

PRODUCT SPECIFICATION

DIMENSIONS - mm (inches)

(Bottom View)

High Directivity, Tight Tolerance, LGA Termination Directional Coupler CP0603V0836CNTR

ITF TECHNOLOGY

The ITF LGA Coupler is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and construction for reliable automatic assembly.

The ITF Coupler is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

APPLICATIONS:

- Mobile communications
- Satellite TV receivers
- **GPS**
- Vehicle location systems
- Wireless LAN's

Land **G**rid **A**rray Advantages:

- **Excellent Solderability**
- Low Parasitics
- **Better Heat Dissipation**

Inherent Low Profile Self Alignment during Reflow

	1.6±0.1
L	(0.063 ± 0.004)
w	0.84 ± 0.1
l vv	(0.033 ± 0.004)
_	0.60±0.1
'	(0.024 ± 0.004)

	0.36 ± 0.05
Α	(0.014 ± 0.002)
В	0.20±0.05
	(0.008 ± 0.002)
s	0.055±0.055
၁	(0.002 ± 0.002)

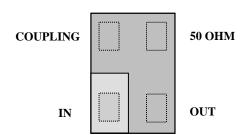
PART NUMBER CODE:

CP	0603	X	XXXX X		N	TR	
		Type	Frequency	Sub-	LGA	Taped &	
			(MHz)	Type	Term.	Reeled	
					Lead-Free		

QUALITY INSPECTION:

Finished parts are 100% tested for electrical parameters and visual characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours


TERMINATION:

Nickel/Lead Free Solder coating (Sn100) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

OPERATING TEMPERATURE:

 -40° C to $+85^{\circ}$ C

TERMINALS (Top View)

PRODUCT SPECIFICATION

Directional Coupler Type CP0603V0836CNTR

P/N	FREQUENCY [MHz]	COUPLING [dB]	I. Loss [dB]	R. Loss [dB]	Directivity [dB]
CP0603V0836CNTR	836	-10.1±0.5	-0.7 max	-21 typ	14.5 typ

PRODUCT SPECIFICATION

CP0402 / CP0603 High Directivity Couplers Test Jigs

GENERAL DESCRIPTION

These jigs are designed for testing the CP0402 and CP0603 High Directivity Couplers using a Vector Network Analyzer.

They consist of a dielectric substrate, having 50Ω microstrips as conducting lines and a bottom ground plane located at a distance of 0.254mm from the microstrips.

The substrate used is Neltec's NH9338ST0254C1BC.

The connectors are SMA type (female), 'Johnson Components Inc.' Product P/N: 142-0701-841.

Both a measurement jig and a calibration jig are provided.

The calibration jig is designed for a full 2-port calibration, and consists of an open line, short line and through line. LOAD calibration can be done by a 50Ω SMA termination.

MEASUREMENT PROCEDURE

When measuring a component, it can be either soldered or pressed using a non-metallic stick until all four ports touch the appropriate pads. Set the VNA to the relevant frequency band. Connect the VNA using a 10dB attenuator on the jig terminal connected to port 2. Follow the VNA's instruction manual and use the calibration jig to perform a full 2-Port calibration in the required bandwidths.

Place the coupler on the measurement jig as follows:

Input (Coupler) → Connector 1 (Jig) Termination (Coupler) → Connector 3 (Jig)
Coupling (Coupler) → Connector 2 (Jig)
Out (Coupler) → Connector 4 (Jig)

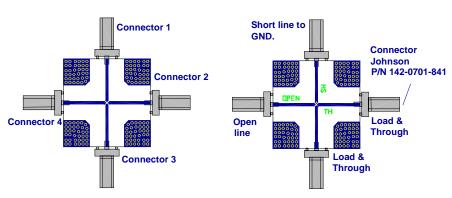
To measure I.Loss connect:

Connector1 (Jig) \rightarrow Port1 (VNA) Connector3 (Jig) \rightarrow 50 Ω

Connector2 (Jig) \rightarrow 50 Ω Connector4 (Jig) \rightarrow Port2 (VNA)

To measure R.Loss and Coupling connect:

Connector1 (Jig) \rightarrow Port1(VNA) Connector3 (Jig) \rightarrow 50 Ω Connector4 (Jig) \rightarrow 50 Ω


To measure Isolation connect:

Connector1 (Jig) \rightarrow 50 Ω Connector3 (Jig) \rightarrow 50 Ω

Connector2 (Jig) → Port2(VNA) Connector4 (Jig) → Port1 (VNA).

Measurement Jig

Calibration Jig

AVX Thin Film Operation

ITF Series

CP0603V0836CNTR Specification RevB