

2*25W@4Ω TPA3123 Class-D Audio Amplifier Board User's Guide

© 2004-2009 Sure Electronics Inc. AA-AB018_Ver1.0

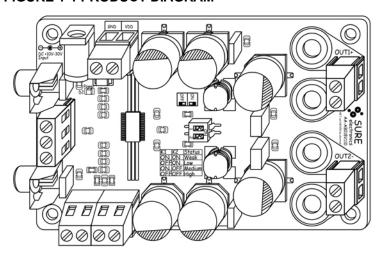
Table of Contents

Chapter 1. Overview	1
1.1 Overview	1
1.2 Features	2
1.3 Applications	2
1.4 Benefits	3
1.5 Quick Start	3
Chapter 2. Hardware Detail	5
2.1 Power Connection	5
2.2 Input Connections	5
2.3 Output Connections	6
2.4 Connection with Next Board	7
2.5 Mute Settings	8
2.6 Sleep Settings	8
2.7 Gain Settings	9
2.8 DC Offset	10
2.9 LED Indicators	10
2.10 Volume Control	
2.11 Notes	
Chapter 3. Electrical Characteristics	
Chapter 4. Mechanical Drawing	
Chapter 5. Appendix	
Chapter 6. Contact Us	

NOTES:

Product Version : Ver 1.0

Document Version : Ver 1.0



Chapter 1. Overview

1.1 Overview

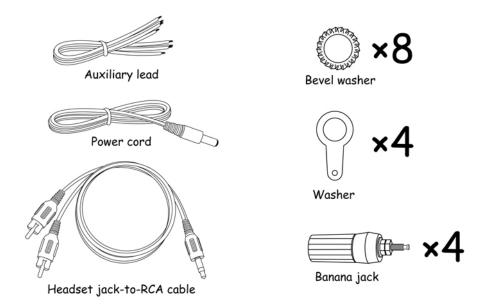

Welcome to use this 2*25W amplifier board from Sure Electronics. Sure has developed many Class-D amplifiers such as 0.5W, 2W, 8W, 15W, 50W, 100W and one-channel, dual-channel, four-channel amplifiers to meet different requirements of customers. As a new member of class-D amplifier series, this 2*25W amplifier board employs TPA3123D2 chip from TI. It supports dual channel amplification and each such channel is rated at 25W which helps producing state-of-the-art sound quality. The efficiency of the TPA3123D2 eliminates the need for an external heat sink when playing music. Besides, integrating high-quality SMD and MKP plug-in capacitors ensures Hi-Fi amplification output. This amplifier can readily be powered by any DC power supply ranging from +10 to 30V. You can use it to drive any 4Ω or 8Ω passive speakers. It's an ideal choice for electronic hobbyists and audio enthusiasts.

FIGURE 1-1 PRODUCT DIAGRAM

© 2004-2009 Sure Electronics Inc. AA-AB018_Ver1.0_Page 1

FIGURE 1-2 ACCESSORIES

Note: The diagrams above are used for reference only.

1.2 Features

- A perfect "Class D" architecture
- Fully-bridged stereo output
- Wide power supply range: +10V-30V
- Two kinds of input: line level input and analog audio input
- Frequency response: 20Hz-20KHz(±3dB)
- Signal/Noise Ratio: 100dB(A-Weighted)
- High Output Power

 $10W @ 8\Omega, < 10.0\% THD+N$

25W @ 4Ω, < 10.0% THD+N

High Efficiency

92% @ 8W 8Ω

85% @ 16W 4Ω

• Audiophile Quality Sound

0.08% THD+N @ 5W 8Ω

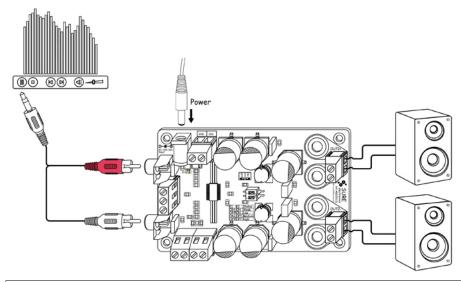
0.08% THD+N @ 10W 4 Ω

- Sensitivity and gain adjustable
- Over/under voltage turn off
- Over current protection
- Over temperature protection

1.3 Applications

- Active Subwoofers
- Home Theater Receiver
- Multi-channel Distribution
- Active DVD System
- Mini/Micro Systems

1.4 Benefits


- Mounting holes facilitate installation and fixing
- Several wiring methods facilitate connection
- Excellent design of the power ports which allows you to cascade multiple amplifier boards (max 4 recommended)
- Excellent heat dissipation eliminates the requirement of an extra heat sink

Note: Output signal cannot be bridged again.

