hi-Z : High impedance (may be open) Notes1. In the PD161401, the data of the display access memory register, the complementary color blink data memory register, the specified color blink data memory register and the reverse data memory access register (R12, R41, R45, R50) are read-prohibited. However, if R12 is selected, the data bus signals D15 to D0 enter an output state. If another register is specified, the D15 to D8 signals become Hi-Z and the D7 to D0 signals enter an output state. 2. Only the display access memory register (R12) enters the input state. If another register is specified, the D15 to D8 signals become Hi-Z.
18
Data Sheet S15726EJ2V0DS
PD161401
5.1.3 Serial interface When the serial interface has been selected (IFM1, IFM0 = L, L), as long as the chip is in an active state (/CS1= L, CS2 = H ), serial data input (SI) and serial clock input (SCL) can be received. Serial data is read in the order of D7, then D6 to D0 at the rising edge of the serial clock input from the serial input pin. This data is converted to parallel data in synchronization with the 8th rising edge of the serial clock. Serial input data is judged as display data/command data if RS = H and an index if RS = L. The RS input is read every 8th rising edge of the serial clock after the chip becomes active and is used for data discrimination. Figure 5-1. Serial Interface Signal Chart -
CS2 = "H" /CS1 SI SCL RS D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Remarks 1. If the chip is not in an active state, the shift register and counter are reset to their initial statuses. 2. The serial clock counter is reset by initialization from the /DISP pin. 3. Data cannot be read when using serial interface mode. 4. Care must be taken when performing SCL wiring to avoid effects from terminal radiation or external noise caused by the wiring length. It is recommended to confirm operation using the actual equipment to be used. 5.1.4 Chip select The PD161401 has chip select pins (/CS1 and CS2). The CPU parallel interface or Serial interface can be used only when /CS1 = L (CS2 = H). If the chip select pins are not active, the D0 to D15 pins go into a high-impedance state, and the RS, /RD, and /WR pins do not become active. 5.1.5 Accessing display data RAM and internal registers When the CPU accesses the PD161401, the CPU only has to satisfy the requirement of the cycle time (tCYC) and can transfer data at high speeds. Usually, it is not necessary for the CPU to take wait time into consideration. When the CPU writes data to the PD161401, no dummy data is necessary. When reading data, dummy data is not necessary either. In the PD161401, the data of the display access memory register, the complementary color blink data memory register, the specified color blink data memory register and the reverse data memory access register (R12, R41, R45, R50) cannot be read. Figure 5-2 illustrates as follows. -
Data Sheet S15726EJ2V0DS
19
PD161401
Figure 5-2. Writing and Reading - Writing
/WR
DATA
N
N+1
N+2
N+3
Reading (other than display memory access register)
/WR
/RD IRn Data
DATA
IRn
IRn + 1
IRn+1 Data
IR Address Set #n
IRn Register Data Read
IR Address Set #n+1
IRn+1 Register Data Read
Caution
Display access memory register, the complementary color blink data memory register, the specified color blink data memory register and the reverse data memory access register (R12, R41, R45, R50) cannot be read.
20
Data Sheet S15726EJ2V0DS
PD161401
5.2 Display Data RAM
5.2.1 Display data RAM This RAM stores dot data for display and consists of (101 x 80) x 8 bits. Any address of this RAM can be accessed by specifying an X address and a Y address. Display data D0 to D15 transmitted from the CPU corresponds to the pixels on the LCD (refer to Table 5-1). If the -
PD161401 is used in a multi-chip configuration, restrictions on display data transfer are relaxed and display setting
can be performed relatively freely. The CPU writes data to the display RAM via I/O buffers. This write operation is performed independently of an operation to read signals for driving the LCD. Therefore, even if the display data RAM is asynchronously accessed, adverse effects such as flickering do not occur or the current LCD screen. Table 5-1. Display Data RAM -
MSB D15 D14 Dot (R) D13 D12 D11 Dot (G) Pixel 1 D10 D9 LSB D8 MSB D7 D6 Dot (R) D5 D4 D3 Dot (G) Pixel 2 D2 D1 LSB D0
Dot (B)
Dot (B)
LCD panel
Pixel 1 Pixel 1 00H
Pixel 2 Pixel 2 01H
Pixel 3 Pixel 3 02H
Pixel 4 Pixel 4 03H
Pixel 5 Pixel 5 04H
Pixel 6 Pixel 6 05H
Pixel 7 Pixel 7 06H
Pixel 8 Pixel 8 07H
5.2.2 X address circuit An X address of the display data RAM is specified by using the X address register (R4) as shown in Figure 5-5. - If the X address increment mode (INC = 0: control register 2 (R1)) is used, the specified X address is incremented or decremented by one each time display data is written. Whether the address is incremented or decremented is specified by the XDIR flag of control register 2 (R1) as shown in Table 5-2. - In the increment mode, the X address is incremented up to 64H. If more display data is written, the Y address is incremented (YDIR = 0) or decremented (YDIR = 1), and the X address returns to 00H. In the decrement mode, the X address is decremented to 00H. If more display data is written, the Y address is incremented (YDIR = 0) or decremented (YDIR = 1), and the X address returns to 64H. When the 16-bit data bus is selected (BMOD = 0), only an even address can be specified. Moreover, when the 16-bit data bus is selected, dummy data is required as shown in Figure 5-3. -
Data Sheet S15726EJ2V0DS
21
PD161401
Figure 5-3. About Dummy Data Required when the 16-bit Data Bus is Selected -
* When an ADC = 0
pixel1
101
D15
D8 D7
D0
Dummy data
SEG1
SEG303
X address 00H 01H
pixel 1
64H
pixel 101
* When an ADC = 1
SEG303
pixel1
SEG1 101
D15
D8 D7
D0
Dummy data
X address
00H 01H
pixel 1
64H
pixel 101
22
Data Sheet S15726EJ2V0DS
PD161401
5.2.3 Y address circuit A Y address of the display data RAM is specified by using the Y address register (R5) as shown in Figure 5-5. If the - Y address increment mode (INC = 1: control register 2 (R1)) is used, the specified Y address is incremented or decremented by one each time display is written. Whether the address is incremented or decremented is specified by the YDIR flag of control register 2 (R1) as shown in Table 5-2. - In the increment mode, the Y address is incremented up to 4FH. If more display data is written, the X address is incremented (XDIR = 0) or decremented (XDIR = 1), and the Y address returns to 00H. In the decrement mode, the Y address is decremented to 00H. If more display data is written, the X address is incremented (XDIR = 0) or decremented (XDIR = 1), and the Y address returns to 4FH. The relationship between the setting of INC, XDIR, and YDIR of control register 2 (R1) and the address is as follows: Table 5-2. Relationship between INC, XDIR, and YDIR, and Address -
INC 0 1 Setting The address is successively incremented or decremented in the X direction when data is accessed. The address is successively incremented or decremented in the Y direction when data is accessed Note.
Note This setting cannot be used when the 16-bit parallel interface is used.
XDIR 0 1 Setting Increments the X address (+1) when data is accessed. Decrements the X address (-1) when data is accessed.
YDIR 0 1
Setting Increments the Y address (+1) when data is accessed. Decrements the Y address (-1) when data is accessed.
Table 5-3. Combination of INC, XDIR, and YDIR, and Address Direction -
INC XDIR 0 0 0 1 1 0 1 0 1 1 YDIR 0 1 0 1 0 1 0 1 Image of Address Scanning A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4
Caution If the access direction is changed by using INC, XDIR, or YDIR, be sure to set the X address register (R4) and Y address register (R5) before accessing the display RAM.
Data Sheet S15726EJ2V0DS
23
PD161401
Y address register (R5)
D7
D6 YA6
D5 YA5
D4 YA4
D3 YA3
D2 YA2
D1 YA1
D0 YA0
YA6 to YA0
Sets a line address.
Figure 5-4. Combination of INC, XDIR, and YDIR, and Address Scanning Image -
00H A-1
X address
64H
00H
A-3 A-4
4FH
00H
X address
64H
00H
B-1
B-2
B-3
B-4
4FH
5.2.4 Column address circuit When the contents of the display data RAM are displayed, column addresses are output to the SEG output pins as shown in Figure 5-5. - The correspondence relationship between the column addresses of the display RAM and segment outputs can be reversed by the ADC flag (segment driver direction select flag) of control register 1 (R0). This reduces the restrictions on chip layout when the LCD module is assembled. Table 5-4. Relationship between Column Address of Display RAM and Segment Output -
SEG Output ADC (D1) 0 1 SEG1 000H 12EH Column address Column address SEG303 12EH 000H
24
Data Sheet S15726EJ2V0DS
Y address
Y address
A-2
PD161401
5.2.5 Common scan circuit The common scan circuit sets the sequence for the scan line of the common signal in which the display RAM is to be read. The RAM line reading direction is set as shown in Table 5-5 by the COMR flag of control register 1 (R0). - For example, if the duty ratio is 1/64, the number of scroll steps is 0, and COMR = 0, the RAM line reading direction is from 00H to 3FH. If COMR = 1, it is from 3FH to 00H. Table 5-5. Relationship between Common Scan Circuit and Scan Direction -
COMR (D0) 0 1 00H 4FH 4FH 00H
In addition, scanning of the common outputs can be assigned by using the COM scanning address setting register (R21) as shown in Table 5-6, so that the scanning can be started from any O1 to O80 output pin. Therefore, the - common wiring of the LCD panel can be optimized when any duty ratio is selected. When COMR = 0, the scan start (COM1) pin and scan end (COMa) pin are the On and O(n+a-1) pins, respectively. The value of a is 64, 72, and 80 for 1/64 duty, 1/72 duty, and 1/80 duty, respectively. When COMR = 1, the scan start (COM1) pin and scan end (COMa) pin are the O(82-a-n) and O(80-n+1) pins, respectively. - Examples of COM scan address settings for 1/64 duty, 1/72 duty, and 1/80 duty are shown in Tables 5-5, 5-7, and - - 5-8, respectively. - Table 5-6. COM Scanning Address Setting (1/64 duty) -
COMR = 0 CSA4 CSA3 CSA2 CSA1 CSA0 n the scan start (COM1) pin On 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16 O17 the scan end (COMa)Note pin O(n+a-1) Note O64 O65 O66 O67 O68 O69 O70 O71 O72 O73 O74 O75 O76 O77 O78 O79 O80 (COM1) pin O(82-a-n) Note O17 O16 O15 O14 O13 O12 O11 O10 O9 O8 O7 O6 O5 O4 O3 O2 O1 COMR = 1 the scan start the scan end (COMa)Note pin O(80-n+1) O80 O79 O78 O77 O76 O75 O74 O73 O72 O71 O70 O69 O68 O67 O66 O65 O64
Note When in 1/64 duty, a = 64.
Data Sheet S15726EJ2V0DS
25
PD161401
Table 5-7. COM Scanning Address Setting (1/72 duty) -
COMR = 0 CSA4 CSA3 CSA2 CSA1 CSA0 n the scan start the scan end (COMa)Note pin (COM1) pin O(n+a-1) Note On O1 O72 O2 O3 O4 O5 O6 O7 O8 O9 O73 O74 O75 O76 O77 O78 O79 O80 COMR = 1 the scan start (COM1) pin O(82-a-n) O9 O8 O7 O6 O5 O4 O3 O2 O1
Note
Remark

the scan end (COMa)Note pin O(80-n+1) O80 O79 O78 O77 O76 O75 O74 O73 O72 Prohibit since here
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1 0 0
0 0 1 1 0 0 1 1 0 0
0 1 0 1 0 1 0 1 0 1
1 2 3 4 5 6 7 8 9 10
Note When in 1/72 duty, a = 72 Caution The COM scan address setting register (R21) should be set so that O1 scan start pin and scan end pin O80. If any other settings are made the IC operation is not guaranteed. Table 5-8. COM Scanning Address Setting (1/80 duty) -
COMR = 0 CSA4 CSA3 CSA2 CSA1 CSA0 n the scan start the scan end (COMa)Note pin (COM1) pin O(n+a-1) Note On O1 O80 COMR = 1 the scan start (COM1) pin O(82-a-n) Note O1 the scan end (COMa)Note pin O(80-n+1) O80 Prohibit since here Remark
0 0
0 0
0 0
0 0
0 1
1 2
Note When in 1/80 duty, a = 80 Caution When this PD161401 is used in 1/80 duty, the COM scan address setting register (R21) should be set to CSA4, CSA3, CSA2, CSA1, CSA0 = 0, 0, 0, 0, 0. If any other settings are made the IC operation is not guaranteed.
26
Data Sheet S15726EJ2V0DS
PD161401
Figure 5-5. Configuration of X Address Register -
0 0 0 0 0 0 0 0 0 0 0 0 0 1 00H 01H Data D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D6 D5 D4 D3 D2 D1 D0 1 1 0 0 1 0 0 64H D7 D6 D5 D4 D3 D2 D1 D0
X address
Setting example 1/64 duty COMR = 0 n = 1(CSA4 to CSA0 = 0) Line address 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H Panel pin COM output COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20
Driver: On
O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16 O17 O18 O19 O20
3BH 3CH 3DH 3EH 3FH 40H 41H 42H 43H 44H 45H 46H 47H 48H 49H 4AH 4BH 4CH 4DH 4EH 4FH
O60 O61 O62 O63 O64
COM60 COM61 COM62 COM63 COM64
301
302
303
D1
SEG 303
SEG 302
SEG 301
SEG 300
SEG 299
SEG 298
output D1
SEG
SEG
SEG
LCD
address
Column
1
2
3
4
5
6
0
ADC
3
2
1
1
Data Sheet S15726EJ2V0DS
27
PD161401
5.2.6 Display data latch circuit The display data latch circuit temporarily stores (latches) the display data that is output from the display data RAM to the LCD driver circuit. The display scan command for forwarding or reversing data and the display ON/OFF command control the latched data and do not affect the data of the display data RAM. 5.2.7 Arbitrary address area access (window access mode (WAS)) With the PD161401, any area of the display RAM selected by the MIN.X/Y address registers (R7 and R9) and MAX.X/Y address registers (R8 and R10) can be accessed. First, select the area to be accessed by using the MIN.X/Y address registers and MAX.X/Y address registers. When WAS of control register 1 is set to 1, the window access mode is then selected. The address scanning setting by INC, XDIR, and YDIR of control register 2 (R1) is also valid in this mode, in the same manner as when data is normally written to the display RAM. In addition, data can be written from any address by specifying the X address register (R4) and Y address register (R5). Note that the display RAM must be accessed after setting the X address register (R6) and Y address register (R7) if the window access area has been set or changed by the MIN. X/Y address register (R7, R9) or MAX. X/Y address register (R8, R10). Figure 5-6. Example of Incrementing Address When INC = 0, XDIR = 0, and YDIR = 0 -
MIN. . X address Start point 00H MAX. . X address 64H
00H
MIN. . Y address
. . .
MAX. . Y address 4FH End point
Cautions 1. When using the window access mode, the relationship between the start point and end point shown in the table below must be established.
Item X address Y address Address Relation Ship 00H MIN.X address X address (R4) MAX.X address 64H 00H MIN.Y address Y address (R5) MAX.Y address 4FH
2. If invalid address data is set as the MIN./MAX.address, operation is not guaranteed. 3. Access the display RAM after setting the X address register (R6) and Y address register (R7) if the window access area has been set or changed by the MIN. X/Y address register (R7, R9) or MAX. X/Y address register (R8, R10).
28
Data Sheet S15726EJ2V0DS
PD161401
Figure 5-7. Example of Sequence in Window Access Mode -
Start
Control register 2 (WAS = 1)
Sets window access mode.
MIN. . X address register (R7) Sets start point. MIN. . Y address register (R9)
MAX. . X address register (R8) Sets end point. MAX. . Y address register (R10)
X address register (R4) Y address register (R5) Display memory access register (R12)
Data No
Writing complete? Yes End
Data Sheet S15726EJ2V0DS
29
PD161401
5.3 Screen Processing
5.3.1 Blink/reverse display circuit The PD161401 can blink or reverse a specific area of the full-dot display. Blinking is to turn ON/OFF display repeatedly at about 1 Hz (complementary color or specified color can be selected) and reversing is to reverse the grayscale data on the display. The area to be blinked is specified by using the complementary color/specified color blink start/end line address registers (R39, R40, R43, and R44), complementary color/specified color blink X address registers (R38, R42), and complementary color/specified color blink data memory registers (R41, R45). First, select a blink display start line address and end line address by using the start/end line address registers. Next, select the column to be blinked by using the blink X address register and blink data memory register. The specified color blink is blinked between the graphic data and the color data specified by the specified color setting register (R46). To select an area to be reversed, use the reverse start/end line address registers (R48, R49), reverse X address register (R47), and reverse data memory access register (R50). First, select line addresses at which reverse display is started and stopped, by using the reverse start/end line address registers. Next, select a column to be reversed, by using the reverse X address register and reverse data memory access register. The specified blink/reverse X address is incremented by one each time blink/reverse data has been input. The complementary color/specified color blink RAM and reverse RAM store the data to be blinked and reversed. Each RAM is configured of 101 bits (12 x 8 + 5 bits). To access a desired bit, specify an X address. Blink/reverse data D0 to D7 transmitted from the CPU corresponds to SEGX on the LCD, as illustrated in Figure 5-8. - If the BLD bit and INV bit of the blink/reverse setting register (R37) are set to H after an area and data have been set, blinking or reversing the data is started. Figure 5-9 shows the relationship between the start line address, end line - address, blinking/reversing data, and LCD. If the same area is specified for complementary color blinking and specified color blinking, the specified color blinking takes precedence. Table 5-9. Reversing Operation and Display -
Original Grayscale After Reversing (supplement color) R/G display data 0, 0, 0 0, 0, 1 0, 1, 0 0, 1, 1 1, 0, 0 1, 0, 1 1, 1, 0 1, 1, 1 B display data 0, 0 0, 1 1, 0 1, 1 1, 1 1, 0 0, 1 0, 0 1, 1, 1 1, 1, 0 1, 0, 1 1, 0, 0 0, 1, 1 0, 1, 0 0, 0, 1 0, 0, 0
30
Data Sheet S15726EJ2V0DS
PD161401
Figure 5-8. Correspondence between Blink/Reverse Data and Segment - When an ADC = 0
R38,R42,R47 X address
D3 D2 D1 D0
Data
0 0 0 0 0 0 0 1 00H 01H D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
1 1 0 0 0CH D7 D6 D5 D4 D3 D2 D1 D0
Note Note Note
pixel13 0C
pixel14 0D
pixel11 0A
pixel12 0B
pixel15 0E
pixel16 0F
pixel1 00
pixel2 01
pixel3 02
pixel4 03
pixel5 04
pixel6 05
pixel7 06
pixel8 07
pixel9 08
pixel10 09
pixel97 60
pixel98 61
pixel99 62
pixel100 63
pixel101 64
Column output
LCD Output
Note The value written in D2 to D0 of X address 0CH is invalid. When an ADC = 1
0 0 0 0 0 0 0 1 00H 01H Data D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
R38,R42,R47 X address
D3 D2 D1 D0
1 1 0 0 0CH D7 D6 D5 D4 D3 D2 D1 D0
pixel13 0C
pixel14 0D
pixel11 0A
pixel12 0B
pixel15 0E
pixel16 0F
pixel1 00
pixel2 01
pixel3 02
pixel4 03
pixel5 04
pixel6 05
pixel7 06
pixel8 07
pixel9 08
pixel10 09
pixel97 60
pixel98 61
pixel99 62
pixel100 63
pixel101 64
Column output
LCD Output
Note The value written in D7 to D5 of X address 00H is invalid. Figure 5-9. Blink/Reverse Display Area Setting Image -
n n+1 n+2 n+3 n+4 n+5 n+6 n+7
Blink/reverse 0 0 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 data
;; ;; ;;; ; ;;; ;;; ;;; ;;; ;;;; ; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;;;;;
Start line End line : Blink or reverse pixel
Data Sheet S15726EJ2V0DS
31
PD161401
Figure 5-10. Example of Sequence of Setting Blink/Reverse Display -
Start
Blink/reverse start line address register Blink/reverse end line address register
Blink/reverse X address register
Blink/reverse data memory
Data
NO
Writing complete ?
