New Jersey Semi-Conductor Products, Inc. 20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960 ## HF/VHF power transistor **BLW85** #### DESCRIPTION N-P-N silicon planar epitaxial transistor intended for use in class-A, B and C operated mobile h.f. and v.h.f. transmitters with a nominal supply voltage of 12,5 V. The transistor is resistance stabilized and is guaranteed to withstand severe load mismatch conditions with a supply over-voltage to 16,5 V. Matched h_{FE} groups are available on request. It has a 3/8" flange envelope with a ceramic cap. All leads are isolated from the flange. #### **QUICK REFERENCE DATA** R.F. performance up to $T_h = 25$ °C | MODE OF OPERATION | V _{CE} | f
MHz | P _L
W | G _p
dB | η
% | -
z _i
Ω | $\overline{\mathbf{Z}}_{\mathbf{L}}$ | d₃
dB | |-------------------|-----------------|----------|---------------------|----------------------|---------|--------------------------|--------------------------------------|----------| | c.w. (class-B) | 12,5 | 175 | 45 | > 4,5 | > 75 | 1,4 + j1,5 | 2,7-j1,3 | _ | | s.s.b. (class-AB) | 12,5 | 1,6–28 | 3-30 (P.E.P.) | typ. 19,5 | typ. 35 | = | _ | typ. –33 | #### PIN CONFIGURATION #### **PINNING - SOT123** | PIN | DESCRIPTION | | |-----|-------------|---| | 1 | collector | - | | 2 | emitter | | | 3 | base | | | 4 | emitter | | NJ Semi-Conductors reserves the right to change test conditions, parameters limits and package dimensions without notice information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders. #### **RATINGS** Limiting values in accordance with the Absolute Maximum System (IEC 134) | Collector-emitter vo | oltage (V _{BE} = | 0) | |----------------------|---------------------------|----| |----------------------|---------------------------|----| | peak value | V_{CESM} | max. | 36 | V | |--|-----------------|--------|-------|----| | Collector-emitter voltage (open base) | V_{CEO} | max. | 16 | V | | Emitter-base voltage (open-collector) | V_{EBO} | max. | 4 | ٧ | | Collector current (average) | $I_{C(AV)}$ | max. | 9 | Α | | Collector current (peak value); f > 1 MHz | I _{CM} | max. | 22 | Α | | R.F. power dissipation up to (f > 1 MHz); T_{mb} = 25 $^{\circ}$ C | P_{rf} | max. | 105 | W | | Storage temperature | T_{stg} | –65 to | + 150 | °С | | Operating junction temperature | T_{j} | max. | 200 | °C | ### THERMAL RESISTANCE (dissipation = 30 W; T_{mb} = 79 °C, i.e. T_h = 70 °C) From junction to mounting base (d.c. dissipation) From junction to mounting base (r.f. dissipation) From mounting base to heatsink | R _{th j-mb(dc)} |) = | 2,5 | KΜ | |--------------------------|-----|-----|----| | R _{th j-mb(rf)} | = | 1,8 | KΜ | | $R_{th\ mb-h}$ | = | 0,3 | KΜ | | CHARACTERISTICS | | | | | |--|------------------------------------|------|-----------|---------| | T _j = 25 °C | | | | | | Collector-emitter breakdown voltage | | | | | | $V_{BE} = 0$; $I_{C} = 50 \text{ mA}$ | V _{(BR) CES} | > | 36 | V | | Collector-emitter breakdown voltage | | | | | | open base; $I_C = 100 \text{ mA}$ | V _{(BR) CEO} | > | 16 | V | | Emitter-base breakdown voltage | | | | | | open collector; $I_E = 25 \text{ mA}$ | $V_{(BR)EBO}$ | > | 4 | ٧ | | Collector cut-off current | | | | | | $V_{BE} = 0; V_{CE} = 18 V$ | I _{CES} | < | 25 | mA | | Second breakdown energy; L = 25 mH; f = 50 Hz | | | | | | open base | E _{SBO} | > | 8 | mJ | | R_{BE} = 10 Ω | E _{SBR} | > | 8 | mJ | | D.C. current gain ⁽¹⁾ | | typ. | 50 | | | $I_C = 4 A$; $V_{CE} = 5 V$ | h _{FE} | 10 1 | to 80 | | | D.C. current gain ratio of matched devices ⁽¹⁾ | | | | | | $I_{C} = 4 A$; $V_{CE} = 5 V$ | h _{FE1} /h _{FE2} | < | 1,2 | | | Collector-emitter saturation voltage ⁽¹⁾ | | | | | | $I_C = 12,5 \text{ A}; I_B = 2,5 \text{ A}$ | V_{CEsat} | typ. | 1,5 | V | | Transition frequency at f = 100 MHz ⁽¹⁾ | | | | | | $-I_E = 4 A; V_{CB} = 12,5 V$ | f _T | typ. | 650 | MHz | | $-I_E$ = 12,5 A; V_{CB} = 12,5 V | _ | | 000 | MHz | | | f _T | typ. | 600 | IVITIZ | | Collector capacitance at f = 1 MHz | f _T | typ. | 600 | IVIT IZ | | Collector capacitance at $f = 1$ MHz
$I_E = I_e = 0$; $V_{CB} = 15$ V | f _T | typ. | 120 | | | | | | | | | $I_{E} = I_{e} = 0$; $V_{CB} = 15 \text{ V}$ | | | | pF | | I _E = I _e = 0; V _{CB} = 15 V
Feedback capacitance at f = 1 MHz | C _c | typ. | 120
82 | pF | Note ^{1.} Measured under pulse conditions: $t_p \le 200~\mu s;~\delta \le 0,02.$ #### PACKAGE OUTLINE Flanged ceramic package; 2 mounting holes; 4 leads SOT123A