1.5 Quick Start

Suggested connection is shown in figure 1-3.

FIGURE 1-3 CONNECTION SCHEMATIC

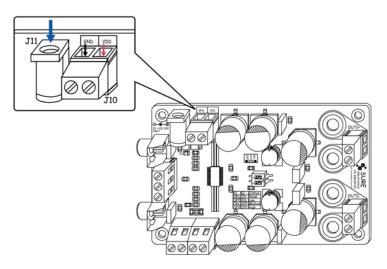
Note: Please observe the following steps to complete verification so as to ensure the products are intact during transit.

- 1. Open the amplifier package and make sure the product is intact (No missing or damaged components and no deformation)
- 2. Please observe the connection schematics when connecting the amplifier board. Use a nearby sound source, such as MP3 or CD player to have a trial. This amplifier board can be deemed as qualified if you can hear the sound corresponding to that sound source.

FIGURE 1-4 CASCADING SCHEMATIC

Note: GND should be grounded or connected to the housing of the device.

AA-AB018_Ver1.0_Page 4 © 2004-2009 Sure Electronics Inc



Chapter 2. Hardware Detail

2.1 Power Connection

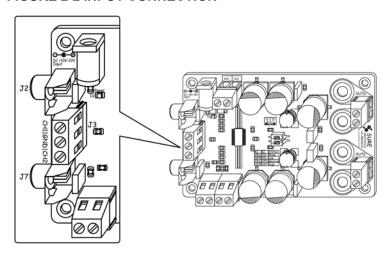
To power the amplifier board, use either jack or terminal blocks. On-board diodes can prevent the consequence of wrong connection of power supply.

FIGURE 2-1 POWER CONNECTION

TABLE 2-1 POWER CONNECTION

Connector Mark			Description			
Jack	J11		DC 10-30V power supply			
Terminal J10 VCC		VCC	The positive of DC 10-30V power supply			
Blocks	GND		The negative of DC 10-30V power supply			

Note:


- 1. You are allowed to use only one way to power the amplifier board at a time.
- 2. The maximum supply voltage shall not exceed 30V.

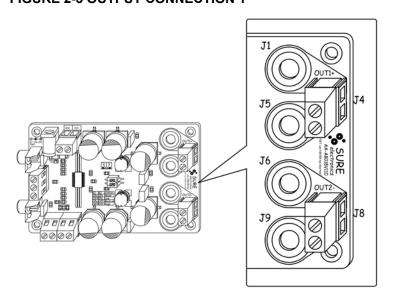
2.2 Input Connections

You may use RCA connectors to input audio signal.

© 2004-2009 Sure Electronics Inc. AA-AB018_Ver1.0_Page 5

FIGURE 2-2 INPUT CONNECTION

TABLE 2-2 INPUT CONNECTION


TELE 2 2 IIII OT COMMEDITOR				
Connector Mark		Channel Description		
RCA connector	J2	Channel 1 Input		
NCA CONNECTOR	J7	Channel 2 Input		
Terminal Blocks	J3 (PIN 1)	Channel 1 Input		
	J3 (PIN 2)	GND		
	J3 (PIN 3)	Channel 2 Input		

Note: You are allowed to feed only one group (dual channel) of audio signal to the amplifier board at a time. Please refer to 2.6 "Gain Setting" for details.