YES Blink/reverse setting register (R37) (BLDn, INV = H)
End
The data configuration of the range specification registers (start/end line address registers R39, R40, R43, R44, R48, and R49) of each line is in the format shown below. Each display area is set in this format. .
D7 D6 X_6 D5 X_5 D4 X_4 D3 X_3 D2 X_2 D1 X_1 D0 X_0
X_6 to X_0
Sets start/end line addresses.
Remark X_: CBS, CBE, SBS, SBE, IVS, IVE
32
Data Sheet S15726EJ2V0DS
PD161401
5.3.2 Example of setting blink area This section explains how to specify an area to be blinked, taking complementary color blinking as an example. The same setting is also applied to specified color blinking and reverse display.
(1) Example of using 1 chip at duty ratio of 1/80 T.B.D. Remark T.B.D. (To be determined.) (2) Example of using 2 chip (Master and slave) at duty ratio of 1/80 T.B.D. 5.4 Oscillator The PD161401 has a CR oscillator (with external R) for main duty/sub-duty display. This oscillator generates the display clock. This oscillator is controlled by the DTY flag of control register 2 (R1), and the configuration of its display clock can be set in accordance with the system used. The function of each circuit of the oscillator is shown below. The main duty display/sub-duty display oscillator becomes valid only when oscillation resistors (RM and RS) are connected to it. The clock for main duty display or subduty display can be selected depending on the status of the DTY flag of control register 2 (R1). Figure 5-11. Oscillator Block -
Selected by DTY OSC IN1 OSC IN2 Oscillator for main duty/sub-duty
OSC OUT OSC SYNC
To graphic driver circuit
The relationship between the frame frequency (fFRAME) in the normal display mode, oscillation frequency (fOSCINn), and set duty frame is as follows. fFRAME = fOSCINn / 16 / N
N = Duty ratio
Data Sheet S15726EJ2V0DS
33
PD161401
Table 5-10 shows the relationship between oscillation resistors RM and RS, and the display clock circuit. - Table 5-10. Relationship between Display Clock Circuit, Pins, and Resistor -
RM Connection Connected Not connected RS Connection Connected Not connected Clock for Main Duty Display Internal oscillation External clock Clock for Sub-duty Display Internal oscillation External clock Example A B
Figure 5-12. Example of Using Clock -
fM OSCIN1 fS RM RS OSCOUT Open OSCOUT OSCIN2 OSCIN2 OSCIN1
(A) OSCIN1 : For main duty OSCIN2 : For sub-duty
(B)
Figure 5-13. Example of Master/Slave Connection -
Master (M,/S = H) Slave (M,/S = L)
OSCSYNC
OSCIN1
OSCIN2
Open
OSCOUT
(A)
34
Data Sheet S15726EJ2V0DS
PD161401
5.5 Display Timing Generator The display timing generator generates timing signals for the line address circuit and display data latch circuit, from the display clock. The display data is latched to the display data latch circuit in synchronization with the display clock and output to the segment driver output pins. The display data can be read completely independently of the access to the display data RAM by the CPU. Therefore, even if the display data RAM is asynchronously accessed, no adverse effect, such as flickering, occurs on the LCD. The internal common timing, LCD AC signal (FR), and frame synchronization signal (FRSYNC) are generated by the display clock. A driver waveform in the frame AC driving mode shown in Figure 5-14 is generated for the LCD driver - circuit. When the PD161401 is used in a multi-chip configuration, the display timing signals for the slave chip (FR and FRSYNC) must be supplied from the master chip. Table 5-11. Relationship between FR, FRSYNC, and Operation Mode -
Operation Mode Master (M,/S = H) Slave (M,/S = L) FR Output Input FRSYNC Output Input
Data Sheet S15726EJ2V0DS
35
PD161401
Figure 5-14. Driver Waveform in Frame AC Driver Mode -
1 FRAME 12345678 78 79 80 1 2 3 4 5 6 7 8 78 79 80
OSCSYNC FRSYNC FR RAM DATA VLCD VLC1 VLC2 SEG1 VLC3 VLC4 VSS
VLCD VLC1 VLC2 COM1 VLC3 VLC4 VSS VLCD VLC1 VLC2 COM2 VLC3 VLC4 VSS
VLCD VLC1 VLC2 COM80 VLC3 VLC4 VSS
36
Data Sheet S15726EJ2V0DS
PD161401
5.6 Power Supply Circuit
5.6.1 Power supply circuit The power supply circuit generates the voltage necessary for driving the LCD. The power circuit consists of a booster circuit, voltage regulator circuit, and voltage follower circuit. Power system control register 1 (R52) turns ON/OFF the transformer, reference voltage generator, voltage regulator circuit (V regulator circuit), and voltage follower circuit (V/F circuit). Part of the internal power supply function and an external power supply can be used in combination. Table 5-12 shows the functions controlled by the 4-bit data of - power system control register 1 (R52). Table 5-13 shows examples of combinations of the power circuit functions. - Table 5-12. Function of Each Bit of Power System Control Register -
Item OP3 OP2 OP1 OP0 : Booster circuit control bit : Reference voltage generator control bit : Voltage regulator circuit (V regulator circuit) control bit : Voltage follower circuit (V/F circuit) control bit Status 1 ON ON ON ON 0 OFF OFF OFF OFF
Table 5-13. Examples of Combinations (Reference Values) -
Status <1> Only internal power supply is used <2> External VOUT power supply <3> Only V/F circuit is used <4> Only external power supply is used 0 1 1 0 1 0 1 1 x x x VDD2, VOUT VDD2, AMPOUT VDD2, VOUT, 0 0 0 0 x
-
OP3 1
OP2 1
OP1 1
OP0 1
Booster Reference V Regulator Circuit voltage
Circuit
V/F Circuit
External Power Input VDD2
Booster System Pins
Used Open Used Open
x
x
x
VLCD, VLC1 to VLC4
Remarks 1. The "booster system pins" are the C1 , C1 to C5 , C5 pins. 2. All the power circuits are turned OFF when the PD161401 serves as a slave (M,/S pin = L). 5.6.2 Booster circuit The power supply circuit has an internal booster circuit that increases the LCD driver voltage two- to seven-fold. Because this booster circuit uses the internal oscillator signals, either the oscillator must be operating or an external display clock must be input to operate this circuit. The booster circuit usually uses the C1+, C1- to C5+, C5- pins and VDD2 pins. Keep the wiring impedance of these pins as low as possible. The number of boosting steps for main duty display and sub-duty display is set as shown in Table 5-14 by the MBTn and SBTn flags of power system control register 4 (R55). - For the number of boosting steps and how to connect capacitors, refer to Figure 5-15. -
+
-
+
Data Sheet S15726EJ2V0DS
37
PD161401
Figure 5-15. Number of Boosting Steps and Capacitor Connection -
VOUT2 C1C2+ C2C3+ C3C4+ C4C1+ C5+ C5VOUT
x7
To boost LCD drive voltage seven-fold
x2
x2
x2
x2
VOUT2
VOUT
x6
C1C2+
C2C3+
C3C4+
C4-
C1+
C5+
C5-
To boost LCD drive voltage six-fold
x2
x2
Open
x2
VOUT2
C1C2+
C2C3+
C3C4+
C1+
C5+
VOUT
x5
C4-
C5-
To boost LCD drive voltage five-fold
x2
x2
Open
x2
VOUT2
VOUT
x4
C1C2+
C2C3+
C3C4+
C4-
C1+
C5+
C5-
To boost LCD drive voltage four-fold
x2
Open
x2
VOUT2
VOUT
x3
C1C2+
C2C3+
C3C4+
C1+
C4-
C5+
C5-
To boost LCD drive voltage three-fold
x2
Open
x2
VOUT2
VOUT
x2
C1+
C1C2+
C2C3+
C3C4+
C4C5+
C5-
To boost LCD drive voltage two-fold
Open
x2
Remark "xN" (N = 2 to 7) of the capacitors in the above figure indicates the maximum voltage applied to the capacitors. xN : VDD2 x N (V) Table 5-14. Number of Boosting Steps of Main Duty/Sub-duty Display Booster Circuit (during Normal Display) -
MBT2 SBT2 0 0 0 0 1 1 1 1 MBT1 SBT1 0 0 1 1 0 0 1 1 MBT0 SBT0 0 1 0 1 0 1 0 1 Number of Boosting steps (unit: fold) Two Three Four Five Six Seven Prohibited Prohibited
38
Data Sheet S15726EJ2V0DS
PD161401
5.6.3 Voltage regulator circuit The boosted voltage from VOUT is supplied to the voltage regulator circuit and output to the LCD drive voltage pin VLCD. Because the PD161401 has a 128-step electronic volume function and an internal VLCD adjuster resistor, a highaccuracy voltage regulator circuit can be configured by adding only a few components. VLCD regulator circuit (a) When internal resistor for adjusting VLCD is used By using the internal resistor for adjusting VLCD and the electronic control function, LCD drive voltage VLCD can be controlled and the contrast of the LCD can be adjusted by using commands. In this case, no external resistor is necessary. Where VLCD < VOUT, the value of VLCD can be calculated as follows: Example Calculating value of VLCD (where VLCD < VOUT) VLCD = (1 + Rb ) VEV Ra VLCD = (1 + Rb ) (1 - ) VREG Ra 256 Remark VEV = (1 - ) VREG 256 Figure 5-16. Example of Circuit Using Internal Resistor for Adjustment VLCD -
+
VEV (constant power supply + electronic volume)
VLCD - Rb Ra
VREG is the internal fixed power source of the IC and has three types of temperature characteristic curves. These temperature characteristic curves can be adjusted as shown in Table 5-15 depending on the setting of power system - control register 1 (R52) (TCS2 to TCS0). Table 5-15 shows VREG at TA = 25C. - Table 5-15. Adjusting Temperature Characteristic Curve -
Status Internal power supply TCS2 0 0 0 0 When external reference power supply is used 1 TCS1 0 0 1 1 x TCS0 0 1 0 1 x Temperature Gradient (unit: %/C) -0.12 -0.13 -0.15 -0.17 - VREG (TYP.) (unit: V) 1.77 1.69 1.63 1.59 -
Data Sheet S15726EJ2V0DS
39
PD161401
is the value of the electronic volume register. It can take any of 128 values in accordance with the data set to the 7bit electronic control register. The value of set by the main electronic volume register (R57) (main duty display) and sub-electronic volume register (R58) (sub-duty display) is shown in Table 5-16. - Table 5-16. Changes in Value of Depending on Setting of Electronic Volume Register -
MEV6 SEV6 0 0 0 0 1 1 1 MEV5 SEV5 0 0 0 0 1 1 1 MEV4 SEV4 0 0 0 0 1 1 1 MEV3 SEV3 0 0 0 0 1 1 1 MEV2 SEV2 0 0 0 0 1 1 1 MEV1 SEV1 0 0 1 1 0 1 1 MEV0 SEV0 0 1 0 1 1 0 1
256 126 125 124 2 1 0
Rb/Ra is a ratio of the internal resistors for adjusting VLCD. This resistance ratio can be adjusted in 128 steps, by using power control register 2 (R53) (VRRn: main duty display mode, and SVRn: sub-duty display mode). The value of the reference voltage (1 + Rb/Ra) is determined as shown in Table 5-17, depending on the setting of 4 bits of the VLCD - internal resistance ratio register. Table 5-17. Determining Reference Voltage Value by Setting of Internal Resistance Ratio Register -
Register VRR3 SVR3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 VRR2 SVR2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 VRR1 SVR1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 VRR0 SVR0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 + Rb/Ra
40
Data Sheet S15726EJ2V0DS
PD161401
(b) When external resistor is used (when internal resistor for adjusting VLCD is not used) LCD drive voltage VLCD can be controlled not only by a setting of the internal resistor for adjusting VLCD (IRS = L) but also by connecting resistors Rae, Rbe, and Rce between VSS and VR, between VR and AMPOUTM, and between VR and AMPOUTS, respectively. In this case also, LCD drive voltage VLCD and the contrast of the LCD can be adjusted by using the electronic control function and commands. In addition, the PD161401 can select two values of VLCD for normal display and partial display. These values are set by using an external divider resistor and automatically selected by the DTY flag of control register 2 (R1). Where VLCD < VOUT, the value of VLCD can be calculated by the expression in Example 1 (DTY = 0) and the expression in Example 2 (DTY = 1). Example 1. To calculate value of VLCD (DTY = 0, in main duty display mode) VLCD = (1 + Rbe ) VEV Rae VLCD = (1 + Rbe Rae ) (1 -
) VREG 256
Remark VEV = (1 -
) VREG 256
Example 2. To calculate value of VLCD (DTY = 1, in sub-duty display mode) VLCD = (1 + VLCD = (1 + Rce ) VEV Rae
Rce ) (1 - 256 Rae 256
) VREG
Remark VEV = (1 -
) VREG
Figure 5-17. Example of Circuit Using External Resistor -
+ VLCD - Main/sub-duty VLCD adjustment selector A VRS VR AMPOUTM B AMPOUTS
Rbe
Rce Rae
Main duty display mode (DTY = 0)
A
B
Sub-duty display mode (DTY = 1)
A
B
Data Sheet S15726EJ2V0DS
41
PD161401
5.6.4 Level voltage control by operational amplifier Although the PD161401 has a power-saving power supply circuit, the display quality may be degraded if it is used to drive a high-load LCD panel. The driving capability of the segment output can be controlled as shown in Table 5-18 by - LCS1 and LCS0 of power system control register 5 (R56), and the driving capability of the common outputs can be controlled as shown in Table 5-19 by LCC1 and LCC0 of the same register. By controlling the driving capability, the - display quality and power consumption may be improved. Determine the driving capability in accordance with the actual display status. If the display quality is not sufficiently improved in any driving mode, it will be necessary to supply the LCD drive voltage from an external power supply. In addition, the operational amplifier driving modes shown in Table 5-20 can be selected by the setting of HPM1 and - HPM0, so that the wait time to stabilize the supply voltage immediately after the power has been turned ON or OFF can be shortened. PSM1 specifies whether a boosting voltage of VDD2 x 2 is applied to the VLC3 or VLC4 level voltage follower of (refer to Table 5-21). If a voltage boosted two-fold is applied to the voltage follower circuit, the current consumption may be - reduced. Thoroughly confirm and evaluate the VLC3 and VLC4 levels of the LCD panel with the actual system to determine whether the two-fold LCD drive voltage is to be supplied. PSM0 can be used to set the current value of all the voltage follower circuits as shown in Table 5-22. - Table 5-18. Setting Driving Capability of Segment Outputs (LCS1, LCS0 = 0, 0) -
LCS1 0 0 1 1 LCS0 0 1 0 1 Segment Output Driving Capability (unit: fold) One Two Four Eight
Table 5-19. Setting Driving Capability of Common Outputs (LCS1, LCS0 = 0, 0) -
LCC1 0 0 1 1 LCC0 0 1 0 1 Common Output Driving Capability (unit: fold) Two Four Eight Sixteen
Table 5-20. Setting Operation Mode of Operational Amplifier -
HPM1 0 0 1 1 HPM0 0 1 0 1 Mode Setting Normal mode Power supply ON mode 1 Power supply OFF mode Power supply ON mode 2
42
Data Sheet S15726EJ2V0DS
PD161401
Table 5-21. Setting of Two-Fold Drive Voltage -
PSM1 0 1 Mode Setting Not used Used
Table 5-22. Voltage Follower Bias Current Setting -
PSM0 0 1 Bias Current Setting (unit: fold) One Two
Data Sheet S15726EJ2V0DS
43
PD161401
5.6.5 Application example of power supply circuit Figure 5-18. IRS = H, [OP3, OP2, OP1, OP0] = [1, 1, 1, 1] - Six-fold drive voltage
VDD1 VDD2 VOUT VOUT2 C1 + C1C2+ C2C3+ C3C4+ C4 C5+ C5VSS
VRS VR
Open
AMPOUTS AMPOUTM VLCD VLC1 VLC2 VLC3 VLC4
Figure 5-19. IRS = L, [OP3, OP2, OP1, OP0] = [1, 1, 1, 1] - Six-fold drive voltage
VDD1 VDD2 VOUT
VRS
Open
AMPOUTS
Rc
VR VOUT2 C1+ C1 C2+ C2C3+ C3 C4+ C4C5 + C5 VSS AMPOUTM
Rb' Ra'
VLCD VLC1 VLC2 VLC3 VLC4
44
Data Sheet S15726EJ2V0DS
PD161401
Figure 5-20. IRS = H, [OP3, OP2, OP1, OP0] = [0, 0, 0, 1] -
VDD1 VDD2 VOUT Open VOUT2 C1
+
VRS VR AMPOUTS AMPOUTM VLCD VLC1 VLC2 VLC3 VLC4 Open
C1 C2+ C2C3+ Open C3C4+ C4+ C5 C5 VSS
-
Figure 5-21. IRS = L, [OP3, OP2, OP1, OP0] = [0, 0, 0, 1] -
VRS Open VR VOUT Open VOUT2 C1+ C1 C2+ C2C3+ Open C3 C4+ C4C5 + C5 VSS
-
VDD1 VDD2
AMPOUTS AMPOUTM VLCD VLC1 VLC2 VLC3 VLC4
Data Sheet S15726EJ2V0DS
45
PD161401
Figure 5-22. IRS = L, [OP3, OP2, OP1, OP0] = [0, 0, 0, 0] -
VDD1 VDD2 VOUT Open VOUT2 C1+ C1 C2 + C2 C3 + Open C3C4+ C4 + C5 C5 VSS
VRS VR AMPOUTS AMPOUTM Open
VLCD VLC1 VLC2 VLC3 VLC4
Figure 5-23. Master/Slave Connection Example 1 -
VDD1 VDD2 M,/S C1
+
VRS VR Open AMPOUTS AMPOUTM VOUT
VRS VR AMPOUTS AMPOUTM VOUT
VDD1 VDD2 M,/S
C1 + C2 C2 + C3 C3 + C4 C4+ C5 C5 -
C1+ C1 C2+ C2 C3+ Open C3 C4+ C4 C5+ C5 -
+
Master
VOUT2
Open
VOUT2 VLCD VLC1 VLC2 VLC3 VLC4
Slave
VLCD VLC1 VLC2 VLC3 VLC4
VSS
VSS
46
Data Sheet S15726EJ2V0DS
PD161401
Figure 5-24. Master/Slave Connection Example 2 -
VDD1 VDD2 M,/S C1
+
VRS VR Open AMPOUTS AMPOUTM VOUT VOUT2 Open
VRS VR AMPOUTS AMPOUTM VOUT VOUT2
VDD1 VDD2 M,/S
C1 C2+ C2 + C3 Open C3 C4 + C4 + C5 C5
-
C1+ C1 C2+ C2 C3+ C3 + C4 C4 + C5 C5 Open
Master
VLCD VLC1 VLC2 VLC3 VLC4 VLCD VLC1 VLC2 VLC3 VLC4
Slave
VSS
VSS
Data Sheet S15726EJ2V0DS
47
PD161401
5.7 Driving LCD The PD161401 has a full-dot driver. This full-dot driver can modulate grayscale, depending on the setting of the pulse widths. In this driving mode, eight R/G output grayscales and four B output grayscales are selected from a 17stage grayscale palette, and the selected grayscales are registered to the output grayscale palette of the IC. For details, refer to Table 5-23 Example of Pulse Width Modulation Output. - 5.7.1 Full-dot pulse modulation The pulse width modulation function of the PD161401 divides the segment pulse width of the signal for normal LCD display (16), and outputs the divided pulse width in accordance with the output timing of dots at the ratio of the grayscale palette selected by a command.
