## Features

- $\mathrm{V}_{\mathrm{DD}}$ Operation at 3 V and 4.3 V
- 1.8-V Compatible Control-Pin Inputs
- IOFF Supports Full Power-Down Mode

Operation

- $r_{\text {on }}=6$-Ohm Typical
- $\Delta \mathrm{r}_{\text {on }}<0.35$-Ohm Typical
- $\mathrm{Cio}(\mathrm{ON})=5 \mathrm{pF}$ Typical
- Low Power Consumption
- ESD Performance
- 7 kV Human-Body Model, per JESD22 spec (A114-B, Class II)
- 1000-V Charged-Device Model (C101)
$- \pm 4 \mathrm{kV}$ contact, per IEC61000-4-2
- Wide -3-dB Bandwidth $=2110 \mathrm{MHz}$ Typical
- Packaged in 8-Pin TQFN ( $1.5 \mathrm{~mm}{ }^{\prime} 1.5 \mathrm{~mm}$ )


## Application

- Routes Signals for USB 1.0, 1.1, and 2.0


## Block Diagram



## Description

The PI3USB32 is a high-bandwidth switch specially designed for the switching of high-speed USB 2.0 signals in handset and consumer applications, such as cell phones, digital cameras, and notebooks with hubs or controllers with limited USB I/Os. The wide bandwidth $(750 \mathrm{MHz})$ of this switch allows signals to pass with minimum edge and phase distortion. The switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. It is designed for low bit-to-bit skew and high channel-to-channel noise isolation, and is compatible with various standards, such as high-speed USB 2.0 ( 480 Mbps ).

## Pin Configuiration

(Top View)

(Bottom View)


## Pin Description

| Name | Description |
| :---: | :---: |
| $\overline{\mathrm{OE}}$ | Bus-switch enable |
| D+, D-, HSD+, HSD- | Data ports |
| NC | No connect |

## Truth Table

| $\overline{\mathrm{OE}}$ | Description |
| :---: | :---: |
| H | Disconnect |
| L | $\mathrm{D}+, \mathrm{D}-=\mathrm{HSD}+$, HSD- |

Note:
(1) Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
(2) All voltages are with respect to ground, unless otherwise specified.
(3) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
(4) $\mathrm{V}_{\mathrm{I}}$ and $\mathrm{V}_{\mathrm{O}}$ are used to denote specific conditions for $\mathrm{V}_{\mathrm{I} / \mathrm{O}}$.
(5) $I_{I}$ and $I_{O}$ are used to denote specific conditions for $\mathrm{I}_{\mathrm{I}} / \mathrm{O}$.

Reccomended Operating Conditions ${ }^{(1)}$

| Parameter | Description |  | Min. | Max. | Units |
| :---: | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{DD}}$ | Supply voltage | 3.0 | 4.3 | V |  |
| $\mathrm{~V}_{I H}$ | High-level control input voltage | $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ to 3.6 V | 1.3 |  | V |
|  |  | 1.7 |  |  |  |
| $\mathrm{~V}_{\mathrm{IL}}$ | Input LOW Voltage | $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ to 3.6 V |  | 0.5 | V |
|  |  | $\mathrm{~V}_{\mathrm{DD}}=4.3 \mathrm{~V}$ |  | 0.6 |  |
| $\mathrm{~V}_{I / O}$ | Data input/output voltage | 0 | $\mathrm{~V}_{\mathrm{DD}}$ | V |  |
| $\mathrm{T}_{\mathrm{A}}$ | Operating free-air temperature | -40 | 85 | ${ }^{\circ} \mathrm{C}$ |  |

Notes:

1. All unused control inputs of the device must be held at VDD or GND to ensure proper device operation.

Electrical Characteristics over operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS ${ }^{1}$ | MIN | TYP( ${ }^{(2)}$ | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IK }}$ |  | $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$ |  |  | -1.2 | V |
| $\mathrm{I}_{\text {IN }}$ | Control inputs | $\mathrm{V}_{\mathrm{DD}}=4.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0$ to $4.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}$ |  |  | $\pm 1$ | $\mu \mathrm{A}$ |
| $\mathrm{loz}^{(3)}$ |  | $\mathrm{V}_{\mathrm{DD}}=4.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0$, Switch OFF |  |  | $\pm 1$ | $\mu \mathrm{A}$ |
| IofF | $\begin{array}{\|l} \hline \mathrm{D}+\text { and } \\ \mathrm{D}- \end{array}$ | $\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0$ to $4.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ or GND |  |  | $\pm 2$ | $\mu \mathrm{A}$ |
| ICC |  | $\mathrm{V}_{\mathrm{DD}}=4.3 \mathrm{~V}, \mathrm{I}_{/ / \mathrm{O}}=0$ |  |  | 70 | $\mu \mathrm{A}$ |
| $\Delta \mathrm{lcC}^{(4)}$ | Control inputs | $\mathrm{V}_{\mathrm{DD}}=4.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.6 \mathrm{~V}$ |  |  | 10 | $\mu \mathrm{A}$ |
| $\mathrm{C}_{\text {IN }}$ | Control inputs | $\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$ or GND |  | 1 |  | pF |
| Cio(OFF) |  | $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, Switch OFF |  | 2 |  | pF |
| $\mathrm{Cio}(\mathrm{ON})$ |  | $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, Switch ON |  | 5 |  | pF |
| RON ${ }^{(5)}$ |  | $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V}, \mathrm{IO}=-8 \mathrm{~mA}$ |  | 6 | 10 | $\Omega$ |
| $\Delta \mathrm{R}_{\text {ON }}$ |  | $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V}, \mathrm{IO}=-8 \mathrm{~mA}$ |  | 0.35 |  | $\Omega$ |
| $\Delta \mathrm{R}_{\text {ON(flat) }}$ |  | $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $1 \mathrm{~V}, \mathrm{IO}=-8 \mathrm{~mA}$ |  | 2 |  | $\Omega$ |