2.3 Output Connections

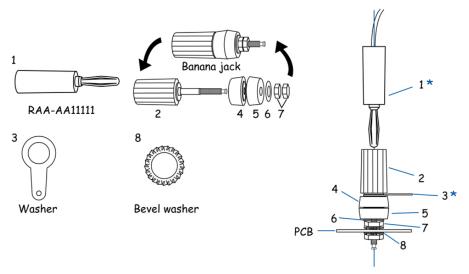

You can use either terminal blocks or banana connectors to output audio signal. Two pairs of banana jacks are provided for free.

FIGURE 2-3 OUTPUT CONNECTION 1

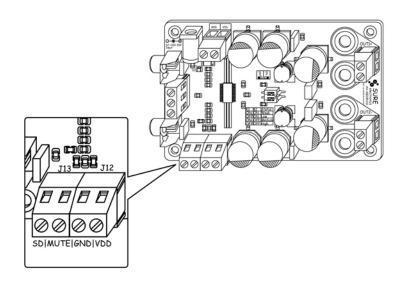
AA-AB018_Ver1.0_Page 6 © 2004-2009 Sure Electronics Inc

FIGURE 2-4 OUTPUT CONNECTION 2

Note:

- 1*: not provided here. It can be used together with banana jack ("2" above) facilitating wiring. You can click http://www.sureelectronics.net/goods.php?id=1036 for details.
- 3*: included in the accessories but selectable to be installed.

TABLE 2-3 OUTPUT CONNECTION


Connector Mark		Description			
Banana Connectors	J1	Positive Output of Channel 1			
	J5	Negative Output of Channel 1			
	J6	Negative Output of Channel 2			
	J9	Positive Output of Channel 2			
Terminal blocks Refer to on-board	J4	Output of Channel 1			
descriptions for connection details	J8	Output of Channel 2			

Note: Never connect more than one group of speaker to the audio output.

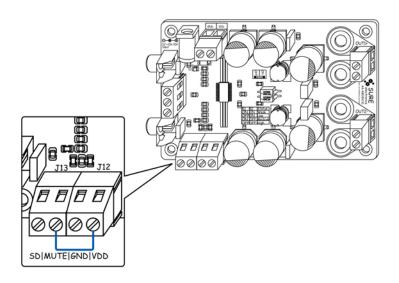
2.4 Connection with Next Board

J10 and J12 on terminal blocks are used to connect more amplifier boards.

FIGURE 2-5 CONNECTION SCHEMATIC

TABLE 2-4 CONNECTION WITH NEXT BOARD

Connector Mark		Description
J12		Connect to Positive (+) of DC 10 to 36V Power Supply (J10) of the next board
J12	GND	Connect to Negative (GND) of DC 10 to 36V Power Supply (J10) of the next board
J13	SD	Sleep Control
313	MUTE	Mute Control


Note:

- 1. Maximum 4 amplifiers are recommended to be connected in series.
- 2. Remember to use AWG12-compliant cable or equivalent for series connection.

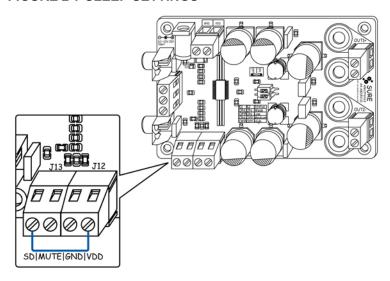
2.5 Mute Settings

To mute the output audio signal, connect "VDD" and "MUTE" of the terminal block with a piece of lead. Usually, "MUTE" shall be left unconnected.

FIGURE 2-6 MUTE SETTINGS

TABLE 2-5 MUTE SETTINGS

Connect	or Mark	Description
J13	MUTE	When "MUTE" is connected with "VDD", both channels will be muted and enter into idle mode. When connected to ground or left unconnected, both channels will resume regular operation.


Note: Please power the amplifier board with DC 10-30V.

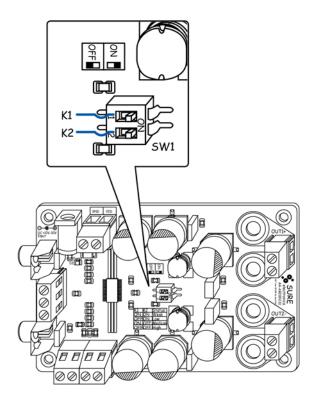
2.6 Sleep Settings

To enable sleep setting, connect "VDD" and "SD" of the terminal block with a piece of lead. Usually, "SD" shall be left unconnected.