Figure 5-25. Full-Dot Pulse Width Modulation -
1 Frame 12345678 VLCD VLC1 VLC2 SEG1 VLC3 VLC4 VSS 78 79 80 1 2 3 4 5 6 7 8 78 79 80
VLCD VLC1 VLC2 COM1 VLC3 VLC4 VSS
VLCD
VLC1
VLC2
Caution The width of the common output pulse is not modulated.
48
;; ;;
Expanded view of part 1 2 3
16/16 8/16 1/16
Data Sheet S15726EJ2V0DS
; ;;
PD161401
The pulse is output in the form of combined odd line/even line or even line/odd line output, as shown in Figure 5-26. - Table 5-23 shows the combination of the rising and falling edges of the pulse of each frame. - Figure 5-26. Example of Pulse Width Modulation Output of Odd/Even Line -
1 Frame
1 VLCD VLC1 VLC2 VLC3 VLC4 VSS
2
3
4
5
6
7
8
9 10 11 12
78 79 80 1
2
3
4
5
6
7
8
1
2
3
;; ;; ;;
16/16 16/16 16/16 8/16 6/16 8/16
Data Sheet S15726EJ2V0DS
49
PD161401
Table 5-23. Pulse Width Modulation Output -
Grayscale Level 0 COM 2n+1 2n+2 1 2n+1 2n+2 2 2n+1 2n+2 3 2n+1 2n+2 4 2n+1 2n+2 5 2n+1 2n+2 6 2n+1 2n+2 7 2n+1 2n+2 8 2n+1 2n+2 9 2n+1 2n+2 10 2n+1 2n+2 11 2n+1 2n+2 12 2n+1 2n+2 13 2n+1 2n+2 14 2n+1 2n+2 15 2n+1 2n+2 16 2n+1 2n+2 1 or 2 Frames SEG Odd Number 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 SEG Even Number 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 3 or 4 Frames SEG Odd Number 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 SEG Even Number 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16
Remarks 1. n: Integer of 0 to 39 2. A: Pulse rises in the middle of A line output. 3. A: Pulse rises at the beginning of A line output. 4. A: PWM pulse width (A/16)
50
Data Sheet S15726EJ2V0DS
PD161401
5.7.2 Grayscale palette The PD161401 has 17 levels of grayscale outputs. Eight R/G output grayscales and four B output grayscales can be selected for each of main duty display and sub-duty display, by using the grayscale data registers (R65 to R104), and can be output as the grayscale outputs of the IC to R/G/B. Table 5-24. Correspondence of Grayscale Levels of Grayscale Data Registers -
Grayscale Level Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9 Level 10 Level 11 Level 12 Level 13 Level 14 Level 15 Level 16 Set Value of Grayscale Data Register D4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 D3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 D2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 D1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 D0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 100% 50% OFF data Remark
Data Sheet S15726EJ2V0DS
51
PD161401
5.7.3 Setting of display size The PD161401 can set the main duty cycles in a range of 1/80, 1/72 and 1/64 duty, the sub-duty cycles in a range of 1/48, 1/40, 1/32, 1/24 and 1/16 duty. This can be done by setting MDT6 to MDT0 and SDT6 to SDT0 of the main duty setting register (R14) and sub-duty setting register (R17) as Table 5-25 and 5-26: - - Table 5-25. Setting of Main Duty (R14) -
MDT6 1 1 0 MDT5 0 0 1 MDT4 0 0 1 MDT3 1 0 1 MDT2 1 1 1 MDT1 1 1 1 MDT0 1 1 1 Duty 1/80 1/72 1/64
Table 5-26. Setting of Sub-duty (R17) -
SDT6 0 0 0 0 0 SDT5 1 1 0 0 0 SDT4 0 0 1 1 0 SDT3 1 0 1 0 1 SDT2 1 1 1 1 1 SDT1 1 1 1 1 1 SDT0 1 1 1 1 1 Duty 1/48 1/40 1/32 1/24 1/16
5.7.4 Setting of LCD N-line inversion and M-line shift During main duty display, the shift amount of the reverse position of AC driving and the reverse position of each display frame can be set by the main duty N-line inversion register (R15) and main duty M-line shift register (R16). They can also be set by the sub-duty N-line inversion register (R18) and sub-duty M-line shift register (R19) during sub-duty display. The N-line reverse cycle function can set a line to be reversed as shown in Table 5-27, depending on the setting of - MID5 to MID0 or SID5 to SID0 of the main or sub-duty N-line inversion register. The M-line shift amount of the reverse position of each display frame can be set as shown in Table 5-28, by using - MSD5 to MSD0 or SSD5 to SSD0 of the main or sub-duty M-line shift register. Table 5-27. Setting of N-line Inversion Register (R15) -
MID5 SID5 0 0 0 0 1 1 1 MID4 SID4 0 0 0 0 0 0 0 MID3 SID3 0 0 0 0 0 0 0 MID2 SID2 0 0 0 0 1 1 1 MID1 SID1 0 0 1 1 0 1 1 MID0 SID0 0 1 0 1 1 0 1 Reversed Cycle 1 2 3 4 38 39 40
52
Data Sheet S15726EJ2V0DS
PD161401
Table 5-28. Setting of M-line Shift Register -
MSD5 SSD5 0 0 0 0 1 1 1 MSD4 SSD4 0 0 0 0 0 0 0 MSD3 SSD3 0 0 0 0 0 0 1 MSD2 SSD2 0 0 0 0 1 1 0 MSD1 SSD1 0 0 1 1 1 1 0 MSD0 SSD0 0 1 0 1 0 1 0 Reversed Position Shift Amount 0 1 2 3 38 39 40
Make sure that the display size, reverse cycle, and shift amount of reverse position have the relationship indicated by the following expression: Display size (duty) reverse cycle reverse shift amount
Data Sheet S15726EJ2V0DS
53
PD161401
5.7.5 Reverse driving between frames In the PD161401, the LCD drive waveform can be reversed and output between frames by setting the FXOR flag of Driving mode select register (R64), as shown in Figure 5-27. This function is executed in combination with the reverse - cycle and reverse shift functions. Figure 5-27. Image of Reversal between Pulse Width Modulation Frames -
Reversal between frames not implemented (FXOR = 0)
Reverse cycle (R15, R18)
Frame n
Frame n+1
Frame n+2
Frame n+3
Reverse position shift amount (R16, R19)
Implementation of reversal between frames (FXOR = 1)
Reverse cycle (R15, R18)
Frame n
Frame n+1
Frame n+2
Frame n+3
Reverse position shift amount (R16, R19)
54
Data Sheet S15726EJ2V0DS
PD161401
5.8 Display Mode
5.8.1 Selecting display mode The PD161401 has two display modes: main duty display and sub-duty display. In each of these modes, any duty ratio can be selected and parts other than the display area can be scanned with a non-selected waveform. The display mode can be selected by using the DTY flag of control register 2 (R1), and parameters such as the duty ratio, bias value, and number of boosting steps are automatically selected as shown in the table below.
Display Setting Duty ratio N-line inversion M-line shift VLCD adjustment Bias value Number of boosting steps Electronic volume Grayscale data setting Main Duty Display (DTY = 0) Main duty setting register (R14) Main duty N-line inversion register (R15) Main duty M-line shift register (R16) Power system control register 2 (R53) VRR3 to VRR0 Power system control register 3 (R54) BIS2 to BIS0 Power system control register 4 (R55) MBT2 to MBT0 Main electronic volume register (R57) Main R grayscale data registers (R65 to R72) Main G grayscale data registers (R73 to R80) Main B grayscale data registers (R81 to R84) Sub-duty Display (DTY = 1) Sub-duty setting register (R17) Sub-duty N-line inversion register (R18) Sub-duty M-line shift register (R19) Power system control register 2 (R53) SVR3 to SVR0 Power system control register 3 (R54) SBIS2 to SBIS0 Power system control register 4 (R55) SBT2 to SBT0 Sub-electronic volume register (R58) Sub R grayscale data registers (R85 to R92) Sub G grayscale data registers (R93 to R100) Sub B grayscale data registers (R101 to R104)
When the mode is changed from the main duty display mode to the sub-duty display mode or vice versa, the display screen may be temporarily disturbed, depending on the setting of each duty mode, if electric charge remains in the smoothing capacitor connected between the LCD drive voltage pins (VLCD, VLC1 to VLC4) and VSS. It is recommended that the following power sequence be observed to avoid any trouble that may occur when the display mode is changed.
Data Sheet S15726EJ2V0DS
55
PD161401
5 (1) Main duty display mode to sub-duty display mode Operation status
Main duty display mode
Control register 1 DISP = 0, HALT = 0
R0
Display OFF. Internal operation starts.
Power system control register 5 (HPM1 = 1, HPM0 = 0)
R56
Change the operation mode of the operational amplifier to "power OFF mode".
Control register 2 DTY = 1
R1
Sub-duty display mode setting Note1 Wait time 1 Wait for at least 50 ms. Note2 Change the operation mode of the operational amplifier to "power ON mode". Wait time 2 Wait for at least 150 ms. Note2
Power system control register 5 (HPM1 = 0, HPM0 = 1)
R56
Power system control register 5 (HPM1 = 0, HPM0 = 0)
R56
The operation mode of the operational amplifier: "normal mode".
Control register 1 (DISP = 1, HALT = 0)
R0
Display ON. Internal operation starts.
Setting completed Notes 1. A scroll function cannot be used in sub-duty display mode. In the state where the scroll function is used by main duty display mode when it changes to sub-duty, a scroll function is disregarded. Then, when it changes to main duty display mode again, a scroll function returns to an effective state (state before changing to sub-duty). 2. The wait times 1, 2 vary depending on the characteristics of the LCD panel and the capacitance of the boosting or smoothing capacitor. It is recommended to determine these values after thorough evaluation with the actual system.
56
Data Sheet S15726EJ2V0DS
PD161401
5 (2) Sub-duty display mode to main duty display mode Operation status
Sub-duty display mode Note1
Control register 1 DISP = 0, HALT = 0
R0
Display OFF. Internal operation starts.
Power system control register 5 (HPM1 = 0, HPM0 = 1)
R56
Change the operation mode of the operational amplifier to "power ON mode".
Control register 2 DTY = 0
R1
Main duty display mode setting Wait time Wait for at least 160 ms. Note2 The operation mode of the operational amplifier: "normal mode".
Power system control register 5 (HPM1 = 0, HPM0 = 0)
R56
Control register 1 (DISP = 1, HALT = 0)
R0
Display ON. Internal operation starts.
Setting completed Notes 1. A scroll function cannot be used in sub-duty display mode. In the state where the scroll function is used by main duty display mode when it changes to sub-duty, a scroll function is disregarded. Then, when it changes to main duty display mode again, a scroll function returns to an effective state (state before changing to sub-duty). 2. The wait time varies depending on the characteristics of the LCD panel and the capacitance of the boosting or smoothing capacitor. It is recommended to determine this value after thorough evaluation with the actual system.
Data Sheet S15726EJ2V0DS
57
PD161401
5.8.2 Screen scrolling The PD161401 has a screen scroll function. This function is enabled during main duty display. The width of the area to be fixed is specified by the scroll fixed area width register (R27) and the number of scroll steps is set by the scroll step number register (R31). By these settings, other parts of screen can be scrolled with part of the screen fixed. To specify the position of the area to be fixed, set the FIXAHL flag of the scroll fixed area position register (R23) as shown in Table 5-29. Specify the fixed area position on the upper part of the LCD panel in master mode and on the bottom - part of the panel in slave mode. Table 5-29. Scroll Fixed Area Width Register (R27) -
FIXAW1 0 0 1 1 FIXAW0 0 1 0 1 Fixed area width 0 16 24 32
Table 5-30. Scroll Step Count Register (R31) -
MST6 0 0 0 0 1 1 1 MST5 0 0 0 0 0 0 0 MST4 0 0 0 0 0 0 1 MST3 0 0 0 0 1 1 0 MST2 0 0 0 0 1 1 0 MST1 0 0 1 1 1 1 0 MST0 0 1 0 1 0 1 0 Number of Scroll Steps 0 1 2 3 78 79 Other settings prohibited
Note that the relationship between the number of scroll steps and the width of the scroll fixed area needs to be set so that the following condition is set. Number of scroll steps 79 - Width of scroll fixed area
Caution If values other than the above is set, the operation is not guaranteed. Table 5-31. Scroll Fixed Area Position Register (R23) -
FIXAHL 0 1 LCD Display Position Bottom Upper
58
Data Sheet S15726EJ2V0DS
PD161401
5.8.3 Scroll setting examples (1) Setting example 1 Duty: 1/64 duty RAM read direction: normal (R0:COMR = 0) Scroll fixed area width: 16 lines (R27: FIXAW1,0 = 0,1) (a) Scroll fixed position: upper (R23: FIXAHL = 1) Y address (b) Scroll fixed position: bottom (R23: FIXAHL = 0) Y address
5
00H 0FH Fixed area
COM1 COM16
00H
Display RAM Display RAM COM49 3FH 4FH COM64 30H 3FH 4FH
Fixed area
The relationships between the numbers of scroll steps and RAM Y address scan order in cases of (a) and (b) are as follows. (a) Number of scroll steps: 0 (R31: MSTn = 00H) Number of scroll steps: 1 (R31: MSTn = 01H) Number of scroll steps: 10 (R31: MSTn = 0AH) (b) Number of scroll steps: 0 (R31: MSTn = 00H) Number of scroll steps: 1 (R31: MSTn = 01H) Number of scroll steps: 10 (R31: MSTn = 0AH) RAM Y address: 00H 2FH, 30H 3FH RAM Y address: 00H 2FH, 40H, 30H 3FH RAM Y address: 0AH 2FH, 40H 49H, 30H 3FH RAM Y address: 00H 0FH, 10H 3FH RAM Y address: 00H 0FH, 11H 40H RAM Y address: 00H 0FH, 1AH 49H
Data Sheet S15726EJ2V0DS
59
PD161401
5 (2) Setting example 2 Duty: 1/64 duty RAM read direction: reverse (R0: COMR = 1) Scroll fixed area width: 16 lines (R27: FIXAW1,0 = 0,1) (a) Scroll fixed position: upper (R23: FIXAHL = 1) Y address (b) Scroll fixed position: bottom (R23: FIXAHL = 0) Y address
00H 0FH Fixed area
COM64 COM49
00H
Display RAM Display RAM COM16 3FH 4FH COM1 30H 3FH 4Fh
Fixed area
The relationships between the numbers of scroll steps and RAM Y address scan order in cases of (a) and (b) are as follows. (a) Number of scroll steps: 0 (R31: MSTn = 00H) Number of scroll steps: 1 (R31: MSTn = 01H) Number of scroll steps: 10 (R31: MSTn = 0AH) (b) Number of scroll steps: 0 (R31: MSTn = 00H) Number of scroll steps: 1 (R31: MSTn = 01H) Number of scroll steps: 10 (R31: MSTn = 0AH) RAM Y address: 3Fh 30H, 2FH 00H RAM Y address: 3Fh 30H, 40h, 2FH 01H RAM Y address: 3Fh 30hH, 49H 40H, 2FH 0AH RAM Y address: 3FH 10h, 0FH 00H RAM Y address: 40H 11h, 0FH 00H RAM Y address: 49H 1Ah, 0FH 00H
60
Data Sheet S15726EJ2V0DS
PD161401
5.9 Reset When the reset command is input, the IC is initialized to the default status shown in the table below. Note that initialization by using the /DISP pin should be used only to prevent malfunctioning due to noise. Table 5-32. Default Values of Registers (1/2) -
Register Control register 1 Control register 2 X address register Y address register MIN.X address register MAX.X address register MIN.Y address register MIN.Y address register Display memory access register Main duty setting register Main duty N-line inversion register Main duty M-line shift register Sub-duty setting register Sub-duty N-line inversion register Sub-duty M-line shift register COM scanning address setting register Sub-duty start address register Scroll fixed area position register Scroll fixed area width register Scroll steps number register Blinking/reverse setting register Complementary color blink X address register Complementary color blink start line address register Complementary color blink end line address register Complementary color blink data memory register Specified color blink X address register Specified color blink start line address register Specified color blink end line address register Specified color blink data memory register Specified color setting register Reverse X address register Reverse start line address register R0 R1 R4 R5 R7 R8 R9 R10 R12 R14 R15 R16 R17 R18 R19 R21 R22 R23 R27 R31 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 Reset Command x x x /DISP (DISP, TRON flag only) x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
Remark O: Default value is input. X: Default value is not input.