## Notes:

1. $\mathrm{V}_{\mathrm{IN}}$ and $\mathrm{I}_{\mathrm{IN}}$ refer to control input $(\overline{\mathrm{OE}}) . \mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}}, \mathrm{I}_{\mathrm{I}}$, and $\mathrm{I}_{\mathrm{O}}$ refer to data pins.
2. All typical values are at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ (unless otherwise noted), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. For I/O ports, the parameter Ioz includes the input leakage current.
4. This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VDD or GND.
5. Measured by the voltage drop between the D and HSD terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two terminals.

Dynamic Electrical Characteristics (over operating range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$ )

| Parameter | Description | Test Conditions $^{(\mathbf{1 )}}$ | Typ. $^{(\mathbf{1 )}}$ | Units |
| :---: | :--- | :--- | :---: | :---: |
| $\mathrm{O}_{\mathrm{IRR}}$ | OFF isolation | $\mathrm{R}_{\mathrm{L}}=50-\mathrm{Ohms}, \mathrm{f}=240 \mathrm{MHz}$ | -30 | dB |
| BW | Bandwidth $(-3 \mathrm{~dB})$ | $\mathrm{R}_{\mathrm{L}}=50-\mathrm{Ohms}$ | 2110 | MHz |
| Xtalk | Crosstalk | $\mathrm{R}_{\mathrm{L}}=50-\mathrm{Ohms}, \mathrm{f}=240 \mathrm{MHz}$ | -55 | dB |

## Notes:

1. For Max or Min conditions, use the appropriate value specified under Electrical Characteristics for the applicable device type.

Switching Characteristics (over operating range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%$, $\mathrm{GND}=0 \mathrm{~V}$ )

| Parameters | Description | Test Conditions ${ }^{(1)}$ | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{\text {PD }}$ | Propagation Delay ${ }^{(2,3)}$ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ |  |  | 0.35 | ns |
| ton | Line Enable Time, $\overline{\mathrm{OE}}$ to D+/D- | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ |  |  | 55 | ns |
| toFF | Line Disable Time - $\overline{\mathrm{OE}}$ to D+/D- | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ |  |  | 25 | ns |
| $\mathrm{t}_{\mathrm{SK}}(\mathrm{P})$ | Skew between opposite transitions of the same output $\left(\text { tpHL }-t_{\text {PLH }}\right)^{2}$ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ |  | 50 |  | ps |
| $\mathrm{t}_{\mathrm{J}}$ | Total Jitter ${ }^{2}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \\ & \mathrm{pF}, \mathrm{tR}=\mathrm{t}_{\mathrm{F}}=500 \mathrm{ps} \\ & \text { at } 480 \mathrm{Mbps}(\text { PBRS }= \\ & \left.2^{15}-1\right) \end{aligned}$ |  | 200 |  | ps |

## Notes:

1. For Max or Min conditions, use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Guaranteed by design.
3. The bus switch contributes no propagational delay other than the RC delay of the on resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for $10-\mathrm{pF}$ load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interactions with the load on the driven side.

## Application Information



Application Diagram


Turn-On (ton) and Turn-Off Time (toff)


Channel OFF: HSD to D+ $V_{\overline{O E}}=V_{D D}$

Network Analyzer Setup
Source Power $=0 \mathrm{dBm}$ ( $632-\mathrm{mV}$ P-P at $50-\Omega$ load) DC Bias $=\mathbf{3 5 0} \mathbf{~ m V}$

Figure 8. OFF Isolation (OIRR)



Network Analyzer Setup
Source Power $=0 \mathrm{dBm}$ (632-mV P-P at 50- $\Omega$ load)

DC Bias $\mathbf{=} \mathbf{3 5 0} \mathbf{~ m V}$

Figure 10. Bandwidth (BW)


Figure 11. Propagation Delay


Output Skew tsK(P)

Skew Test


Channel ON
$r_{\text {On }}=\frac{V_{\text {IN }}-V_{\text {OUT }}}{I_{\text {IN }}} \boldsymbol{\Omega}$
$\mathrm{V}_{\overline{\mathrm{OE}}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$

ON-State Resistance ( $\mathbf{r o n}_{\mathrm{n}}$ )


OFF-State Leakage Current
Channel OFF
$V_{\overline{O E}}=V_{\text {IH }}$ or $V_{I L}$

OFF-State Leakage Current

$\mathrm{V}_{\text {BIAS }}=\mathrm{V}_{\mathrm{DD}}$ or $\mathbf{G N D}$
$V_{\overline{O E}}=V_{D D}$ or GND
Capacitance is measured at HSD+, $\mathrm{D}+$, and $\overline{\mathrm{OE}}$ inputs during ON and OFF conditions.

Capacitance


## Ordering Information

| Ordering Code | Package Code | Package Description | Top Mark |
| :---: | :---: | :---: | :---: |
| PI3USB32XAE | XA | 8-pin, TQFN | EK |

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- $\mathrm{E}=\mathrm{Pb}$-free and Green
- Adding X suffix = Tape/Reel