AA-AB018_Ver1.0_Page 8 © 2004-2009 Sure Electronics Inc

FIGURE 2-7 SLEEP SETTINGS

TABLE 2-6 SLEEP SETTINGS


Connector Mark		Description
J13	SD	When "SD" is connected with "VDD", both channels will be set to SLEEP and enter low-power-consumption working mode. When connected to ground or left unconnected, both channels will resume regular operation.

Note: "SD" means that the chip works with low power consumption. "MUTE" means that the chip normally works with no output.

2.7 Gain Settings

The on-board 2-slide DIP switch, which is marked as "SW1", is used to set the gain of amplifier board. The two slides are marked as K1, K2 respectively. The following table lists the gain values on different settings:

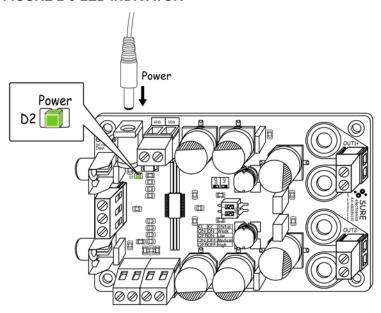
FIGURE 2-8 GAIN SETTINGS

TABLE 2-7 GAIN SETTINGS

Settings		Amplification Gain		
K1	K2	Gain Level Power Gain (dB) Typical		
ON	ON	Weak 20		
OFF	ON	Low	26	
ON	OFF	Medium	32	
OFF	OFF	High	36	

Note:

- High: Portable MP3/CD player with built-in volume control Medium and low: General-purpose use Weak: Preamplifier with fairly high output signal
- 2. Different gain levels correspond to different input sensitivities. Improper selection will cause the audio distortion or even damage the amplifier board.
- 3. No preamplifier or other devices are needed for gain settings. We won't assume any responsibility for the damage caused by connecting extra devices.


2.8 DC Offset

Capacitive coupling output is applied to ensure no DC offset output.

2.9 LED Indicators

This amplifier has one power LED indicator which is marked as "Power (D2)". The power indicator will be illuminated in green when power-up. Please refer to the connection schematics of the board for the LED location.

FIGURE 2-9 LED INDICATOR

2.10 Volume Control

No potentiometer is provided for manually adjusting the volume. The volume control of sound source like MP3 player or PC can be used to adjust the loudness of the audio output or a $50 \text{K}\Omega$ potentiometer can be installed by users themselves, but it may cause signal attenuation. To compensate that attenuation, adjusting the gain value is required. You may refer to 2.7 Gain setting for details.

Please be aware that audio clippings may occur to some portable players because of the audio source not the amplifier itself. Please increase the input gain of amplifier board.

2.11 Notes

In order to protect amplifier board and extend its service lifetime, please read the following warnings carefully since warranties will be voided if you do not observe the following warnings:

Warning 1:

Quality-related issues caused by potentiometers installed by buyers.

Warning 2:

In order to achieve a better sound quality, please use stable power supply since a bad or unstable power supply may worsen the sound quality or even cripple the amplifier board.

Warning 3:

Never equip a pre-amplifier to the audio input since the amplifier itself has powerful amplification ability and a high signal input will burn out the amplifier chip.

Warning 4:

In order to protect amplifier and speaker, please turn the volume output to the minimum when hooking up the amplifier and you may readjust the volume when you are sure that the amplifier is functioning properly.

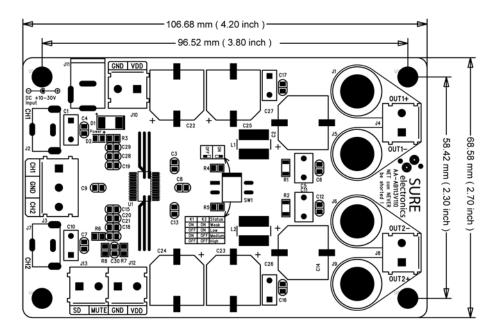
Chapter 3. Electrical Characteristics

Following table lists all typical data. For full specification, please refer to the TI data sheet of TPA3123 chip.

