LOW VOLTAGE CMOS QUAD 2 CHANNEL MULTIPLEXER WITH 5V TOLERANT INPUTS

- 5V TOLERANT INPUTS
- HIGH SPEED :

$$
\mathrm{t}_{\mathrm{PD}}=6.0 \mathrm{~ns}(\mathrm{MAX} .) \text { at } \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}
$$

- POWER DOWN PROTECTION ON INPUTS AND OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: $\left|\mathrm{I}_{\mathrm{OH}}\right|=\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\mathrm{MIN})$ at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$
- PCI BUS LEVELS GUARANTEED AT 24 mA
- BALANCED PROPAGATION DELAYS:
$t_{\text {PLH }} \cong t_{\text {PHL }}$
- OPERATING VOLTAGE RANGE:
$\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=2.0 \mathrm{~V}$ to 3.6 V (1.5V Data Retention)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 157
- LATCH-UP PERFORMANCE EXCEEDS 500mA (JESD 17)
- ESD PERFORMANCE:

HBM > 2000V (MIL STD 883 method 3015); MM > 200V

DESCRIPTION

The 74LCX157 is a low voltage CMOS QUAD 2 CHANNEL MULTIPLEXER fabricated with sub-micron silicon gate and double-layer metal wiring $\mathrm{C}^{2} \mathrm{MOS}$ technology. It is ideal for low power and high speed 3.3 V applications; it can be interfaced to 5 V signal environment for inputs.

ORDER CODES

PACKAGE	TUBE	T \& R
SOP	74LCX157M	74LCX157MTR
TSSOP		74LCX157TTR

It consists of four 2-input digital multiplexer with common select and strobe inputs. It is a non-inverting multiplexer. When the STROBE input is held high selection of data is inhibited and all the outputs become low. The SELECT decoding determines whether the A or B inputs get routed to their corresponding Y outputs.
It has same speed performance at 3.3 V than 5 V AC/ACT family, combined with a lower power consumption.
All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

74LCX157

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	SELECT	Common Data Select Inputs
$2,5,11,14$	1A to 4A	Data Inputs From Source A
$3,6,10,13$	1 to 4B	Data Inputs From Source B
$4,7,9,12$	1 Y to 4Y	Multiplexer Outputs
15	STROBE	Strobe Input
8	GND	Ground (0V)
16	$V_{C C}$	Positive Supply Voltage

TRUTH TABLE

INPUTS				
$\overline{\text { STROBE }}$	SELECT	A	B	OUTPUT
H	X	X	X	Y
L	L	L	X	L
L	L	H	X	L
L	H	X	L	L
L	H	X	H	H
X: Don't Care				

: Don't Care

LOGIC DIAGRAM

This logic diagram has not be used to estimate propagation delays
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage ($\left.\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage (High or Low State) (note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	DC Input Diode Current	-50	mA
I_{OK}	DC Output Diode Current (note 2)	-50	mA
I_{O}	DC Output Current	± 50	mA
I_{CC}	DC Supply Current per Supply Pin	± 100	mA
$\mathrm{I}_{\mathrm{GND}}$	DC Ground Current per Supply Pin	± 100	mA
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

1) Io absolute maximum rating must be observed
2) $V_{O}<G N D$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage (note 1)	2.0 to 3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage ($\left.\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$	0 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage (High or Low State)	0 to V_{CC}	V
$\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$	High or Low Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to 3.6 V$)$	± 24	mA
$\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$	High or Low Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right)$	± 12	mA
$\mathrm{~T}_{\mathrm{Op}}$	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input Rise and Fall Time (note 2)	0 to 10	$\mathrm{~ns} / \mathrm{V}$

1) Truth Table guaranteed: 1.5 V to 3.6 V
2) V_{IN} from 0.8 V to 2 V at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

DC SPECIFICATIONS

Symbol	Parameter	Test Condition		Value				Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$		-40 to $85{ }^{\circ} \mathrm{C}$		-55 to $125{ }^{\circ} \mathrm{C}$		
				Min.	Max.	Min.	Max.	
V_{IH}	High Level Input Voltage	2.7 to 3.6		2.0		2.0		V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8		0.8	V
V_{OH}	High Level Output Voltage	2.7 to 3.6	$\mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		2.7	$\mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA}$	2.2		2.2		
		3.0	$\mathrm{I}_{\mathrm{O}}=-18 \mathrm{~mA}$	2.4		2.4		
			$\mathrm{I}=-24 \mathrm{~mA}$	2.2		2.2		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	2.7 to 3.6	$\mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0.2		0.2	V
		2.7	$\mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$		0.4		0.4	
		3.0	$\mathrm{I}_{\mathrm{O}}=16 \mathrm{~mA}$		0.4		0.4	
			$\mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}$		0.55		0.55	
I	Input Leakage Current	2.7 to 3.6	$\mathrm{V}_{1}=0$ to 5.5 V		± 5		± 5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {off }}$	Power Off Leakage Current	0	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10		10	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	2.7 to 3.6	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND		10		10	$\mu \mathrm{A}$
			V_{1} or $\mathrm{V}_{\mathrm{O}}=3.6$ to 5.5 V		± 10		± 10	
$\Delta_{\text {l }}$	${ }^{\text {cc }}$ incr. per Input	2.7 to 3.6	$\mathrm{V}_{1 \mathrm{H}}=\mathrm{V}_{\text {CC }}-0.6 \mathrm{~V}$		500		500	$\mu \mathrm{A}$