Cautions 1. When initialization is made using the /DISP pin, the contents of memory are not guaranteed. In this case, use the initialized RAM. When initialization is made via the reset command, the contents of memory are retained. 2. If the device is initialized by the /DISP pin while the serial interface is being used, the serial clock counter is initialized. 3. Always input the reset command as the first command after power application.
Data Sheet S15726EJ2V0DS
61
PD161401
Table 5-32. Default Values of Registers (2/2) -
Register Reverse end line address register Reversed data memory access register Power system control register 1 Power system control register 2 Power system control register 3 Power system control register 4 Power system control register 5 Main electronic volume register Sub-electronic volume register RAM test mode setting register Driving mode select register Main R grayscale data registers 1 to 8 Main G grayscale data registers 1 to 8 Main B grayscale data registers 1 to 4 Sub R grayscale data registers 1 to 8 Sub G grayscale data registers 1 to 8 Sub B grayscale data registers 1 to 8 R49 R50 R52 R53 R54 R55 R56 R57 R58 R61 R64 R65 to R72 R73 to R80 R81 to R84 R85 to R92 R93 to R100 R101 to R104 Reset Command x /DISP x x x x x x x x x x x x x x x x x
Remark O: Default value is input. X: Default value is not input.
Cautions 1. When initialization is made using the /DISP pin, the contents of memory are not guaranteed. In this case, use the initialized RAM. When initialization is made via the reset command, the contents of memory are retained. 2. If the device is initialized by the /DISP pin while the serial interface is being used, the serial clock counter is initialized. 3. Always input the reset command as the first command after power application.
62
Data Sheet S15726EJ2V0DS
PD161401
6. COMMANDS
The PD161401 identifies data bus signals by a combination of the RS, /RD (E), and /WR (R,/W) signals. It interprets and executes commands only in accordance with the internal timing, without being dependent upon the external clock. Therefore, the processing speed is extremely high and, usually, no busy check is necessary. An i80 system CPU interface inputs a low pulse to the /RD pin when it reads data from the PD161401 to issue a command. It inputs a low pulse to the /WR pin when it writes data to the PD161401. Data can be read from an M68 system CPU interface if a high-pulse signal is input to the R,/W pin, and written if a low-pulse signal is input to the R,/W pin. A command is executed if a high-pulse signal is input to the E pin in this status. Therefore, in the explanation of the commands and display commands in 6.1 Control Register 1 (R0) and the sections that follow, the M68 system CPU interface uses H, instead of /RD (E), when reading status or display data. This is how it differs from the i80 system CPU interface. The commands of the PD161401 are explained below, taking an i80 system CPU interface as an example. When the serial interface is used, sequentially input data to the PD161401, starting from D7. The data bus length to input commands is as follows: * Commands other than those that manipulate the display memory access register (R12) are input in byte units, regardless of the value of BMOD (control register 2 (R1), bus length setting). * The commands that manipulate the display memory access register (R12) are input in 1-byte units when BMOD = 1, or in 2-byte units when BMOD = 0.
A. Commands other than those that manipulate display memory access register (R12) BMOD = 1 (8-bit data bus)
Pin DATA D7 D7 D6 D6 D5 D5 D4 D4 D3 D3 D2 D2 D1 D1 D0 D0
BMOD = 0 (16-bit data bus)
Pin DATA D15
Note
D14
Note
D13
Note
D12
Note
D11
Note
D10
Note
D9
Note
D8
Note
D7 D7
D6 D6
D5 D5
D4 D4
D3 D3
D2 D2
D1 D1
D0 D0
Note 0 or 1
B. Display memory access register (R12) BMOD = 1 (8-bit data bus)
Pin DATA D7 D7 D6 D6 D5 D5 D4 D4 D3 D3 D2 D2 D1 D1 D0 D0
BMOD = 0 (16-bit data bus)
Pin DATA D15 D15 D14 D14 D13 D13 D12 D12 D11 D11 D10 D10 D9 D9 D8 D8 D7 D7 D6 D6 D5 D5 D4 D4 D3 D3 D2 D2 D1 D1 D0 D0
Data Sheet S15726EJ2V0DS
63
PD161401
6.1 Control Register 1 (R0) This command specifies the general operation mode of the PD161401.
RS E /RD R,/W /WR 1 1 0 TRON WAS COMF DISP STBY HALT ADC COMR D7 D6 D5 D4 D3 D2 D1 D0
TRON WAS COMF
0: Normal mode (all values written to the test register are ignored) 1: Test register valid mode (values written to the test register are valid) 0: Normal data write mode 1: Window access mode (Refer to 5.2.7 Arbitrary address area access (window access mode (WAS)).) 0: Normal display operation 1: All output from common pins is OFF (all the common pins output a non-selected waveform. At this time, the segment pins output OFF data (level 0)).
DISP STBY HALT
0: Display OFF (All the LCD output pins output a VSS level, and the oscillator and DC/DC converter operate.) 1: Display ON 0: Normal operation 1: Internal operation and oscillation stop. Display OFF 0: Internal operation starts. 1: Internal operation stops (all the LCD output pins output a VSS level, the oscillator operates, and the DC/DC converter stops, and the reference voltage generator operates).
ADC COMR
Column addresses correspond to SEG outputs that are used to display the display data RAM (refer to Table 6-1). - Selects the direction in which the lines of the graphic RAM are read (refer to Table 6-2). -
Table 6-1. Relationship between Column Address of Display RAM and Segment Output -
SEG Output ADC (D1) 0 1 SEG1 000H 12EH
***
SEG303 12EH 000H
Column address Column address
Table 6-2. Relationship between Common Scan Circuit and Scan Direction -
COMR (D0) 0 1 00H 4FH 4FH 00H
Default (default value of reset command)
D7 0 D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
64
Data Sheet S15726EJ2V0DS
PD161401
6.2 Control Register 2 (R1) This command specifies the general operation mode of the PD161401.
RS E /RD 1 1 R,/W /WR 0 FDM BMOD DTY INC XDIR YDIR D7 D6 D5 D4 D3 D2 D1 D0
FDM
Sets all screen display modes. 0: Normal operation 1: All screen display (Turns ON all screens [outputs grayscale level 16 to all screens].)
BMOD
Selects data length when parallel data is input. 0: 16-bit data bus 1: 8-bit data bus
DTY INC Note XDIR Note
0: Main duty display mode 1: Sub-duty display mode 0: Increments/decrements X address each time it is accessed. 1: Increments/decrements Y address each time it is accessed. Specifies the direction in which the X address is to be accessed. 0: Increment (+1) 1: Decrement (-1)
YDIR
Note
Specifies the direction in which the Y address is to be accessed. 0: Increment (+1) 1: Decrement (-1)
Note If the access direction is changed by INC, XDIR, or YDIR, be sure to set the X address register (R4) and Y address register (R5) before accessing the display RAM. Table 6-3. Relationship between Functions of PD161401 and Display Mode -
Display Setting Duty N-line inversion M-line shift VLCD adjustment Bias value Number of boosting steps Electronic volume Grayscale data setting Main Duty Display (DTY = 0) Main duty setting register (R14) Main duty N-line inversion register (R15) Main duty M-line shift register (R16) Power system control register 2 (R53) VRR3 to VRR0 Power system control register 3 (R54) BIS2 to BIS0 Power system control register 4 (R55) MBT2 to MBT0 Main electronic volume register (R57) Main R grayscale data register (R65 to R72) Main G grayscale data register (R73 to R80) Main B grayscale data register (R81 to R84) Sub-duty Display (DTY = 1) Sub-duty setting register (R17) Sub-duty N-line inversion register (R18) Sub-duty M-line shift register (R19) Power system control register 2 (R53) SVR3 to SVR0 Power system control register 3 (R54) SBIS to SBIS0 Power system control register 4 (R55) SBT2 to SBT0 Sub-electronic volume register (R58) Sub R grayscale data register (R85 to R92) Sub G grayscale data register (R93 to R100) Sub B grayscale data register (R101 to R104)
Default (default value of reset command)
D7 0 D6
Note
D5 0
D4
Note
D3 0
D2 0
D1 0
D0 0
Note 0 or 1
Data Sheet S15726EJ2V0DS
65
PD161401
6.3 Reset Command Register (R3) When this command is input, the registers of the PD161401 (R0 to R104) are set to the default values.
RS 1 D7 0 D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 1
Caution At power application, be sure to input the reset command as the first command.
6.4 X Address Register (R4) The X address register specifies the X address of the display RAM the CPU accesses. This address is automatically incremented or decremented each time the display RAM has been accessed (INC = 0).
RS 1 D7 D6 XA6 D5 XA5 D4 XA4 D3 XA3 D2 XA2 D1 XA1 D0 XA0
Caution If the access direction is changed by control register 2 (R1: INC, XDIR, YDIR) or window access area is changed or set by MIN.X address register (R7, R9) and MAX.X address register (R8, R10), be sure to set the X address register (R4) and Y address register (R5) before accessing the display RAM.
Default value (default value of reset command)
D7 Note D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
6.5 Y Address Register (R5) The Y address register specifies the Y address of the display RAM the CPU accesses. This address is automatically incremented or decremented each time the display RAM is accessed (INC = 1).
RS 1 D7 D6 YA6 D5 YA5 D4 YA4 D3 YA3 D2 YA2 D1 YA1 D0 YA0
YA6 to YA0
Sets line address
Caution
If the access direction is changed by control register 2 (R1: INC, XDIR, YDIR), be sure to set the X address register (R4) and Y address register (R5) before accessing the display RAM.
Default value (default value of reset command)
D7 Note D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
66
Data Sheet S15726EJ2V0DS
PD161401
6.6 MIN.*X Address Register (R7) This register specifies the X address of the start point of the display RAM the CPU accesses when the window access mode is used.
RS 1 D7 D6 XMN6 D5 XMN5 D4 XMN4 D3 XMN3 D2 XMN2 D1 XMN1 D0 XMN0
Default value (default value of reset command)
D7 Note D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
6.7 MAX.*X Address Register (R8) This register specifies the X address of the end point of the display RAM the CPU accesses when the window access mode is used.
RS 1
D7
D6 XMX6
D5 XMX5
D4 XMX4
D3 XMX3
D2 XMX2
D1 XMX1
D0 XMX0
Default value (default value of reset command)
D7 Note D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
6.8 MIN.*Y Address Register (R9) This register specifies the Y address of the start point of the display RAM the CPU accesses when the window access mode is used.
RS 1
D7
D6 YMN6
D5 YMN5
D4 YMN4
D3 YMN3
D2 YMN2
D1 YMN1
D0 YMN0
Default value (default value of reset command)
D7 Note D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
Data Sheet S15726EJ2V0DS
67
PD161401
6.9 MAX.*Y Address Register (R10) This register specifies the Y address of the end point of the display RAM the CPU accesses when the window access mode is used.
RS 1
D7
D6 YMX6
D5 YMX5
D4 YMX4
D3 YMX3
D2 YMX2
D1 YMX1
D0 YMX0
Default value (default value of reset command)
D7 Note D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
6.10 Display Memory Access Register (R12) The display memory access register is used to access the display RAM. When data is written to this register, it is directly written to the display RAM. In the PD161401, the data of the display access memory register (R12) cannot be read.
BMOD = 1 (8-bit data bus)
RS 1 D7 D7 D6 D6 D5 D5 D4 D4 D3 D3 D2 D2 D1 D1 D0 D0
BMOD = 0 (16-bit data bus)
RS 1 D15 D15 D14 D14 D13 D13 D12 D12 D11 D11 D10 D10 D9 D9 D8 D8
D7 D7
D6 D6
D5 D5
D4 D4
D3 D3
D2 D2
D1 D1
D0 D0
Default value (default value of reset command)
BMOD = 1 (8-bit data bus)
D7 Note D6 Note D5 Note D4 Note D3 Note D2 Note D1 Note D0 Note
Note 0 or 1
BMOD = 0 (16-bit data bus)
D15 Note D14 Note D13 Note D12 Note D11 Note D10 Note D9 Note D8 Note
D7 Note
D6 Note
D5 Note
D4 Note
D3 Note
D2 Note
D1 Note
D0 Note
Note 0 or 1
68
Data Sheet S15726EJ2V0DS
PD161401
6.11 Main Duty Setting Register (R14) This register can set the display duty ratio in a range of 1/80, 1/72 and 1/64 duty as shown in Table 6-5 in the main - duty display mode. Before changing the contents of this register, be sure to stop the internal operation by using the HALT command (control register 1 (R0)).
RS 1
D7
D6 MDT6
D5 MDT5
D4 MDT4
D3 MDT3
D2 MDT2
D1 MDT1
D0 MDT0
Table 6-5. Main Duty Setting Register (R14) -
MDT6 1 1 0 MDT5 0 0 1 MDT4 0 0 1 MDT3 1 0 1 MDT2 1 1 1 MDT1 1 1 1 MDT0 1 1 1 Duty 1/80 1/72 1/64
Default value (default value of reset command)
D7 Note D6 1 D5 0 D4 0 D3 1 D2 1 D1 1 D0 1
Note 0 or 1
6.12 Main Duty N-line Inversion Register (R15) This register can set the line position of AC driving in the main duty display mode as shown in Table 6-6. -
RS 1 D7 D6 D5 MID5 D4 MID4 D3 MID3 D2 MID2 D1 MID1 D0 MID0
Table 6-6. Setting of Main Duty N-line Inversion Register (R15) -
MID5 0 0 0 MID4 0 0 0 MID3 0 0 0 MID2 0 0 0 MID1 0 0 1 MID0 0 1 0 Line to be reversed 1 2 3
1 1 1
0 0 0
0 0 0
1 1 1
0 1 1
1 0 1
38 39 40
Default value (default value of reset command)
D7 Note D6 Note D5 1 D4 0 D3 0 D2 1 D1 1 D0 1
Note 0 or 1
Data Sheet S15726EJ2V0DS
69
PD161401
6.13 Main Duty M-line Shift Register (R16) This register shifts the reverse position of each frame in the main duty display mode by the shift amount shown in Table 6-7. -
RS 1 D7 D6 D5 MSD5 D4 MSD4 D3 MSD3 D2 MSD2 D1 MSD1 D0 MSD0
Table 6-7. Main Duty M-line Shift Register (R16) -
Shift amount of position MSD5 0 0 0 0 MSD4 0 0 0 0 MSD3 0 0 0 0 MSD2 0 0 0 0 MSD1 0 0 1 1 MSD0 to be reversed 0 1 0 1 0 1 2 3
1 1 1
0 0 0
0 0 1
1 1 0
1 1 0
0 1 0
38 39 40
Make sure that the relationship between the display size, reverse cycle, and reverse position is established as follows. Display size (Duty) reverse cycle reverse shift amount
Default value (default value of reset command)
D7 Note D6 Note D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or1
70
Data Sheet S15726EJ2V0DS
PD161401
6.14 Sub-duty Setting Register (R17) This register can set the display duty ratio in a range of 1/48, 1/40, 1/32, 1/24 and 1/16 as shown in Table 6-8 in the - sub-duty display mode by setting SDT6 to SDT0.