 T_A =20 °C , DC24V , f=1000Hz , Sine wave input, R_L =4 Ω , Gain=20dB (unless otherwise stated)

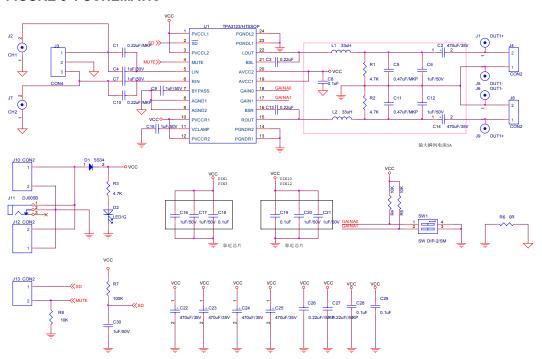
TABLE 3-1 ELECTRICAL CHARACTERISTICS

Parameter		Condition	Min.	Тур.	Max.
Supply Voltage		-	10V	-	30V
Supply Curre	ent	-	-	-	2A
Signal/Noise	Ratio	-	90dB	100dB	-
	Gain=36dB	-	0.100V	0.117V	-
Input	Gain=32dB	-	0.180V	0.196V	-
Sensitivity	Gain=28dB	-	0.380V	0.396V	-
	Gain=20dB	-	0.780V	0.803V	-
TIID : NI*		V_{DD} =24V, R_L =4 Ω , Pout=10W	-	0.08%	-
THD+N*		V_{DD} =24V, R _L =8 Ω , Pout=5W	-	- 0.08%	
Frequency R	Range	-	20Hz-20KHz (±3dB)		
		V_{DD} =24V, R_L =4 Ω , P_{out} =16W	-	85%	-
Efficiency		V_{DD} =24V, R_L =8 Ω , P_{out} =8W	- 92%		-
	THE IN (40)	V_{DD} =24V, R_L =4 Ω , f=1000Hz	-	16W	-
Output	THD+N<1%	V_{DD} =24V, R_L =8 Ω , f=1000Hz	-	8W	-
Power	THD+N<10%	V_{DD} =24V, R_L =4 Ω , f=1000Hz	-	20W	-
		V_{DD} =24V, R_L =8 Ω , f=1000Hz	-	10W	-
Input Impedance		-	-	60K	-
Minimum Lo	ad	-	3.2Ω	-	-
SD, MUTE*	High-level input voltage	-	2V	-	-
	Low-level	-	-	-	0.8V


	Input voltage						
Channel Separation*		-			-50dB	-60dB	-
	SW1	-	K1	K2	-	-	-
_	Weak	-	ON	ON	18 dB	20 dB	22 dB
Power Gain*	Low	-	OFF	ON	24 dB	26 dB	28 dB
	Medium	ı	ON	OFF	30 dB	32 dB	34 dB
	High	-	OFF	OFF	34 dB	36 dB	38 dB
Operating Temperature		-		0℃	20℃	50℃	
Storage Temperature		-		-20℃	20℃	105℃	
Thermal Shutdown*		-			-	150℃	-

Note: *The chip specifications from TI's TPA3123 Data Sheet.

Chapter 4. Mechanical Drawing


FIGURE 4-1 MECHANICAL DRAWING

Chapter 5. Appendix

FIGURE 5-1 SCHEMATIC

Note: The above schematic is used for reference only. There might be a tiny difference in production batch.

Chapter 6. Contact Us

Sure Electronics Co., Ltd.

5F, Zone A,

Qinhuai Technology Innovation Center 105-2 DaMing Rd (ZIP:210022)

Nanjing P.R.China

Tel: +86-13601408832 (For technical questions only)

+86-25-66606340 (English service, from GMT1-10AM)

Fax: +86-25- 66606341-866
Website: www.sure-electronics.com
www.sure-electronics.net