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Condition		$\begin{gathered} \hline \text { Value } \\ \hline T_{A}=25^{\circ} \mathrm{C} \end{gathered}$			Unit
		V_{Cc} (V)					
				Min.	Typ.	Max.	
$\mathrm{V}_{\text {OLP }}$	Dynamic Low Level Quiet Output (note 1)	3.3	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V} \end{gathered}$		0.8		V
$\mathrm{V}_{\text {OLV }}$					-0.8		

1) Number of outputs defined as " n ". Measured with " n-1" outputs switching from HIGH to LOW or LOW to HIGH. The remaining output is measured in the LOW state.

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Condition				Value				Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{gathered} C_{L} \\ (\mathrm{pF}) \end{gathered}$	$\begin{aligned} & \mathbf{R}_{\mathrm{L}} \\ & (\Omega) \end{aligned}$	$\begin{gathered} t_{s}=t_{r} \\ (\mathrm{~ns}) \end{gathered}$	-40 to $85{ }^{\circ} \mathrm{C}$		-55 to $125{ }^{\circ} \mathrm{C}$		
						Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PLH }} \mathrm{t}_{\text {PHL }}$	Propagation Delay Time A, B to Y	2.7	50	500	2.5		6.5		7.5	ns
		3.0 to 3.6				1.5	6.0		6.9	
$t_{\text {PLH }} \mathrm{tPHL}$	Propagation Delay Time SELECT to Y	2.7	50	500	2.5		8.0		9.2	ns
		3.0 to 3.6				1.5	7.0		8.0	
$\mathrm{t}_{\text {PLH }} \mathrm{t}_{\text {PHL }}$	Propagation Delay Time STROBE to Y	2.7	50	500	2.5		8.0		9.2	ns
		3.0 to 3.6				1.5	7.0		8.0	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{OSLH}} \\ & \mathrm{t}_{\mathrm{OSHL}} \end{aligned}$	Output To Output Skew Time (note1, 2)	3.0 to 3.6	50	500	2.5		1.0		1.0	ns

1) Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW ($\left.\mathrm{t}_{\mathrm{OSLH}}=\left|\mathrm{t}_{\text {PLHm }}-\mathrm{t}_{\text {PLHn }}\right|, \mathrm{t}_{\mathrm{OSHL}}=\left|\mathrm{t}_{\text {PHLm }}-\mathrm{t}_{\text {PHLn }}\right|\right)$
2) Parameter guaranteed by design

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Condition		Value			Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			
				Min.	Typ.	Max.	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	3.3	$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {CC }}$		6		pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (note 1)	3.3	$\begin{gathered} \mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{IN}}=0 \text { or } \mathrm{V}_{\mathrm{CC}} \end{gathered}$		25		pF

1) $\mathrm{C}_{P D}$ is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{C C(o p r)}=\mathrm{C}_{\mathrm{PD}} \times \mathrm{V}_{\mathrm{CC}} \times \mathrm{f}_{\mathrm{IN}}+\mathrm{I}_{\mathrm{CC}} / 4$ (per channel)

TEST CIRCUIT

[^0]$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)

WAVEFORM 1 : PROPAGATION DELAYS FOR INVERTING OUTPUTS ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 2 : PROPAGATION DELAYS FOR NON-INVERTING OUTPUTS ($f=1 \mathrm{MHz} ; 50 \%$ duty cycle)

5013500

SO-16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.019	
c1	45° (typ.)					
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
M			0.62			0.024
S	8° (max.)					

74LCX157

TSSOP16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
c	0.09		0.20	0.004		0.0089
D	4.9	5	5.1	0.193	0.197	0.201
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
e		0.65 BSC			0.0256 BSC	
K	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringe ment of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2000 STMicroe lectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom

© http://w ww.st.com

[^0]: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
 $R_{L}=500 \Omega$ or equivalent