RS 1
D7
D6 SDT6
D5 SDT5
D4 SDT4
D3 SDT3
D2 SDT2
D1 SDT1
D0 SDT0
Table 6-8. Main Duty Setting Register (R17) -
SDT6 0 0 0 0 0 SDT5 1 1 0 0 0 SDT4 0 0 1 1 0 SDT3 1 0 1 0 1 SDT2 1 1 1 1 1 SDT1 1 1 1 1 1 SDT0 1 1 1 1 1 Duty 1/48 1/40 1/32 1/24 1/16
Default value (default value of reset command)
D7 Note D6 0 D5 1 D4 0 D3 1 D2 1 D1 1 D0 1
Note 0 or 1
Data Sheet S15726EJ2V0DS
71
PD161401
6.15 Sub-duty N-line Inversion Register (R18) This register can set the line position of driving in the sub-duty display mode as shown in Table 6-9. -
RS 1 D7 D6 D5 SID5 D4 SID4 D3 SID3 D2 SID2 D1 SID1 D0 SID0
Table 6-9. Sub-duty N-line Inversion Register (R18) -
SID5 0 0 0 0 SID4 0 0 0 0 SID3 0 0 0 0 SID2 0 0 0 0 SID1 0 0 1 1 SID0 0 1 0 1 Line to be reversed 1 2 3 4
1 1 1
0 0 0
0 0 0
1 1 1
0 1 1
1 0 1
38 39 40
Caution Please protect the following relations.
Sub-duty display size (duty) sub-duty reversed line
If this relation is not protected, the operation is not guaranteed. However, when the above-mentioned relation is not protected, inside PD161401, processing which makes reversed line equal to display size is carried out. In addition, the value of a register is not rewritten automatically.
Default value (default value of reset command)
D7 Note D6 Note D5 1 D4 0 D3 0 D2 1 D1 1 D0 1
Note 0 or 1
72
Data Sheet S15726EJ2V0DS
PD161401
6.16 Sub-duty M-line Shift Register (R19) This register shifts the reverse position of each frame in the sub-duty display mode by the shift amount shown in Table 6-10. -
RS 1 D7 D6 D5 SSD5 D4 SSD4 D3 SSD3 D2 SSD2 D1 SSD1 D0 SSD0
Table 6-10. Sub-duty M-line Shift Register (R19) -
SSD5 0 0 0 0 1 1 1 SSD4 0 0 0 0 0 0 0 SSD3 0 0 0 0 0 0 1 SSD2 0 0 0 0 1 1 0 SSD1 0 0 1 1 1 1 0 SSD0 0 1 0 1 0 1 0 Shift amount of position to be reversed 0 1 2 3 38 39 40
Make sure that the relationship between the display size, reverse cycle, and reverse position is established as follows. Display size (duty) reverse cycle reverse shift amount
Default value (default value of reset command)
D7 Note D6 Note D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
Data Sheet S15726EJ2V0DS
73
PD161401
6.17 COM Scanning Address Setting Register (R21) This command specifies that scanning of the common outputs can be started from any of the On (n = 1 to 80) output pins. Set the CSA4 to CSA0 bits as shown in Table 6-11 (1/2). The scan start pin can be specified by the value n - obtained from this table and the selected duty shown in Table 6-11 (2/2). The common wiring on the LCD panel can be - optimized according to the selected duty. Tables 6-12, 6-13, and 6-14 indicate examples of the COM scan address settings for 1/64 duty, 1/72 duty, and 1/80 - - - duty.
RS 1 D7 D6 D5 D4 CSA4 D3 CSA3 D2 CSA2 D1 CSA1 D0 CSA0
Table 6-11. COM Scanning Address Setting Register (1/2) -
CSA4 0 0 0 0 0 1 1 CSA3 0 0 0 1 1 0 0 CSA2 0 0 0 1 1 0 0 CSA1 0 0 1 1 1 0 0 CSA0 0 1 0 0 1 0 1 n 1 2 3 15 16 17 Other settings prohibited
Table 6-11. COM Scanning Address Setting Register (2/2) -
COMR = 0 Scanning start (COM1) pin On Scanning end (COMa)
Note
COMR = 1 Scanning start (COM1) pin O(82-a-n) pin Scanning end (COMa) Note pin O(80-n+1) Note
O(n+a-1)
Note
Note a = 64: 1/64 duty a = 72: 1/72 duty a = 80: 1/80 duty
Caution Set the COM scan address setting register so that the scan start pin and scan end pin satisfy the equation below. If a value that exceeds this condition is set, the PD161401 operation is not guaranteed. O1 Scan start pin and scan end pin O80
74
Data Sheet S15726EJ2V0DS
PD161401
Table 6-12. Example of COM Scanning Address Setting (1/64 duty) -
COMR = 0
Scanning start Scanning end (COMa)
Note
COMR = 1
Scanning start (COM1) pin Scanning end (COMa)
Note
CSA4
CSA3
CSA2
CSA1
CSA0
n
(COM1) pin
pin
pin
On 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16 O17
O(n+a-1) Note O64 O65 O66 O67 O68 O69 O70 O71 O72 O73 O74 O75 O76 O77 O78 O79 O80
O(82-a-n)
O(80-n+1) Note
O17 O16 O15 O14 O13 O12 O11 O10 O9 O8 O7 O6 O5 O4 O3 O2 O1
O80 O79 O78 O77 O76 O75 O74 O73 O72 O71 O70 O69 O68 O67 O66 O65 O64
Note a = 64 at 1/64 duty
Data Sheet S15726EJ2V0DS
75
PD161401
Table 6-13. Example of COM Scanning Address Setting (1/72 duty) -
COMR = 0 Scanning start Scanning end CSA4 CSA3 CSA2 CSA1 CSA0 n (COM1) pin On 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1 2 3 4 5 6 7 8 9 10 O1 O2 O3 O4 O5 O6 O7 O8 O9

COMR = 1 Scanning start (COM1) pin O(82-a-n) O9 O8 O7 O6 O5 O4 O3 O2 O1

Remark
Note
Scanning end (COMa) pin
(COMa) Note pin O(n+a-1) Note O72 O73 O74 O75 O76 O77 O78 O79 O80
O(80-n+1) Note
O80 O79 O78 O77 O76 O75 O74 O73 O72
Other settings prohibited
Note a = 72 at 1/72 duty Caution Set the COM scan address setting register (R21) so that O1 scan start pin and scan end pin O80. If a value that exceeds this condition is set, the PD161401 operation is not guaranteed Table 6-14. Example of COM Scanning Address Setting (1/80 duty) -
COMR = 0 Scanning CSA4 CSA3 CSA2 CSA1 CSA0 n start (COM1) pin On 0 0 0 0 0 0 0 0 0 1 1 2 O1 O(n+a-1) Note O80 O(82-a-n) O1

COMR = 1 Scanning start (COM1) pin
Remark
Scanning end (COMa) Note pin
Scanning end (COMa) Note pin O(80-n+1) Note O80
Other settings prohibited
Note a = 80 at 1/80 duty Caution When the PD161401 is used in 1/80 duty, set the COM scan address setting register (R21) to CSA4, CSA3, CSA2, CSA1, CSA0 = 0, 0, 0, 0, 0. If any other settings are made, the PD161401 operation is not guaranteed.
Default value (default value of reset command)
D7 Note D6 Note D5 Note D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
76
Data Sheet S15726EJ2V0DS
PD161401
6.18 Sub-duty Start Address Register (R22) The sub-duty start address register specifies the start address of the display RAM the CPU accesses to use the subduty display mode. The sub-duty display area starts from this start line address and consists of the number of lines specified by the sub-duty setting register (R17).
RS 1 D7 D6 SSA6 D5 SSA5 D4 SSA4 D3 SSA3 D2 SSA2 D1 SSA1 D0 SSA0
Table 6-15. Sub-duty Start Address Register -
SSA6 0 0 0 0 1 1 1 SSA5 0 0 0 0 0 0 0 SSA4 0 0 0 0 0 0 0 SSA3 0 0 0 0 1 1 1 SSA2 0 0 0 0 1 1 1 SSA1 0 0 1 1 0 1 1 SSA0 0 1 0 1 1 0 1 Common COM1 COM2 COM3 COM4 COM78 COM79 COM80
Make sure that SSA (R22) and SDT (R17) have in the following relationship. SSAn + SDTn MDT 4FH
Default value (default value of reset command)
D7 Note D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
Data Sheet S15726EJ2V0DS
77
PD161401
6.19 Scroll Fixed Area Position Register (R23) This command specifies the display position of the scroll fixed area to upper or bottom of side in LCD panel.
RS 1
D7
D6
D5
D4
D3
D2
D1
D0 FIXAHL
Table 6-16. Scroll Fixed Position Register (R23) -
FIXAHL 0 1 Display Position bottom upper
Default value (default value of reset command)
D7 Note D6 Note D5 Note D4 Note D3 Note D2 Note D1 Note D0 1
Note 0 or 1
6.20 Scroll Fixed Area Width Register (R27) This register selects the width of the area to be fixed from 0, 16, 24, and 32 lines.
RS 1 D7 D6 D5 D4 D3 D2 D1 FIXAW1 D0 FIXAW0
Table 4-16. Scroll Fixed Area Width Register (R27) -
FIXAW1 0 0 1 1 FIXAW0 0 1 0 1 Fixed Area Width 0 16 24 32
Even if the screen display size is changed by the duty setting register (R14 and R17), FIXAW1 and FIXAW0 are not overwritten. Default value (default value of reset command)
D7 Note D6 Note D5 Note D4 Note D3 Note D2 Note D1 0 D0 0
Note 0 or 1
78
Data Sheet S15726EJ2V0DS
PD161401
6.21 Scroll Step Number Register (R31) This register sets the number of scroll steps when the scroll function is used.
RS 1 D7 D6 MST6 D5 MST5 D4 MST4 D3 MST3 D2 MST2 D1 MST1 D0 MST0
Table 6-18. Scroll Step Number Register (R31) -
MST6 0 0 0 0 1 1 1 1 MST5 0 0 0 0 0 0 0 0 MST4 0 0 0 0 0 0 0 1 MST3 0 0 0 0 1 1 1 0 MST2 0 0 0 0 1 1 1 0 MST1 0 0 1 1 0 1 1 0 MST0 0 1 0 1 1 0 1 0 Number of Scroll Steps 0 1 2 3 77 78 79
Other settings prohibited
Caution The relationship between the number of scroll steps and scroll fixed area width should be as follows. Number of scroll steps 79 - Scroll fixed area width
If values exceeding the above condition are set, the operation is not guaranteed.
Default value (default value of reset command)
D7 Note D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
Data Sheet S15726EJ2V0DS
79
PD161401
6.22 Blink/Reverse Setting Register (R37) This register controls blink display or reverse display. Blink display is controlled by the BLD1 and BLD0 flags of this register, and reverse display is controlled by the INV flag, as shown in the table below. The condition of each of the blink and reverse display areas is individually set by R38 to R50.
RS 1 D7 D6 D5 D4 D3 INV D2 D1 BLD1 D0 BLD0
Table 6-19. Blink/Reverse Display Control -
INV 0 1 Display Reverse display OFF Reverse display ON
BLD1 0 1
Display Specified-color blink display OFF Specified-color blink display ON
BLD0 0 1
Display Complementary-color blink display OFF Complementary-color blink display ON
Default value (default value of reset command)
D7 Note D6 Note D5 Note D4 Note D3 0 D2 Note D1 0 D0 0
Note 0 or 1
6.23 Complementary Color Blink X Address Register (R38) The complementary color blink X address register specifies the X address of the complementary color blink RAM the CPU accesses. This address is automatically incremented each time the complementary color blink data RAM is accessed.
RS 1 D7 D6 D5 D4 D3 CBX3 D2 CBX2 D1 CBX1 D0 CBX0
Default value (default value of reset command)
D7 Note D6 Note D5 Note D4 Note D3 0 D2 0 D1 0 D0 0
Note 0 or 1
80
Data Sheet S15726EJ2V0DS
PD161401
6.24 Complementary Color Blink Start Line Address Register (R39) The complementary color blink start line address register specifies the start line address the CPU accesses to use complementary color blinking display. The range of the complementary color blink lines is determined by this register and the complementary color blink end line address register.
RS 1
D7
D6 CBS6
D5 CBS5
D4 CBS4
D3 CBS3
D2 CBS2
D1 CBS1
D0 CBS0
Setting
CBS6 to CBS0
Sets a start line address
Caution Make sure that CBS [6:0] 4FH. If 4FH is exceeded, operation is not guaranteed. Default value (default value of reset command)
D7 Note D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
6.25 Complementary Color Blink End Line Address Register (R40) The complementary color blink end line address register specifies the end line address the CPU accesses to use complementary color blink display. The range of the complementary color blink lines is determined by this register and the complementary color blink start line address register.
RS 1 D7 D6 CBE6 D5 CBE5 D4 CBE4 D3 CBE3 D2 CBE2 D1 CBE1 D0 CBE0 Setting
CBE6 to CBE0
Sets an end line address
Caution Make sure that CBE [6:0] 4FH. If 4FH is exceeded, operation is not guaranteed. Default value (default value of reset command)
D7 Note D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
Data Sheet S15726EJ2V0DS
81
PD161401
6.26 Complementary Color Blink Data Memory Register (R41) The complementary color blink data memory register is used to access the complementary color blink data RAM. If this register is accessed for write, data is directly written to the complementary color blink data RAM.
RS 1 D7 D7 D6 D6 D5 D5 D4 D4 D3 D3 D2 D2 D1 D1 D0 D0
Data 0 1 Normal
Status
Complementary color blinking
Default value (default value of reset command, all data)
D7 Note D6 Note D5 Note D4 Note D3 Note D2 Note D1 Note D0 Note
Note 0 or 1
6.27 Specified Color Blink X Address Register (R42) The specified color blink X address register specifies the X address of the specified color blinking RAM the CPU accesses. This address is automatically incremented each time the specified color blink data RAM is accessed.
RS 1 D7 D6 D5 D4 D3 SBX3 D2 SBX2 D1 SBX1 D0 SBX0
Default value (default value of reset command)
D7 Note D6 Note D5 Note D4 Note D3 0 D2 0 D1 0 D0 0
Note 0 or 1
82
Data Sheet S15726EJ2V0DS
PD161401
6.28 Specified Color Blink Start Line Address Register (R43) The specified color blink start line address register specifies the start line address the CPU accesses to use specified color blinking display. The range of the specified color blink lines is determined by this register and the specified color blinking end line address register.
RS 1 D7 D6 SBS6 D5 SBS5 D4 SBS4 D3 SBS3 D2 SBS2 D1 SBS1 D0 SBS0 Setting
SBS6 to SBS0
Sets a start line address.
Caution Make sure that SBS [6:0] 4FH. If 4FH is exceeded, operation is not guaranteed. Default value (default value of reset command)
D7 Note D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
6.29 Specified Color Blink End Line Address Register (R44) The specified color blink end line address register specifies the end line address the CPU accesses to use specified color blink display. The range of the specified color blink lines is determined by this register and the specified color blink start line address register.
RS 1 D7 D6 SBE6 D5 SBE5 D4 SBE4 D3 SBE3 D2 SBE2 D1 SBE1 D0 SBE0 Setting
SBE6 to SBE0
Sets an end line address.
Caution Make sure that SBE [6:0] 4FH. If 4FH is exceeded, operation is not guaranteed. Default value (default value of reset command)
D7 0 D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
Data Sheet S15726EJ2V0DS
83
PD161401
6.30 Specified Color Blink Data Memory Register (R45) The specified color blink data memory register is used to access the specified color blink data RAM. If this register is accessed for write, data is directly written to the specified color blink data RAM.
RS 1 D7 D7 D6 D6 D5 D5 D4 D4 D3 D3 D2 D2 D1 D1 D0 D0
Data 0 1 Normal
Status
Specified color blinking
Default value (default value of reset command, all data)
D7 Note D6 Note D5 Note D4 Note D3 Note D2 Note D1 Note D0 Note
Note 0 or 1
6.31 Specified Color Setting Register (R46) This register sets specified color data when the specified color blink function is used. The data between this data and the display RAM data blinks in a specified color.
RS 1 D7 D7 D6 D6 R D5 D5 D4 D4 D3 D3 G D2 D2 D1 D1 B D0 D0 In 256-color mode Remark
Default value (default value of reset command, all data)
D7 0 D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
6.32 Reverse X Address Register (R47) The reverse X address register specifies the X address of the reverse data RAM the CPU accesses. This address is incremented each time the reverse RAM has been accessed.
RS 1 D7 D6 D5 D4 D3 IVX3 D2 IVX2 D1 IVX1 D0 IVX0
Default value (default value of reset command)
D7 Note D6 Note D5 Note D4 Note D3 0 D2 0 D1 0 D0 0
Note 0 or 1
84
Data Sheet S15726EJ2V0DS
PD161401
6.33 Reverse Start Line Address Register (R48) The reverse start line address register specifies start line address of the display RAM the CPU accesses for reverse display. The range of the reverse lines is determined by this register and the reverse end line address register.
RS 1 D7 D6 IVS6 D5 IVS5 D4 IVS4 D3 IVS3 D2 IVS2 D1 IVS1 D0 IVS0
IVS6 to IVS0
Sets a start line address.
Caution Make sure that IVS [6:0] 4FH. If 4FH is exceeded, operation is not guaranteed. Default value (default value of reset command)
D7 Note D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
6.34 Reverse End Line Address Register (R49) The reverse end line address register specifies the end line address of the display RAM the CPU accesses for reverse display. The range of the reverse lines is determined by this register and the reverse start line address register.
RS 1 D7 D6 IVE6 D5 IVE5 D4 IVE4 D3 IVE3 D2 IVE2 D1 IVE1 D0 IVE0 Setting
IVE6 to IVE0
Sets an end line address.
Caution Make sure that IVE [6:0] 4FH. If 4FH is exceeded, operation is not guaranteed. Default value (default value of reset command)
D7 Note D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
Data Sheet S15726EJ2V0DS
85
PD161401
6.35 Reverse Data Memory Access Register (R50) The reverse data memory access register is used to access the reverse data RAM. When this register is accessed for write, data is directly written to the reverse data RAM.
