

10-Bit Current output D to A Converter

DAC100

1.0 SCOPE

This specification documents the detail requirements for space qualified product manufactured on Analog Devices, Inc.'s QML certified line per MIL-PRF-38535 Level V except as modified herein. The manufacturing flow described in the STANDARD SPACE LEVEL PRODUCTS PROGRAM brochure is to be considered a part of this specification. This brochure can be found at: http://www.analog.com/aerospace

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/DAC100

2.0 Part Number. The complete part number(s) of this specification follow:

Part Number Description

DAC100-703Q 10-Bit Current output D to A Converter

DAC100-713Q Radiation tested, 10-Bit Current output D to A Converter

2.1 Case Outline.

<u>Letter</u> <u>Descriptive designator</u> <u>Case Outline (Lead Finish per MIL-PRF-38535)</u> <u>16-Lead ceramic dual-in-line package (CERDIP)</u>

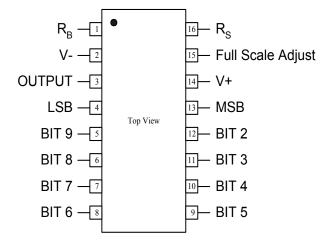
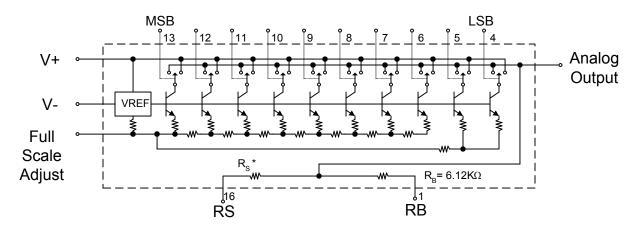



Figure 1 - <u>Terminal connections</u>.

Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2008 Analog Devices, Inc. All rights reserved.

DAC100

 $R_S = 4.88 K\Omega$

Figure 1A: Simplified schematic

3.0 Absolute Maximum Ratings. (TA = 25°C, unless otherwise noted)

V+ supply to V- supply	0V to 36V
V+ supply to output	0V to +18V
V- supply to output	0V to -18V
Power dissipation	500mW
Logic inputs to outputs	
Operating temperature range	55°C to +125°C
Storage temperature range	65°C to +150°C
Lead temperature (soldering, 60 sec.)	+300°C
Dice junction temperature (T _J)	+175°C

3.1 Thermal Characteristics:

Thermal resistance, CERDIP (Q) Package Junction-to-case (Θ_{JC}) = 29°C/W Max Junction-to-ambient (Θ_{JA}) = 91 °C/W Max Thermal resistance, FLATPAK (N) Package Junction-to-case (Θ_{JC}) = 22°C/W Max Junction-to-ambient (Θ_{JA}) = 90 °C/W Max

4.0 Electrical Table: See notes at end of table

	TABLE I					
Parameter	Symbol	Conditions 1/	Sub- group	Limit Min	Limit Max	Units
Power supply current	I+	$V_{IH} = 2.1V$	1, 2, 3		8.33	mA
	I-	V _{IH} = 2.1V	1, 2, 3		8.33	
Full range output voltage	V _{FR}	$V_{\rm IL}$ = 0.7V, Full Adjust pin tied to V-	1, 2, 3	10.0	11.1	V
Zero scale output voltage	V _{ZS}	$V_{IH} = 2.1V$	1, 2, 3		±.013	%FS
Integral nonlinearity	NL	± ½ LSB – 9 Bits	1, 2, 3		±0.1	
Full scale temperature coefficient	TCV_{FR}	V _{IL} = 0.7V, Full Scale Adjust pin tied to V-	8		±60	ppm/°
Logic inputs high	V _{IH}	V_{IN} = 2.1V to 3V (all inputs) Measured with respect to output pin allowing $\leq \pm \frac{1}{2}$ LSB change with ΔV_{IN}	1, 2, 3	2.1		V
Logic inputs low	V_{IL}	V_{IN} = 0.7V to 0V (all inputs) Measured with respect to output pin allowing $\leq \pm \frac{1}{2}$ LSB change with ΔV_{IN}	1, 2, 3		0.7	
Logic input current high	I_{IH}	V _{IH} = 6.0V, Each Input	1, 2, 3		5	μΑ
Logic input current low	I_{IL}	$V_{IL} = 0V$, Each Input	1, 2, 3		5	
Power supply sensitivity	PSS	V_{IL} = 0.7V (all inputs) V_S = $\pm 6V$ to $\pm 18V$	1, 2, 3		±0.1	%/V
Monotonicity <u>2</u> /	ΔI_{O}	Measured at each major carry code point	1	0		μА
Settling time <u>3</u> /	T_{SHL}	$R_L = 1K\Omega, C_L \le 10pF$	9		375	nS

Table I notes:

- $1/V_S = \pm 15V$, unless otherwise specified.
- 2/ The change in output current either increases or remains the same for an increasing digital input code.
- 3/ Output within $\pm \frac{1}{2}$ LSB of 10-bit accuracy final settled nominal value of V_{OUT} .

Input pulse characteristics:

Input frequency = 1MHz square wave, 50% duty cycle.

Input amplitude = 0V to 2.1V

Input signal = t_r , $t_f \le 20 \text{ nS}$

Measurement referenced to input High-to-Low Transition. DUT Settling Time to ± 0.05 % FS

DAC100

4.1 Electrical Test Requirements:

Table II		
MIL-STD-883 Test Requirements	Subgroups (see table I)	
Interim electrical parameters (pre Burn-In)	1	
Final Electrical Test Parameters	1, 2, 3, 8 <u>1/ 2/</u>	
Group A Test Requirements	1, 2, 3, 8, 9	
Group C Test Requirements	1 <u>2/</u>	
Group D Test Requirements	1	
* PDA applies to Subgroup 1 only. No other subgroups are included in PDA.		

4.2 Table III. Burn-in test delta limits.

		Table III		
TEST	BURN-IN	LIFETEST	DELTA	
TITLE	ENDPOINT	ENDPOINT	LIMIT	UNITS
$ m V_{FR}$	10.55 ± 0.55	10.55 ± 0.75	±0.2	V
V_{ZS}	±0.013	±0.018	±0.005	%FS
I+	8.33	8.33	±10%	mA
I-	8.33	8.33	±10%	mA

5.0 Life Test/Burn-In Circuit:

- **5.1** HTRB is not applicable for this drawing.
- **5.2** Burn-in is per MIL-STD-883 Method 1015 test condition B.
- **5.3** Steady state life test is per MIL-STD-883 Method 1005.

^{1/}PDA applies to subgroup 1. Deltas not included in PDA

^{2/} See table III for deltas. See table I for test conditions.

DAC100

Rev	Description of Change	Date
Α	Initiate	30-Jun-00
В	Update web address	Feb. 18, 2002
С	Update web address. Add Group C and D to table II. Add life test endpoint based on delta to table III.	Feb. 28, 2003
D	Delete Burn-In circuit	Aug. 5, 2002
D		Aug. 5, 2003
Е	Update header/footer & add to 1.0 Scope description	Feb. 21,2008
F	Remove minimum Dice Junction Temp. range in 3.0 Absolute Max. Ratings	March 31, 2008