Linear Type (Exclusively Used to Detect the Angle of Vehicle Head Lights)

Exclusive for headlight angle detection with high accuracy and space-saving design

■ Typical Specifications

Items	Specifications		
Rated Voltage	12V DC		
Operating life	2N max.		
Total resistance	100,000 cycles		
Operating temperature range	-40℃ to +105℃		

Product Line

Travel			Linearity	Minimum ord	er unit (pcs.)	Model No.	Drawing No.	
(mm)	nm) $ MOUITING MOUITING (k \Omega)$	Linearity	Japan	Export	Model No.			
8	Vertical type	4.7		2,000	4,000	RD708A029A	1	
0	Horizontal type 5		1,500	3,000	RD7081015A	2		
9	Horizontal type	5	±1%	±1%	1,800	3,600	RD7091008A	3
12	Vertical type	2.2		2,000	4,000	RD712A028A	1	
	Horizontal type	10		1,800	3,600	RD7121008A	4	

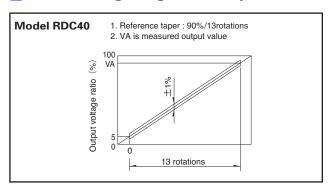
Note

For linearity, various specifications will be available, depending on the applications.

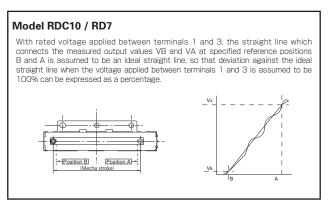
Please consult with us when placing your orders.

Packing Specifications

Tray


Model No.	Mounting	Number of pa	ckages (pcs.)	Export package	
Widuel No.	method	1 case /Japan	1 case /export packing	measurements (mm)	
RD708	Vertical	2,000	4,000	363×527×215	
ND700	Horizontal	1,500	3,000	363×507×216	
RD709	Tiorizoritai	1,800	3,600	364×508×192	
RD712	Vertical	2,000	4,000	363×527×215	
	Horizontal	1,800	3,600	363×507×216	

Dimensions Unit:mm No. Photo Style RD708A RD712A ⊸⊭ ⊸⊨ 1 0.8 max. RD712A 12 3.8 RD7081 C Reference for mounting 2 Circuit diagram 3.4 ⊸⊨ 0.3 1.5 (10.5) Mounting face 0.5 max. RD7091 15.8 ø2.05 C0.3 3 R0.3 Circuit diagram (11.4) **RD7121** C Reference for mounting 13.6 4 12 Travel Circuit diagram 1.4 (13.35) Mounting face


Resistive Position Sensors / Product Specifications

■ Method for Regulating the Linearity

Model RDC50 / RDC90 / RD6R1A / RDCC0 1. Reference taper: 100%/A 2. Index point is 50% output point(RDC50/RDC90/RDCC0) The center is in the configuration diagram condition 100 % Output voltage ratio 50 0 В Α C Series 333.3 RDC50 ±160° ±2% 80° ±30° RDC90 ±3% 260° ±122° RD6R1A 320° ±155° ±2% RDCC0 30° ±15° +2%

Resistive Position Sensors / Measurement and Test Methods

Resistive Position Sensor

(Total Resistance)

The total resistance, with the shaft (lever) placed at the end of terminal 1 or 3, shall be determined by measuring the resistance between the resistor terminals 1 and 3 unless otherwise specified.

(Rating Voltage)

The rating voltage corresponding to the rated power shall be determined by the following equation. When the resulting rated voltage exceeds the maximum operating voltage of a specific resistor, the maximum operating voltage shall be taken as the rated voltage.

 $\begin{array}{c} E = \sqrt{P \cdot R} \\ \\ E : \text{Rated voltage (V)} \\ P : \text{Rated power (W)} \\ R : \text{Total nominal resistance (Ω)} \end{array}$

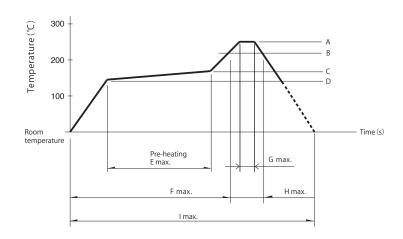
	Type					
Series Photo		RDC1010	※ RD7			
		NEW				
Direc	ction of lever	Vert	Vertical Horizont			
Effective e	electrical angle (°)	-	-	-	_	
inearity g	uarantee range (°)	_	_	-	_	
	Travel	10mm	14mm 22mm 32mm 47mm	8mm 12mm	8mm 9mm 12mm	
Operating	temperature range	−30°C to	. +85°C	-40°C to +105°C		
Operating life		50,000 cycles	200,000 cycles	100,000 cycles		
Available for automotive use		_	•	•		
Life cyc	cle (availability)	★ 2	* 2	* 2		
Mechanical	Operating force	0.25N	2N	max.		
performance	Rotational torque	_	_	-	_	
	Total resistance tolerance	±30	0%	±2	±20%	
Electrical performance	Linearity (%)	±C	0.5	±1		
	Rated voltage (V DC)	5		1	2	
	Cold	-40°C	-40℃ 240h		-40℃ 96h	
Environmental performance Dry heat		80°C 240h	105°C 96h			
	Damp heat	60℃, 90 to 9	5%RH 240h	40°C, 90 to 95%RI		
Ter	minal style	Insertion	Lead terminal/Insertion	Insertion		
	Page	47	475			

Notes

- 2. \blacksquare Indicates applicability to all products in the series.

Resistive Position Sensors / Soldering Conditions

■ Reference for Manual Soldering


Series	Tip temperature	Soldering time		
RDC50, RDC90, RDC80	350±5℃	3 ⁺¹ ₀ s		
RDC10, RD7	350℃ max.	3s max.		

■ Reference for Dip Soldering

Series	Prehe	eating	Dip so	N. C. II	
	Soldering surface temperature	Heating time	Soldering temperature	Soldering time	No. of solders
RDC501, RDC502	100 to 150℃ 1minute max. 260±5℃		260±5℃	10±1s	1 time
RD7 100℃ max.		lminute max.	260℃ max.	5s max.	1 time

Example of Reflow Soldering Condition

- 1. Cleaning Cleaning should not be attempted.
- 2. Type of solder to be used Use cream solder that contains 10 to 15 %wt flux.
- 3. Number of solder applications apply solder only once
- 4. Recommended reflow conditions

Series	А	В	С	D	Е	F	G	Н	ı	No. of reflows
RDC503 RDC506	250℃	230℃	180℃	150℃	2min.	_	5s	40s	4min.	1 time
RDC90	255℃	230℃	_	_	_	2min.	10s	1min.	4min.	1 time
RDC80	250℃	_	180℃	150℃	90±30s	_	10±1s	_	_	1 time

Notes

- When using an infrared reflow oven, solder may not always be applied as intended.
 Be sure to use a hot air reflow oven or a type that uses infrared rays in combination with hot air.
- 2. The temperatures given above are the maximum temperatures at the terminals of the sensor when employing a hot air reflow method. The temperature of the PC board and the surface temperature of the sensor may vary greatly depending on the PC board material, its size and thickness. Ensure that the surface temperature of the sensor does not rise to 250°C or greater.
- 3. Conditions vary to some extent depending on the type of reflow bath used. Be sure to give due consideration to this prior to use.