RS 1 D7 D7 D6 D6 D5 D5 D4 D4 D3 D3 D2 D2 D1 D1 D0 D0 Setting
Data 0 1 Normal Reverse
Status
Default value (default value of reset command, all data)
D7 Note D6 Note D5 Note D4 Note D3 Note D2 Note D1 Note D0 Note
Note 0 or 1
86
Data Sheet S15726EJ2V0DS
PD161401
6.36 Power System Control Register 1 (R52) This command sets the power system mode of the PD161401.
E RS 1 /RD 1 R,/W /WR 0 D7 D6 TCS2 D5 TCS1 D4 TCS0 D3 OP3 D2 OP2 D1 OP1 D0 OP0
TCS2 to TCS0 OP3 to OP0
These bits set the value that selects the temperature curve of the VREG voltage to a value shown in Table 6-20. - These bits turn ON/OFF the booster circuit, reference voltage generator, control the voltage regulator circuit (V regulator circuit) and voltage follower circuit (V/F circuit). The functions controlled by these four-power control set command controlled by these 4 bits are listed in Table 6-21. -
Table 6-20. VREG Voltage Temperature Curve Value -
TCS2 0 0 0 0 1 TCS1 0 0 1 1 X TCS0 0 1 0 1 X When external reference power supply is used Internal power supply Status Temperature Gradient (unit: %/C) -0.12 -0.13 -0.15 -0.17 - VREG (TYP.) (unit: V) 1.77 1.69 1.63 1.59 -
Table 6-21. Details of Control by Each Bit of Power System Control Register -
Item OP3 OP2 OP1 OP0 : Booster circuit control bit : Reference voltage generator control bit : Voltage regulator circuit (V regulator circuit) control bit : Voltage follower circuit (V/F circuit) control bit Status 1 ON ON ON ON 0 OFF OFF OFF OFF
Default value (default value of reset command)
D7 Note D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
Data Sheet S15726EJ2V0DS
87
PD161401
6.37 Power System Control Register 2 (R53) This command sets the power system mode of the PD161401.
E RS 1 /RD 1 R,/W /WR 0 D7 VRR3 D6 VRR2 D5 VRR1 D4 VRR0 D3 SVR3 D2 SVR2 D1 SVR1 D0 SVR0 Setting
VRR3 to VRR0
When the main duty display mode is used, the resistance ratio can be changed in 16 steps by the VLCD internal resistance ratio adjustment command. Four bits of the VLCD internal resistance ratio adjustment register set the reference value of (1 + Rb/Ra) to the value shown in Table 6-22. -
SVR3 to SVR0
When the sub-duty display mode is used, the resistance ratio can be changed in 16 steps by the VLCD internal resistance ratio adjustment command. Four bits of the VLCD internal resistance ratio adjustment register set the reference value of (1 + Rb/Ra) to the value shown in Table 6-22. -
Table 6-22. VLCD Internal Resistance Ratio Adjustment Register
Register VRR3 SVR3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 VRR2 SVR2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 VRR1 SVR1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 VRR0 SVR0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 + Rb/Ra
Default value (default value of reset command)
D7 0 D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
88
Data Sheet S15726EJ2V0DS
PD161401
6.38 Power System Control Register 3 (R54) This command sets the bias value for main duty display and sub-duty display by the PD161401.
RS 1 D7 D6 BIS2 D5 BIS1 D4 BIS0 D3 D2 SBIS2 D1 SBIS1 D0 SBIS0 Setting
BIS2 to BIS0 Note
These flags select the bias ratio in the main duty display mode as follows: BIS2 0 0 0 0 1 1 1 1 BIS1 0 0 1 1 0 0 1 1 BIS0 0 1 0 1 0 1 0 1 1/9 bias 1/8 bias 1/7 bias 1/6 bias 1/5 bias Prohibited Prohibited Prohibited Bias Ratio
SBIS2 to SBIS0
Note
These flags select the bias ratio in the sub-duty display mode as follows: SBIS2 0 0 0 0 1 1 1 1 SBIS1 0 0 1 1 0 0 1 1 SBIS0 0 1 0 1 0 1 0 1 1/9 bias 1/8 bias 1/7 bias 1/6 bias 1/5 bias Prohibited Prohibited Prohibited Bias Ratio
Note Before changing these flags, execute the HALT command.
Default value (default value of reset command)
D7 Note D6 0 D5 0 D4 0 D3 Note D2 0 D1 0 D0 0
Note 0 or 1
Data Sheet S15726EJ2V0DS
89
PD161401
6.39 Power System Control Register 4 (R55) This command sets the number of boosting steps for main duty display and sub-duty display of PD161401 as shown in Table 6-23. -
RS 1 D7 D6 MBT2 D5 MBT1 D4 MBT0 D3 D2 SBT2 D1 SBT1 D0 SBT0 Setting
Table 6-23. Number of Boosting Steps for Main/Sub-duty Display of Booster Circuit -
MBT2 SBT2 0 0 0 0 1 1 1 1 MBT1 SBT1 0 0 1 1 0 0 1 1 MBT0 SBT0 0 1 0 1 0 1 0 1 Number of Boosting Steps (unit: fold) Two Three Four Five Six Seven Prohibited Prohibited
Default value (default value of reset command)
D7 Note D6 0 D5 0 D4 0 D3 Note D2 0 D1 0 D0 0
Note 0 or 1
90
Data Sheet S15726EJ2V0DS
PD161401
6.40 Power System Control Register 5 (R56) This command sets the status of the voltage follower circuit of the PD161401 that drives the LCD, as follows:
RS 1 D7 LCS1 D6 LCS0 D5 LCC1 D4 LCC0 D3 HPM1 D2 HPM0 D1 PSM1 D0 PSM0 Setting
Table 6-24. Setting of Segment Output Driving Capability (LCS1, LCS0 = 0, 0) -
LCS1 0 0 1 1 LCS0 0 1 0 1 Segment Output Driving Capability (unit: fold) One Two Four Eight
Table 6-25. Setting of Common Output Driving Capability (LCS1, LCS0 = 0, 0) -
LCC1 0 0 1 1 LCC0 0 1 0 1 Common Output Driving Capability (unit: fold) Two Four Eight Sixteen
Table 6-26. Setting of Operational Amplifier Operation Mode -
HPM1 0 0 1 1 HPM0 0 1 0 1 Mode Setting Normal mode Power ON mode1 Power OFF mode Power ON mode2
Table 6-27. Setting of Two-fold Supply Voltage (VLC3, VLC4 Level Voltage Follower Power Supply) -
PSM1 0 1 Mode Setting Not used used
Table 6-28. Setting of Voltage Follower Bias Current -
PSM0 0 1 Bias Current Setting (unit: fold) One Two
Default value (default value of reset command)
D7 0 D6 0 D5 0 D4 1 D3 0 D2 0 D1 1 D0 0
Data Sheet S15726EJ2V0DS
91
PD161401
6.41 Main Electronic Volume Register (R57) The main electronic volume register specifies the electronic volume value for adjusting the contrast in the main duty display mode, in 128 steps.
RS 1 D7 D6 MEV6 D5 MEV5 D4 MEV4 D3 MEV3 D2 MEV2 D1 MEV1 D0 MEV0 Setting
Default value (default value of reset command)
D7 Note D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
6.42 Sub-electronic Volume Register (R58) The sub-electronic volume register specifies an electronic volume value for adjusting the contrast in the sub-duty display mode, in 128 steps.
RS 1 D7 D6 SEV6 D5 SEV5 D4 SEV4 D3 SEV3 D2 SEV2 D1 SEV1 D0 SEV0 Setting
Default value (default value of reset command)
D7 Note D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
92
Data Sheet S15726EJ2V0DS
PD161401
6.43 RAM Test Mode Setting Register (R61) The RAM test mode setting register directly writes the data of each display status to the display RAM as shown in Table 6-29. -
RS 1 D7 D6 D5 D4 D3 D2 RTS2 D1 RTS1 D0 RTS0
Table 6-29. RAM Test Mode -
RTS2 0 0 0 0 1 1 1 1 RTS1 0 0 1 1 0 0 1 1 RTS0 0 1 0 1 0 1 0 1 Normal operation all [00000000] / pixel display all [11111111] / pixel display Checker pattern display of [00000000] / [11111111] Vertical grayscale bar display Horizontal grayscale bar display Each color grayscale display 256-color display Write Data
Default value (default value of reset command)
D7 Note D6 Note D5 Note D4 Note D3 Note D2 0 D1 0 D0 0
Note 0 or 1
6.44 Driving Mode Select Register (R64)
The FXOR flag of the drive mode select register controls the reversal of the LCD drive waveform between frames as shown in Table 6-30. Note that the reverse function is executed between frames regardless of the FXOR flag during - sub-duty display.
RS 1 D7 D6 D5 D4 D3 FXOR D2 D1 D0
Table 6-30. Driving Mode Select Register (R64) -
FXOR 0 1 Reversing Between Frames OFF ON
Default value (default value of reset command)
D7 Note D6 Note D5 Note D4 Note D3 0 D2 Note D1 Note D0 Note
Note 0 or 1
Data Sheet S15726EJ2V0DS
93
PD161401
6.45 Main R Grayscale Data Registers (R65 to R72) The main R grayscale data registers specify the grayscale level of the R output in the main duty display mode. By using these registers, grayscale display can be optimized.
Rx R65 R66 R67 R68 R69 R70 R71 R72 Data 0, 0, 0 0, 0, 1 0, 1, 0 0, 1, 1 1, 0, 0 1, 0, 1 1, 1, 0 1, 1, 1 RS 1 1 1 1 1 1 1 1 D7 D6 D5 D4 MRG4 MRG4 MRG4 MRG4 MRG4 MRG4 MRG4 MRG4 D3 MRG3 MRG3 MRG3 MRG3 MRG3 MRG3 MRG3 MRG3 D2 MRG2 MRG2 MRG2 MRG2 MRG2 MRG2 MRG2 MRG2 D1 MRG1 MRG1 MRG1 MRG1 MRG1 MRG1 MRG1 MRG1 D0 MRG0 MRG0 MRG0 MRG0 MRG0 MRG0 MRG0 MRG0 Setting
D7 x x x x x x
D6 x x x x x x
D5 x x x x x x
D4 0 0 0 0
D3 0 0 0 0
D2 0 0 0 0
D1 0 0 1 1
D0 0 1 0 1
Grayscale Level Level 0 Level 1 Level 2 Level 3
0 1
1 0
1 0
1 0
1 0
Level 15 Level 16
Default value (default value of reset command, common to all grayscale data registers)
D7 Note D6 Note D5 Note D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
94
Data Sheet S15726EJ2V0DS
PD161401
6.46 Main G Grayscale Data Registers (R73 to R80) The main G grayscale data registers specify the grayscale level of the G output in the main duty display mode. By using these registers, grayscale display can be optimized.
Rx R73 R74 R75 R76 R77 R78 R79 R80 Data 0, 0, 0 0, 0, 1 0, 1, 0 0, 1, 1 1, 0, 0 1, 0, 1 1, 1, 0 1, 1, 1 RS 1 1 1 1 1 1 1 1 D7 D6 D5 D4 MGG4 MGG4 MGG4 MGG4 MGG4 MGG4 MGG4 MGG4 D3 MGG3 MGG3 MGG3 MGG3 MGG3 MGG3 MGG3 MGG3 D2 MGG2 MGG2 MGG2 MGG2 MGG2 MGG2 MGG2 MGG2 D1 MGG1 MGG1 MGG1 MGG1 MGG1 MGG1 MGG1 MGG1 D0 MGG0 MGG0 MGG0 MGG0 MGG0 MGG0 MGG0 MGG0 Setting
D7 x x x x x x
D6 x x x x x x
D5 x x x x x x
D4 0 0 0 0
D3 0 0 0 0
D2 0 0 0 0
D1 0 0 1 1
D0 0 1 0 1
Grayscale Level Level 0 Level 1 Level 2 Level 3
0 1
1 0
1 0
1 0
1 0
Level 15 Level 16
Default value (default value of reset command, common to all grayscale data registers)
D7 Note D6 Note D5 Note D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
Data Sheet S15726EJ2V0DS
95
PD161401
6.47 Main B Grayscale Data Registers (R81 to R84) The main B grayscale data registers specify the grayscale level of the B output in the main duty display mode. By using these registers, grayscale display can be optimized.
Rx R81 R82 R83 R84 Data 0, 0 0, 1 1, 0 1, 1 RS 1 1 1 1 D7 D6 D5 D4 MBG4 MBG4 MBG4 MBG4 D3 MBG3 MBG3 MBG3 MBG3 D2 MBG2 MBG2 MBG2 MBG2 D1 MBG1 MBG1 MBG1 MBG1 D0 MBG0 MBG0 MBG0 MBG0 Setting
D7 x x x x x x
D6 x x x x x x
D5 x x x x x x
D4 0 0 0 0
D3 0 0 0 0
D2 0 0 0 0
D1 0 0 1 1
D0 0 1 0 1
Grayscale Level Level 0 Level 1 Level 2 Level 3
0 1
1 0
1 0
1 0
1 0
Level 15 Level 16
Default value (default value of reset command, common to all grayscale data registers)
D7 Note D6 Note D5 Note D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
96
Data Sheet S15726EJ2V0DS
PD161401
6.48 Sub R Grayscale Data Registers (R85 to R92) The sub R grayscale data registers specify the grayscale level of the R output in the sub-duty display mode. By using these registers, grayscale display can be optimized.
Rx R85 R86 R87 R88 R89 R90 R91 R92 Data 0, 0, 0 0, 0, 1 0, 1, 0 0, 1, 1 1, 0, 0 1, 0, 1 1, 1, 0 1, 1, 1 RS 1 1 1 1 1 1 1 1 D7 D6 D5 D4 SRG4 SRG4 SRG4 SRG4 SRG4 SRG4 SRG4 SRG4 D3 SRG3 SRG3 SRG3 SRG3 SRG3 SRG3 SRG3 SRG3 D2 SRG2 SRG2 SRG2 SRG2 SRG2 SRG2 SRG2 SRG2 D1 SRG1 SRG1 SRG1 SRG1 SRG1 SRG1 SRG1 SRG1 D0 SRG0 SRG0 SRG0 SRG0 SRG0 SRG0 SRG0 SRG0 Setting
D7 x x x x x x
D6 x x x x x x
D5 x x x x x x
D4 0 0 0 0 0 1
D3 0 0 0 0 1 0
D2 0 0 0 0 1 0
D1 0 0 1 1 1 0
D0 0 1 0 1 1 0
Grayscale Level Level 0 Level 1 Level 2 Level 3 Level 15 Level 16
Default value (default value of reset command, common to all grayscale data registers)
D7 Note D6 Note D5 Note D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
Data Sheet S15726EJ2V0DS
97
PD161401
6.49 Sub G Grayscale Data Registers (R93 to R100) The sub G grayscale data registers specify the grayscale level of the G output in the sub-duty display mode. By using these registers, grayscale display can be optimized.
Rx R93 R94 R95 R96 R97 R98 R99 R100 Data 0, 0, 0 0, 0, 1 0, 1, 0 0, 1, 1 1, 0, 0 1, 0, 1 1, 1, 0 1, 1, 1 RS 1 1 1 1 1 1 1 1 D7 D6 D5 D4 SGG4 SGG4 SGG4 SGG4 SGG4 SGG4 SGG4 SGG4 D3 SGG3 SGG3 SGG3 SGG3 SGG3 SGG3 SGG3 SGG3 D2 SGG2 SGG2 SGG2 SGG2 SGG2 SGG2 SGG2 SGG2 D1 SGG1 SGG1 SGG1 SGG1 SGG1 SGG1 SGG1 SGG1 D0 SGG0 SGG0 SGG0 SGG0 SGG0 SGG0 SGG0 SGG0 Setting
D7 x x x x x x
D6 x x x x x x
D5 x x x x x x
D4 0 0 0 0 0 1
D3 0 0 0 0 1 0
D2 0 0 0 0 1 0
D1 0 0 1 1 1 0
D0 0 1 0 1 1 0
Grayscale Level Level 0 Level 1 Level 2 Level 3 Level 15 Level 16
Default value (default value of reset command, common to all grayscale data registers)
D7 Note D6 Note D5 Note D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
98
Data Sheet S15726EJ2V0DS
PD161401
6.50 Sub B Grayscale Data Registers (R101 to R104) The sub B grayscale data registers specify the grayscale level of the B output in the sub-duty display mode. By using these registers, grayscale display can be optimized.
