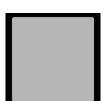


CPW5-0650-Z050BSilicon Carbide Schottky Diode Chip

Z-Rec® Rectifier


 $V_{RRM} = 650 \text{ V}$

 $I_F = 50 A$

 $Q_c = 110nC$

Features Chip Outline

- 650-Volt Schottky Rectifier
- Zero Reverse Recovery
- Zero Forward Recovery
- High-Frequency Operation
- Temperature-Independent Switching Behavior
- Extremely Fast Switching
- Positive Temperature Coefficient on V_F

Part Number	Die Size	Anode	Cathode
CPW5-0650-Z050B	3.5 x 3.5 mm ²	Al	Ni/Ag

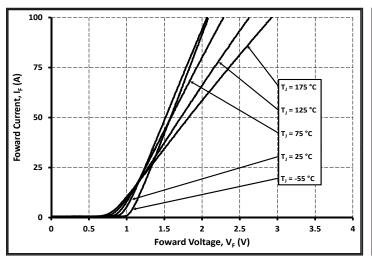
Maximum Ratings

Symbol	Parameter	Value	Unit	Test Conditions	Note
V _{RRM}	Repetitive Peak Reverse Voltage	650	>		
V _{RSM}	Surge Peak Reverse Voltage	650	>		
V _R	DC Peak Blocking Voltage	650	>		
$I_{\scriptscriptstyle \sf F}$	Continuous Forward Current	50	А	T _J =175°C	1
T _J , T _{stg}	Operating Junction and Storage Temperature	-55 to +175	°C		
T _{Proc}	Maximum Processing Temperature	325	°C	10 min Maximum	

Note

1. Assumes $R_{\rm ejc}$ Thermal Resistance < 0.5 °C/W and $T_{\rm c}$ = 135 °C

Electrical Characteristics


Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
V _F D	DC Forward Voltage	1.5 1.25	1.8	V	$I_F = 50 \text{ A } T_J = 25^{\circ}\text{C}$ $I_F = 25 \text{ A } T_J = 25^{\circ}\text{C}$	Fig 1
		1.8 1.3	2.2		I _F = 50 A T _J =175°C I _F = 25 A T _J =175°C	
I _R Reverse Current	Daviera Current	50 4	500		$V_R = 650 \text{ V}, T_J = 25^{\circ}\text{C}$ $V_R = 400 \text{ V}, T_J = 25^{\circ}\text{C}$	Fig. 2
	Reverse Current	200 6	1000	μΑ	V _R = 650 V , T _J =175°C V _R = 400 V , T _J =175°C	Fig 2
Q _C	Total Capacitive Charge	110		nC	$V_R = 400 \text{ V}, I_F = 50 \text{ A}$ $T_J = 25^{\circ}\text{C}$	Fig 4
С	Total Capacitance	1970 200 180		pF	$V_R = 0 \text{ V, } T_J = 25^{\circ}\text{C, } f = 1 \text{ MHz}$ $V_R = 200 \text{ V, } T_J = 25^{\circ}\text{C, } f = 1 \text{ MHz}$ $V_R = 400 \text{ V, } T_J = 25^{\circ}\text{C, } f = 1 \text{ MHz}$	Fig 3

Mechanical Parameters

rechanical ratanicals					
Parameter	Тур.	Unit			
Die Size	3.5 x 3.5	mm			
Anode Pad Opening	2.6 x 2.6	mm			
Thickness	180 ± 10%	μm			
Wafer Size	100	mm			
Anode Metalization (Al)	4	μm			
Cathode Metalization (Ni/Ag)	1.8	μm			
Frontside Passivation	Polyimide				

Typical Performance

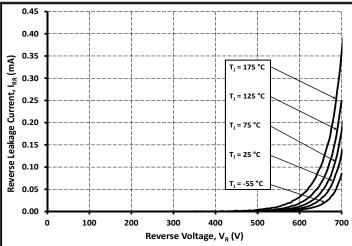
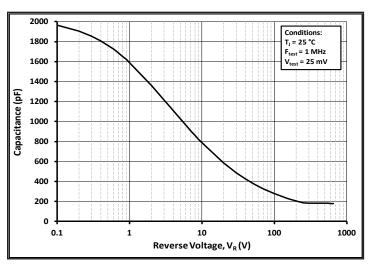



Figure 1. Typical Forward Characteristics

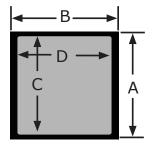

120 Conditions: T_J = 25 °c 100 Capacitive Charge, Q_c (nC) 80 60 40 20 0 50 100 150 200 250 300 350 400 Reverse Voltage, V_R (V)

Figure 3. Typical Capacitance vs. Reverse Voltage

Figure 4. Typical Recovery Charge vs. Reverse Voltage

Chip Dimensions

symbol	dimension		
	mm	inch	
Α	3.5	0.138	
В	3.5	0.138	
С	2.6	0.102	
D	2.6	0.102	

Notes

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.

• REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into
the human body nor in applications in which failure of the product could lead to death, personal injury or property
damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines,
cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control
systems, or air traffic control systems.

Copyright © 2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.