Rx R101 R102 R103 R104 Data 0, 0 0, 1 1, 0 1, 1 RS 1 1 1 1 D7 D6 D5 D4 SBG4 SBG4 SBG4 SBG4 D3 SBG3 SBG3 SBG3 SBG3 D2 SBG2 SBG2 SBG2 SBG2 D1 SBG1 SBG1 SBG1 SBG1 D0 SBG0 SBG0 SBG0 SBG0 Setting
D7 x x x x x x
D6 x x x x x x
D5 x x x x x x
D4 0 0 0 0
D3 0 0 0 0
D2 0 0 0 0
D1 0 0 1 1
D0 0 1 0 1
Grayscale Level Level 0 Level 1 Level 2 Level 3
0 1
1 0
1 0
1 0
1 0
Level 15 Level 16
Default value (default value of reset command, common to all grayscale data registers)
D7 Note D6 Note D5 Note D4 0 D3 0 D2 0 D1 0 D0 0
Note 0 or 1
Data Sheet S15726EJ2V0DS
99
PD161401
7. PD161401 REGISTER LIST
(1/2)
CS 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 IR R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 Scroll Step Number Register R/W MST6 MST5 MST4 MST3 MST2 MST1 MST0 Scroll Fixed Area Width Register R/W FIXAW1 FIXAW0 COM Scanning Address Setting Register Sub-duty Start Address Register Scroll Fixed Area Position Register R/W R/W R/W SSA6 SSA5 CSA4 CSA3 CSA2 SSA4 SSA3 SSA2 CSA1 SSA1 CSA0 SSA0 FIXAHL Main Duty Setting Register Main Duty N-line Inversion Register Main Duty M-line Shift Register Sub-duty Setting Register Sub-duty N-line Inversion Register Sub-duty M-line Shift Register R/W R/W R/W R/W R/W R/W MDT6 MDT5 MDT4 MDT3 MDT2 MID5 MID4 MID3 MID2 MSD5 MSD4 MSD3 MSD2 SDT6 SDT5 SDT4 SDT3 SDT2 SID5 SID4 SID3 SID2 SSD5 SSD4 SSD3 SSD2 MDT1 MID1 MSD1 SDT1 SID1 SSD1 MDT0 MID0 MSD0 SDT0 SID0 SSD0 Display Memory Access Register W D15 D7 D14 D6 D13 D5 D15 D4 D11 D3 D10 D2 D9 D1 D8 D0 MIN.*X Address Register MAX. X Address Register MIN. Y Address Register MAX. Y Address Register R/W R/W R/W R/W XMN6 XMN5 XMN4 XMN3 XMN2 XMX6 XMX5 XMX4 XMX3 XMX2 YMN6 YMN5 YMN4 YMN3 YMN2 YMX6 YMX5 YMX4 YMX3 YMX2 XMN1 XMX1 YMN1 YMX1 XMN0 XMX0 YMN0 YMX0 Reset Command X Address Register Y Address Register W R/W R/W XA6 YA6 XA5 YA5 XA4 YA4 XA3 YA3 XA2 YA2 XA1 YA1 RES XA0 YA0 Index Register Control Register 1 Control Register 2 W R/W R/W TRON FDM IR6 IR5 BMOD IR4 IR3 DTY IR2 INC IR1 ADC XDIR IR0 COMR YDIR WAS COMF DISP STBY HALT RS 6 Index Register 54321 0 Register Name R/W 7 6 5 Data Bit 4 3 2 1 0
Blink/Reverse Setting Register Complementary Color Blink X Address Register
Complementary Color Blink Start Line Address Register Complementary Color Blink End Line Address Register
Complementary Color Blink Data Memory Register
Specified Color Blinking X Address Register
Specified Color Blink Start Line Address Register Specified Color Blink End Line Address Register
Specified Color Blink Data Memory Register Specified Color Setting Register Reverse X Address Register Reverse Start Line Address Register Reverse End Line Address Register Reverse Data Memory Access Register Power System Control Register 1 Power System Control Register 2 Power System Control Register 3 Power System Control Register 4 Power System Control Register 5 Main Electronic Volume Register Sub-electronic Volume Register
R/W R/W R/W R/W W R/W R/W R/W W R/W R/W R/W R/W W R/W R/W R/W R/W R/W R/W R/W
D7
CBS6 CBS5 CBS4 CBE6 CBE5 CBE4 D6 D5 D4 SBS6 SBE6 D6 D6 IVS6 IVE6 D6 TCS2 VRR2 BIS2 MBT2 LCS0 MEV6 SEV6 SBS5 SBE5 D5 D5 IVS5 IVE5 D5 TCS1 VRR1 BIS1 MBT1 LCC1 MEV5 SEV5 SBS4 SBE4 D4 D4 IVS4 IVE4 D4 TCS0 VRR0 BIS0 MBT0 LCC0 MEV4 SEV4
D7 D7
D7
INV CBX3 CBS3 CBE3 D3 SBX3 SBS3 SBE3 D3 D3 IVX3 IVS3 IVE3 D3
CBX2 CBS2 CBE2 D2 SBX2 SBS2 SBE2 D2 D2 IVX2 IVS2 IVE2 D2
BLD1 CBX1 CBS1 CBE1 D1 SBX1 SBS1 SBE1 D1 D1 IVX1 IVS1 IVE1 D1 OP1 SVR1 SBIS1 SBT1 PSM1 MEV1 SEV1
BLD0 CBX0 CBS0 CBE0 D0 SBX0 SBS0 SBE0 D0 D0 IVX0 IVS0 IVE0 D0 OP0 SVR0 SBIS0 SBT0 PSM0 MEV0 SEV0
VRR3
LCS1
OP3 OP2 SVR3 SVR2 SBIS2 SBT2 HPM1 HPM0 MEV3 MEV2 SEV3 SEV2
RAM Test Mode Setting Register
R/W
RTS2
RST1
RST0
100
Data Sheet S15726EJ2V0DS
PD161401
(2/2)
CS 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 IR R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 R84 R85 R86 R87 R88 R89 R90 R91 R92 R93 R94 R95 R96 R97 R98 R99 R100 R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112 R113 R114 R115 R116 R117 R118 R119 R120 R121 R122 R123 R124 R125 R126 R127 Driving Mode Select Register Main R Grayscale Data Register 1 (0, 0, 0) Main R Grayscale Data Register 2 (0, 0, 1) Main R Grayscale Data Register 3 (0, 1, 0) Main R Grayscale Data Register 4 (0, 1, 1) Main R Grayscale Data Register 5 (1, 0, 0) Main R Grayscale Data Register 6 (1, 0, 1) Main R Grayscale Data Register 7 (1, 1, 0) Main R Grayscale Data Register 8 (1, 1, 1) Main G Grayscale Data Register 1 (0 ,0, 0) Main G Grayscale Data Register 2 (0, 0, 1) Main G Grayscale Data Register 3 (0, 1, 0) Main G Grayscale Data Register 4 (0, 1, 1) Main G Grayscale Data Register 5 (1, 0, 0) Main G Grayscale Data Register 6 (1, 0, 1) Main G Grayscale Data Register 7 (1, 1, 0) Main G Grayscale Data Register 8 (1, 1, 1) Main B Grayscale Data Register 1 (0, 0) Main B Grayscale Data Register 2 (0, 1) Main B Grayscale Data Register 3 (1, 0) Main B Grayscale Data Register 4 (1, 1) Sub R Grayscale Data Register 1 (0, 0, 0) Sub R Grayscale Data Register 2 (0, 0, 1) Sub R Grayscale Data Register 3 (0, 1, 0) Sub R Grayscale Data Register 4 (0, 1, 1) Sub R Grayscale Data Register 5 (1, 0, 0) Sub R Grayscale Data Register 6 (1, 0, 1) Sub R Grayscale Data Register 7 (1, 1, 0) Sub R Grayscale Data Register 8 (1, 1, 1) Sub G Grayscale Data Register 1 (0, 0, 0) Sub G Grayscale Data Register 2 (0, 0, 1) Sub G Grayscale Data Register 3 (0, 1, 0) Sub G Grayscale Data Register 4 (0, 1, 1) Sub G Grayscale Data Register 5 (1, 0, 0) Sub G Grayscale Data Register 6 (1, 0, 1) Sub G Grayscale Data Register 7 (1, 1, 0) Sub G Grayscale Data Register 8 (1, 1, 1) Sub B Grayscale Data Register 1 (0, 0) Sub B Grayscale Data Register 2 (0, 1) Sub B Grayscale Data Register 3 (1, 0) Sub B Grayscale Data Register 4 (1, 1) FXOR MRG4 MRG3 MRG2 MRG1 MRG0 MRG4 MRG3 MRG2 MRG1 MRG0 MRG4 MRG3 MRG2 MRG1 MRG0 MRG4 MRG3 MRG2 MRG1 MRG0 MRG4 MRG3 MRG2 MRG1 MRG0 MRG4 MRG3 MRG2 MRG1 MRG0 MRG4 MRG3 MRG2 MRG1 MRG0 MRG4 MRG3 MRG2 MRG1 MRG0 MGG4 MGG3 MGG2 MGG1 MGG0 MGG4 MGG3 MGG2 MGG1 MGG0 MGG4 MGG3 MGG2 MGG1 MGG0 MGG4 MGG3 MGG2 MGG1 MGG0 MGG4 MGG3 MGG2 MGG1 MGG0 MGG4 MGG3 MGG2 MGG1 MGG0 MGG4 MGG3 MGG2 MGG1 MGG0 MGG4 MGG3 MGG2 MGG1 MGG0 MBG4 MBG3 MBG2 MBG1 MBG0 MBG4 MBG3 MBG2 MBG1 MBG0 MBG4 MBG3 MBG2 MBG1 MBG0 MBG4 MBG3 MBG2 MBG1 MBG0 SRG4 SRG3 SRG2 SRG1 SRG0 SRG4 SRG3 SRG2 SRG1 SRG0 SRG4 SRG3 SRG2 SRG1 SRG0 SRG4 SRG3 SRG2 SRG1 SRG0 SRG4 SRG3 SRG2 SRG1 SRG0 SRG4 SRG3 SRG2 SRG1 SRG0 SRG4 SRG3 SRG2 SRG1 SRG0 SRG4 SRG3 SRG2 SRG1 SRG0 SGG4 SGG3 SGG2 SGG1 SGG0 SGG4 SGG3 SGG2 SGG1 SGG0 SGG4 SGG3 SGG2 SGG1 SGG0 SGG4 SGG3 SGG2 SGG1 SGG0 SGG4 SGG3 SGG2 SGG1 SGG0 SGG4 SGG3 SGG2 SGG1 SGG0 SGG4 SGG3 SGG2 SGG1 SGG0 SGG4 SGG3 SGG2 SGG1 SGG0 SBG4 SBG3 SBG2 SBG1 SBG0 SBG4 SBG3 SBG2 SBG1 SBG0 SBG4 SBG3 SBG2 SBG1 SBG0 SBG4 SBG3 SBG2 SBG1 SBG0 RS 6 Index Register 54321 0 Register Name R/W 7 6 5 Data Bit 4 3 2 1 0
Data Sheet S15726EJ2V0DS
101
PD161401
8. POWER SEQUENCE
The PD161401 has on-chip power circuits such as a booster circuit and a voltage follower circuit. Resetting by the /DISP pin should only be used to prevent malfunctioning due to noise. If charge remains in the smoothing capacitor connected between the LCD drive pins (VLCD, VLC1 to VLC4) and VSS, the display screen may momentarily blackout when power is turned ON or OFF. It is therefore recommended to turn ON/OFF power in the following sequence to avoid any trouble.
102
Data Sheet S15726EJ2V0DS
PD161401
8.1 Power ON Sequence (with Internal Power Supply, Power ON Display ON) Power ON when /DISP pin = L
Power supply is stabilized.
/DISP pin = H
Wait for 50 s or more. R3 Initialization of registers
Reset command
Control register 1 DISP = 0, HALT = 1
R0
Display OFF. Internal operation stops.
IC function setting by command input 1 Control register 1 (DISP = 0, HALT = 1) Control register 2
IC function setting by command input 2 Power system control register 1 (OP3, OP2, OP1, OP0 = 1, 1, 1, 1) Power system control registers 2, 3, and 4 Power system control register 5 (HPM1, HPM0 = 0, 1) Main electronic volume register Sub-electronic volume register
Specify power ON mode 1 (master IC only).
User setting by command input Setting of functions such as grayscale data
Initialization complete
Control register 1 (DIPS = 0, HALT = 0)
R0
Display OFF. Internal operation starts.
5
LCD display screen setting Display start line set Writing of screen data + Wait time
Wait time 1 Wait for 120 to 150 ms or more from when the internal operation starts until the LCD turns ON Note.
5
Power system control register 5 (HPM1, HPM0 = 0, 0) (LCS1, LCS0 = 1,1) (LCC1, LCC0 = 1,1)
(PSM = 1)
Change the operation mode of the operation amplifier to "normal mode" (master IC only). Segment output driving capability setting: x8 Common output driving capability setting: x16 Voltage follower bias current: x2
in the next page Note The wait times1, 2 vary depending on the characteristics of the LCD panel and the capacitance of the boosting or smoothing capacitor. It is recommended to determine this value after thorough evaluation with the actual system (refer to 8.5 Flow of VOUT and VLCD Voltages from Power ON to Power OFF).
Data Sheet S15726EJ2V0DS
103
PD161401
5

Wait time 2 Wait for at least 250 ms from when the output mode of the operation amplifier is changed until the LCD turns ON Note. The operation mode of the operation amplifier: normal mode Change the setting of the segment output driving capability, common output driving capability, and voltage follower bias current to the normal state.
Power system control register 5 (HPM1, HPM0 = 0, 0) (LCS1, LCS0 = x,x) (LCC1, LCC0 = x,x)
(PSM = x)
R0
Control register 1 (DIPS = 1, HALT = 0)
R0
Display ON. Internal operation starts.
x: 0 or 1 Note The wait times1, 2 vary depending on the characteristics of the LCD panel and the capacitance of the boosting or smoothing capacitor. It is recommended to determine this value after thorough evaluation with the actual system (refer to 8.5 Flow of VOUT and VLCD Voltages from Power ON to Power OFF).
104
Data Sheet S15726EJ2V0DS
PD161401
8.2 Power OFF Sequence (with Internal Power Supply) Operation status
Control register 1 DISP = 0, HALT = 0
R0
Display OFF. Internal operation starts.
Power system control register 5 (HPM1, HPM0 = 1, 0)
R56
Change the operation mode of the operational amplifier to "power OFF mode". [MEV6, MEV5, MEV4, MEV3, MEV2, MEV1, MEV0] = [0, 0, 0, 0, 0, 0, 0] [SEV6, SEV5, SEV4, SEV3, SEV2, SEV1, SEV0] = [0, 0, 0, 0, 0, 0, 0] Wait time 1 Wait for at least 120 ms Note.
Main electronic volume register setting
R57
Sub-electronic volume register setting 5
R58
Control register 1 (DISP = 0, HALT = 1) 5
R0
Display OFF. Internal operation stops. Wait time 2 Wait for at least 380 ms before turning power OFF Note.
Power OFF
Note
The wait times 1, 2 vary depending on the characteristics of the LCD panel and the capacitance of the boosting or smoothing capacitor. It is recommended to determine this value after thorough evaluation with the actual system (refer to 8.5 Flow of VOUT and VLCD Voltages from Power ON to Power OFF).
Data Sheet S15726EJ2V0DS
105
PD161401
8.3 Power ON Sequence (with External Driving Power Supply, Power ON Display ON) This is an example of inputting a reference voltage to the VRS pin and a driving voltage to the VOUT pin from an external power supply.
Logic power supply ON with /DISP pin = L Power supply stabilized. /DISP pin = H Reset command Control register 1 DISP = 0, HALT = 1 IC function setting by command input 1 Control register 1 (DISP = 0, HALT = 1) Control register 2 IC function setting by command input 2 Power system control register 1 (OP3, OP2, OP1, OP0 = 1, 1, 1, 1) Power system control registers 2, 3, and 4 Power system control register 5 (HPM1, HPM0 = 0, 1) Main electronic volume register Sub-electronic volume register User setting by command input Setting of functions such as grayscale data Initialization complete Control register 1 (DISP = 0, HALT = 0) Turn ON external driving power supply
VDD1 and VDD2 ON, VOUT = Hi-Z
R3
Wait for 50 s or more. Initialization of registers
R0
Display OFF. Internal operation stops.
Specify power ON mode1 (master IC only).
R0
Display OFF. Internal operation starts. Supply voltage to VOUT pin.
5
LCD screen setting Display start line setting Writing of screen data + Wait time Power system control register 5 (HPM1, HPM0 = 0, 0) Control register 1 (DIPS = 1, HALT = 0)
Wait for at least 300 ms from when the internal operation starts until the LCD turns ON Note.
Change the operation mode of the operation amplifier to "normal mode" (master IC only). R0 Display ON. Internal operation starts.
Note The time of 300 ms varies depending on the characteristics of the LCD panel and the capacitance of the smoothing capacitor. It is recommended to determine this value after thorough evaluation with the actual system (refer to 8.5 Flow of VOUT and VLCD Voltages from Power ON to Power OFF).
106
Data Sheet S15726EJ2V0DS
PD161401
8.4 Power OFF Sequence (with External Driving Power Supply) This is an example of inputting a reference voltage to the VRS pin and a driving voltage to the VOUT pin from an external power supply. Operation status
Control register 1 DISP = 0, HALT = 0
R0
Display OFF. Internal operation starts.
Power system control register 5 (HPM1, HPM0 = 1, 0) 5
R56
Change the operation mode of the operational amplifier to "power OFF mode". Wait for at least 300 ms until power is OFF Note. Turn OFF driving voltage VOUT after the levels of VLCD and VLC1 to VLC4 have completely dropped. Power to VDD1 and VDD2 OFF
Driving power supply OFF
Power OFF Note
The time of 300 ms varies depending on the characteristics of the LCD panel and the capacitance of the smoothing capacitor. It is recommended to determine this value after thorough evaluation with the actual system (refer to 8.5 Flow of VOUT and VLCD Voltages from Power ON to Power OFF).
Data Sheet S15726EJ2V0DS
107
PD161401
5 8.5 Flow of VOUT and VLCD Voltages from Power ON to Power OFF
0 VDD
/DISP pin = L VDD ON /DISP pin = H RES = 1 DISP = 0, HALT = 1 TCS = 0,1,1(M) OP = 1,1,1,1 (M) LCS = 1,1 LCC = 1,1 HPM = 0,1 (M) HALT = 0
VOUT
120 to 150 ms LCS = 1,1 LCC = 1,1 HPM = 0,0 (M) LCS = X,X LCC = X,X HPM = 0,0 (M) DISP = 1 250 ms
Main Duty Display
DISP = 0 HPM = 1,0(M) DTY = 1 50 ms HPM = 0,1(M) HPM = 0,0(M) DISP = 1 Sub Duty Display DISP = 0 HPM = 0,1(M) DTY = 0 160 ms HPM = 0,0(M) DISP = 1 Normal Duty Display DISP = 0 HPM = 1,0(M) EV = 0 PEV = 0(M) 120 ms HALT = 1 380 ms VDD OFF 150 ms
Dotted line: VOUT Solid line: VLCD
x: 1 or 0 Test conditions: Supply voltage: VDD1 = VDD2 = 3.0 V Number of boosting stages: x5 (in normal display mode), x3 (in partial display mode) Capacitance: Between VLCn pin and Cn+/- pins = 1.0 F Caution Connect a capacitor of 0.1 F or less to the AMPOUTM and AMPOUTS pins. 108
Data Sheet S15726EJ2V0DS
PD161401
5 8.6 Flow of VOUT and VLCD Voltages in Display Output and HALT/Standby Modes
0 VDD
DISP = 0 HPM = 1,0(M) EV = 0
VOUT
Main Duty Display
300 ms HALT = 1(STBY = 1)
HALT(STBY) HPM = 0,1(M) EV = x,x(M) HALT = 0(STBY = 0) 160 ms HPM = 0,0(M) DISP = 1
Dotted line: VOUT Solid line: VLCD
x: 1 or 0 Test conditions: Supply voltage: VDD1 = VDD2 = 3.0 V. Number of boosting stages: x5 (in normal display mode), x3 (in partial display mode) Capacitance: Between VLCn pin and Cn+/- pins = 1.0 F Caution Connect a capacitor of 0.1 F or less to the AMPOUTM and AMPOUTS pins.
Data Sheet S15726EJ2V0DS
109
PD161401
9. USING RAM TEST MODE
The PD161401 has a test mode in which seven types of screen data are written to the display RAM. When using this test mode, be sure to execute the following sequence. If the RAM test mode is executed in any other sequence, erroneous data may be displayed. Operating status
Control register 1 DISP = 0, STBY = 1
R0
Display OFF. Standby setting
RAM test mode setting
R61
Select data to be written to RAM.
Control register 1 DISP = 0, STBY = 0
R0
Display OFF. Standby cleared
Wait time
Wait for 200 ms or more from when the internal operation starts until the LCD turns OFF Note.
Control register 1 DISP = 1
R0
Display ON.
Setting complete
Note The time of 200 ms varies depending on the characteristics of the LCD panel and the capacitance of the boosting or smoothing capacitor. It is recommended to determine this value after thorough evaluation with the actual system. Remark The set display data is always written to the display RAM in the RAM test mode.
110
Data Sheet S15726EJ2V0DS
PD161401
10. ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings (TA = 25C, VSS = 0 V)
Parameter Logic supply voltage Booster circuit supply voltage Driver supply voltage Driver reference power input voltage Logic input voltage Logic output voltage Logic I/O voltage Driver input voltage Driver output voltage Operating ambient temperature Storage temperature VDD1 VDD2 VOUT VLCD,VLC1 to VLC4 VIN1 VO1 VI/O1 VIN2 VO2 TA Tstg Symbol Ratings -0.3 to +4.0 -0.3 to +4.0 -0.3 to +20.0 -0.3 to VOUT + 0.3 -0.3 to VDD1 + 0.3 -0.3 to VDD1 + 0.3 -0.3 to VDD1 + 0.3 -0.3 to VOUT + 0.3 -0.3 to VOUT + 0.3 -40 to +85 -55 to +125 Unit V V V V V V V V V C C
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. Recommended Operating Range
Parameter Logic supply voltage Booster circuit supply voltage Driver supply voltage Logic supply voltage Driver supply voltage VDD1 VDD2Note1 VOUT VIN VLCD, VLC1 to VLC4Note2 Maximum LCD voltage setting range VLCDNote3 VOUT - 0.5 V
Note2
Symbol
MIN. 1.8 2.4 5.5 0 0
TYP.
MAX. 3.6 3.6 18.0 VDD1 VOUT
Unit V V V V V
Notes 1. It is essential that VDD1 VDD2. 2. These conditions are recommended when the LCD is driven by an external power supply. 3. This condition is recommended when the LCD is driven by the internal power supply circuit. Cautions 1. Make sure that the relationship of VSS < VLC4 < VLC3 < VLC2 Data Sheet S15726EJ2V0DS
111
PD161401
Electrical Specifications (Unless otherwise specified, TA = -40 to +85C, VDD1 = 1.8 to 3.6 V, VDD2 = 2.4 to 3.6 V.)
Parameter Input voltage, high Input voltage, low Input current, high Input current, low Output voltage, high Output voltage, low Leakage current, high Leakage current, low Common output ON resistance Segment output ON resistance Driver voltage (booster voltage) Symbol VIH VIL IIH1 IIL1 VOH VOL ILOH ILOL RCOM RSEG VOUT Other than D15 to D0 Other than D15 to D0 IOUT = -1 mA. Other than OCSOUT IOUT = 1 mA. Other than OCSOUT D15 to D8, D7(SI), D6(SCL), D5 to D0, VIN/OUT = VDD1 D15 to D8, D7(SI), D6(SCL), D5 to D0, VIN/OUT = VSS VLCn COMn, VOUT = 15 V, VLCD = 13 V, 1/9 bias, |IO| = 50 A VLCn SEGn, VOUT = 15 V, VLCD = 13 V, 1/9 bias, |IO| = 50 A In 5-fold mode, VDD2 = 3.0 V, diced display In 6-fold mode, VDD2 = 3.0 V, diced display Regulated voltageNotes2 VREG TA = 85C. (TCS2, TCS1, TCS0) = (0,1,0) Temperature curve -0.15 %/C Output voltage deflection VLCn VLCn: VLCD, VLC1 to VLC4, (OP3, OP2, OP1, OP0) = (0, 0, 0, 1) VDD1 = 2.5 V, VOUT = 15 V, AMPOUTM = 14 V, bias = 1/5 to 1/9, IRS pin = L, display OFF, no load AMPOUT Oscillation frequency Notes3 fOSC IRS pin = H, 1+Rb/Ra = 10-fold VDD1 = 3.0 V, TA = 25C, 1/80 duty, R = 360 k (OSCIN1-OSCOUT) VDD1 = 3.0 V, TA = 25C, 1/38 duty, R = 770 k (OSCIN2-OSCOUT) Current consumption IDD11 Frame frequency = 70 Hz, all PWM display output, 1/80 duty, VDD1 = VDD2 = 3.0 V, VLCD = 13 V, in 5-fold mode, driving mode (segment x 1, common x 4) Frame frequency = 70 Hz, all PWM display output, 1/32 duty, VDD1 = VDD2 = 3.0 V, VLCD = 7.0 V, in 3-fold mode, driving mode (segment x 1, common x 4) Current consumption (standby mode) IDD22 VDD1 = VDD2 = 3.0 V 10 72 120 175 280 33 40 46 kHz -100 72 85 100 97 mV kHz -50 50 mV 1.430 1.485 1.540 V 16.6 V 13.8 V 4 k 4 k -10 VDD1 - 0.5 0.5 10 Conditions MIN. 0.8 VDD1 0.2 VDD1 1 -1 TYP.Notes1 MAX. Unit V V
A A
V V
A A
A
A
A
Notes1 2 3
The TYP. values are reference values at TA = 25C (except for regulated voltage (VREG)). The TYP. values of Regulated voltage (VREG) at TA = 25C are MIN. 1.580 V, TYP. 1.635 V, MAX. 1.690 V Oscillation frequency is changed under the influence of the wiring capacity to the external resistor for oscillation.
112
Data Sheet S15726EJ2V0DS
PD161401
Timing Requirements (Unless otherwise specified, TA = -30 to +85C.) (1) i80 CPU interface
RS tAS8 /CS1 (CS2 = H) tCYC8 tCCLR, tCCLW /WR, /RD tDS8 D0 to D15(D7) (Write) tACC8 D0 to D7 (Read) tOH8 tCCHR, tCCHW tDH8 tf tr tAH8
(VDD1 = 1.8 to 2.0 V)
Parameter Address hold time Address setup time System cycle time Control L pulse width (/WR) Control L pulse width (/RD) Control H pulse width (/WR) Control H pulse width (/RD) Data setup time Data hold time /RD access time Output disable time Symbol tAH8 tAS8 tCYC8 tCCLW tCCLR tCCHW tCCHR tDS8 tDH8 tACC8 tOH8 /WR /RD /WR /RD D0 to D15 (D7) D0 to D15 (D7) D0 to D7, CL = 100 pF D0 to D7, CL = 5 pF, RL = 3 k RS RS Conditions MIN. 0 0 1000 160 430 160 160 160 0 0 0 470 170 TYP.Note MAX. Unit ns ns ns ns ns ns ns ns ns ns ns
Note The TYP. values are reference values at TA = 25C. (VDD1 = 2.0 to 2.5 V)
Parameter Address hold time Address setup time System cycle time Control L pulse width (/WR) Control L pulse width (/RD) Control H pulse width (/WR) Control H pulse width (/RD) Data setup time Data hold time /RD access time Output disable time Symbol tAH8 tAS8 tCYC8 tCCLW tCCLR tCCHW tCCHR tDS8 tDH8 tACC8 tOH8 /WR /RD /WR /RD D0 to D15 (D7) D0 to D15 (D7) D0 to D7, CL = 100 pF D0 to D7 , CL = 5 pF, RL = 3 k RS RS Conditions MIN. 0 0 600 120 240 120 120 120 0 0 0 280 170 TYP.Note MAX. Unit ns ns ns ns ns ns ns ns ns ns ns
Note The TYP. values are reference values at TA = 25C.
Data Sheet S15726EJ2V0DS
113
PD161401
(VDD1 = 2.5 to 3.6 V)
Parameter Address hold time Address setup time System cycle time Control L pulse width (/WR) Control L pulse width (/RD) Control H pulse width (/WR) Control H pulse width (/RD) Data setup time Data hold time /RD access time Output disable time Symbol tAH8 tAS8 tCYC8 tCCLW tCCLR tCCHW tCCHR tDS8 tDH8 tACC8 tOH8 /WR /RD /WR /RD D0 to D15 (D7) D0 to D15 (D7) D0 to D7, CL = 100 pF D0 to D7, CL = 5 pF, RL = 3 k RS RS Conditions MIN. 0 0 100 40 40 40 40 40 0 0 0 50 50 TYP.Note MAX. Unit ns ns ns ns ns ns ns ns ns ns ns
Note The TYP. values are reference values at TA = 25C. Cautions 1. The rise and fall times (tr and tf) of an input signal are 10 ns or less. 2. All timing data is specified at 20% and 80% of VDD1.
114
Data Sheet S15726EJ2V0DS
PD161401
(2) M68 CPU interface
RS R,/W tAS6 /CS1 (CS2 = H) tCYC6 tEWHR, tEWHW E tDS6 D0 to D15 (D7) (Write) tACC6 D0 to D7 (Read) tOH6 tEWLR, tEWLW tDH6 tf tr tAH6
(VDD1 = 1.8 to 2.0 V)
Parameter Address hold time Address setup time System cycle time Data setup time Data hold time Access time Output disable time Enable H pulse width Enable L pulse width Read Write Read Write Symbol tAH6 tAS6 tCYC6 tDS6 tDH6 tACC6 tOH6 tEWHR tEWHW tEWLR tEWLW D0 to D15 (D7) D0 to D15 (D7) D0 to D7, CL = 100 pF D0 to D7, CL = 5 pF, R = 3 k E E E E RS RS Conditions MIN. 0 0 1000 160 0 0 0 430 160 160 160 470 170 TYP.Note MAX. Unit ns ns ns ns ns ns ns ns ns ns ns
Note The TYP. values are reference values at TA = 25C. (VDD1 = 2.0 to 2.5 V)
Parameter Address hold time Address setup time System cycle time Data setup time Data hold time Access time Output disable time Enable H pulse width Enable L pulse width Read Write Read Write Symbol tAH6 tAS6 tCYC6 tDS6 tDH6 tACC6 tOH6 tEWHR tEWHW tEWLR tEWLW D0 to D15 (D7) D0 to D15 (D7) D0 to D7, CL = 100 pF D0 to D7, CL = 5 pF, R = 3 k E E E E RS RS Conditions MIN. 0 0 600 120 0 0 0 240 120 120 120 280 170 TYP.Note MAX. Unit ns ns ns ns ns ns ns ns ns ns ns
Note The TYP. values are reference values at TA = 25C.
Data Sheet S15726EJ2V0DS
115
PD161401
(VDD1 = 2.5 to 3.6 V)
Parameter Address hold time Address setup time System cycle time Data setup time Data hold time Access time Output disable time Enable H pulse width Enable L pulse width Read Write Read Write Symbol tAH6 tAS6 tCYC6 tDS6 tDH6 tACC6 tOH6 tEWHR tEWHW tEWLR tEWLW D0 to D15 (D7) D0 to D15 (D7) D0 to D7, CL = 100 pF D0 to D7, CL = 5 pF, R = 3 k E E E E RS RS Conditions MIN. 0 0 100 50 0 0 0 40 40 40 40 50 50 TYP.Note MAX. Unit ns ns ns ns ns ns ns ns ns ns ns
Note The TYP. values are reference values at TA = 25C. Cautions 1. The rise and fall times (tr and tf) of an input signal are 10 ns or less. If the system cycle time is short, (tr + tf) (tCYC6 - tEWLW - tEWHW) or (tr + tf) (tCYC6 - tEWLR - tEWHR). 2. All timing data is specified at 20% and 80% of VDD1.
116
Data Sheet S15726EJ2V0DS
PD161401
(3) Serial interface
tCSS
/CS1 (CS2 = H)
tCSH
tSAS
tSAH
RS
tSCYC tSLW
SCL
tf tr tSDS
tSHW
tSDH
SI
(VDD1 = 1.8 to 2.5 V)
Parameter Serial clock cycle SCL high-level pulse width SCL low-level pulse width Address hold time Address setup time Data setup time Data hold time CS - SCL time Symbol tSCYC tSHW tSLW tSAH tSAS tSDS tSDH tCSS tCSH SCL SCL SCL RS RS SI SI /CS1 (CS2 = H) /CS1 (CS2 = H) Condition MIN. 250 100 100 150 150 100 100 150 150 TYP.Note MAX. Unit ns ns ns ns ns ns ns ns ns
Note TYP. values are reference values when TA = 25C. (VDD1 = 2.5 to 3.6 V)
Parameter Serial clock cycle SCL high-level pulse width SCL low-level pulse width Address hold time Address setup time Data setup time Data hold time CS - SCL time Symbol tSCYC tSHW tSLW tSAH tSAS tSDS tSDH tCSS tCSH SCL SCL SCL RS RS SI SI /CS1 (CS2 = H) /CS1 (CS2 = H) Condition MIN. 150 60 60 90 90 60 60 90 90 TYP.Note MAX. Unit ns ns ns ns ns ns ns ns ns
Note TYP. values are reference values when TA = 25C. Cautions 1. The rise and fall times of input signal (tr and tf) are rated as 15 ns or less. 2. All timing is rated based on 20% and 80% of VDD1. 117
Data Sheet S15726EJ2V0DS
PD161401
(4) Common
Parameter Clock input 1 Clock input 2 Symbol fM fS Conditions OSCIN1. External clock is used in main duty display mode,1/80 duty OSCIN2. External clock is used in sub-duty display mode, 1/40 duty 40 kHz MIN. TYP.Note 85 MAX. Unit kHz
Note The TYP. values are reference value at a frame frequency = 70 Hz. Cautions 1. The rise time and fall time (tr and tf) of an input signal is 15 ns or less. 2. All timing data is specified at 20% and 80% of VDD1. (a) Timing of display control output
OSCSYNC
(OUT)
tDFR
FR
(VDD1 = 1.8 to 2.5 V)
Parameter FR delay time Symbol tDFR FR, CL = 50 pF Conditions MIN. TYP.Note 50 MAX. 200 Unit ns
Note The TYP. values are reference values at TA = 25C. (VDD1 = 2.5 to 3.6 V)
Parameter FR delay time Symbol tDFR FR, CL = 50 pF Conditions MIN. TYP.Note 20 MAX. 80 Unit ns
Note The TYP. values are reference values at TA = 25C. Caution All timing data is specified at 20% and 80% of VDD1.
118
Data Sheet S15726EJ2V0DS
PD161401
(b) Reset timing
tRW /DISP tR
Internal status
Reset
End of reset
(VDD1 = 1.8 to 2.5 V)
Parameter Reset time Reset L pulse width tR tRW /DISP 50 Symbol Conditions MIN. TYP.Note MAX. 50 Unit
s s
Note The TYP. values are reference values at TA = 25C. (VDD1 = 2.5 to 3.6 V)
Parameter Reset time Reset L pulse width tR tRW /DISP 50 Symbol Conditions MIN. TYP.Note MAX. 50 Unit
s s
Note The TYP. values are reference values at TA = 25C. Caution All timing data is specified at 20% and 80% of VDD1.
Data Sheet S15726EJ2V0DS
119
PD161401
11. CPU INTERFACE (Reference Example)
The PD161401 can be connected to both an i80 system CPU and a M68 system CPU. In addition, the number of signal lines can be reduced by using the serial interface. The display area can be expanded by using two or more PD161401 chips. In this case, each IC is selected and accessed by a chip select signal.
(1) M68 series CPU
VCC
A0 Decoder
RS /CS1
VDD1 IFM0 IFM1
PD161401
A1 to A15 VIMA CPU D0 to D15 E R,/W /RES GND /RES
D0 to D15 E R,/W /DISP VSS
(2) i80 series CPU
VCC
A0 A1 to A7 /IORQ Decoder
RS /CS1
VDD1 IFM0 IFM1
PD161401
CPU
D0 to D15 /RD /WR /RES GND /RES
D0 to D15 /RD /WR /DISP VSS
(3) Serial interface in used
VCC
A0 A1 to A7 Decoder Open Port1 /Port2 /RES
RS /CS1
VDD1 IFM0 IFM1
PD161401
CPU
D0 to D5, D8 to D15 SI(D7) SCL(D6) /DISP VSS
GND /RES
120
Data Sheet S15726EJ2V0DS
PD161401
[MEMO]
Data Sheet S15726EJ2V0DS
121
PD161401
[MEMO]
122
Data Sheet S15726EJ2V0DS
PD161401
NOTES FOR CMOS DEVICES
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.
Data Sheet S15726EJ2V0DS
123
PD161401
* The information in this document is current as of June, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information. * No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document. * NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others. * Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. * While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features. * NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application. "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc. The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application. (Note) (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries. (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).
M8E 00. 4


▲Up To Search▲   

 
Price & Availability of UPD161401

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X