New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

SCR

C140(2N3649-53)

C141(2N3654-58

C140 and C141 Series of Silicon Controlled Rectifiers are reverse blocking triode thyristor semiconductor devices designed primarily for high-frequency power switching applications which require blocking voltages up to 400 volts and load currents up to 35 amperes RMS, at frequencies up to 25 kHz.

For line commutated applications (phase control, AC switching) at power line frequencies, up to 35 amperes RMS, the following preferred SCR types are recommended: C35 (Pub. #160.20), and C137 (Pub. #160.45).

The C140 and C141 Series feature:

- · Contoured junction surfaces for high-voltage stability
- Shorted emitters for high dv/dt (200V/µsec)
- Distributed gates for high di/dt (400A/μsec)

Equipment designers can use the C140 and C141 SCR's in demanding applications such as:

- Choppers
- Inverters
- Regulated power supplies
- Cycloconverters
- Ultrasonic generators
- · High frequency lighting
- Sonar transmitters
- Induction heaters
- Radio transmitters

This specification sheet uses a simplified and easy-to-use rating system which graphically presents:

- Case Temperature
- Peak Anode Current
- dv/dt and Turn-off Times

for rectangular and sinusoidal anode-current waveforms

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

Download from alldatasheet.com

TYPE	DC FORWARD BLOCKING VOLTAGE Vro (1) T _G = -65°C to +120°C	PEAK FORWARD VOLTAGE PFV (1) To = -65°C to +120°C	DC REVERSE VOLTAGE V_{RO} (1) $T_{C} = -65^{\circ}C \text{ fo } +120^{\circ}C$	NON-REPETITIVE PEAK REVERSE VOLTAGE (Half Sine Wave) VROM (non-rep) (1) To = -65°C to +120°C
C140F (2N3649) C141F (2N3654)	50 volts*	50 volts*	50 volts*	75 volts*
C140A (2N3650) C141A (2N3655)	100 volts*	100 volts*	100 volts*	150 volts*
C140B (2N3651) C141B (2N3656)	200 volts*	200 volts*	200 volts*	300 volts*
C140C (2N3652) C141C (2N3657)	300 volts*	300 volts*	300 volts*	400 volts*
C140D (2N3653) C141D (2N3658)	400 volts*	400 volts*	400 volts*	500 volts*

Turn-On Current Limit (See Chart 10)	$_{}400$ amperes per $_{\mu}{ m sec}^*$
RMS Forward Current, On-State	35 amperes
DC Forward Current, On-State, T _C = 40°C	25 amperes*
Peak Rectangular Surge Forward Current (5.0msec width, $t_r = 50\mu sec$) I_{FM} (sur	ge)180 amperes*
I ² t (for fusing)165 ampere ² seconds (for	times ≥ 1.0 millisecond)
Peak Gate Power Dissipation, P _{GM}	40 watts*
Average Gate Power Dissipation, P _{G(AV)}	1.0 watt*
Peak Reverse Gate Voltage, VGRM	10 volts*
Peak Forward Gate Current, I _{GFM}	6.4 amperes*
Reverse Recovery Energy	0.002 watt sec.
Storage Temperature, T _{stg}	65°C to $+150$ °C*
Operating Temperature, T _c	-65°C to $+120$ °C*
Stud Torque	30 Lb-in (35 Kg-Cm)

CHARACTERISTICS

TEST	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
PULSE CIRCUIT COMMUTATED TURN-OFF TIME C140 (2N3649-53) C141 (2N3654-58)	t _{off} (pulse)	— —	_	15* 10*	μsec μsec	See Charts 1 and 4. $T_{\rm C}=+115^{\circ}{\rm C}$, $I_{\rm FM}=100$ amps, Approx. Sinusoidal current waveform (t, = 1.0 $\mu{\rm sec}$, $t_{\rm F}=2.05^{+0.5}_{-0.5}$ $\mu{\rm sec}$), No delay reactor, Pulse rep. rate = 400 Hz. $V_{\rm FXM}={\rm Rated}$, $V_{\rm RXM}\leqq 200$ volts, $v_{\rm RX}=30$ volts. Rate of rise of reapplied forward blocking voltage (dv/dt) = 200 volts/ $\mu{\rm sec}$ (linear ramp). Gate supply: 20 volts open circuit, 20 ohms, 1.5 $\mu{\rm sec}$ square wave pulse, Rise time = 0.1 $\mu{\rm sec}$ max.
CONVENTIONAL- CIRCUIT COMMUTATED TURN-OFF TIME C140 (2N3649-58)				* * * * * * * * * * * * * * * * * * *	usec usec	T ₀ = +120°C, I _{FE} = 10 amps (50 μsec pulse), Rectangular current waveform, Test repetition rate = 60 Hz. V _{YXE} = Rated, V _{XXE} = Rated (see Chart 1), vax = 15 volts (see Chart 1). Rate of rise of current ≤ 10 amps/μsec. Rate of fall of current ≤ 5 amps/μsec. Rate of rise of reapplied forward blocking voltage (dv/dt) = 200 volts/μsec (linear ramp). Gata bias = 0 volts 100 ohms (during turnsoft time internal).

res ***	SYMBOL	MIN.	TYP.	MAX	UNITS	TEST CONDITIONS
DC REVERSE OR FORWARD BLOCKING CURRENT (1)	I _{ro} or I _{ro}					$T_{c}=+25^{\circ}C$
C140F (2N3649) C141F (2N3654)		_	1.0	6.0	mAdc	$V_{RO} = V_{FO} = 50 V DC$
C140A (2N3650) C141A (2N3655)		_	1.0	6.0	mAdc	$V_{RO} = V_{FO} = 100 V DC$
C140B (2N3651) C141B (2N3656)		_	1.0	6.0	mAdc	$V_{RO} = V_{FO} = 200 V DC$
C140C (2N3652) C141C (2N3657)		_	1.0	5.5	mAdc	$V_{RO} = V_{FO} = 300 V DC$
C140D (2N3653) C141D (2N3658)		. —	1.0	4.0	mAdc	$V_{RO} = V_{FO} = 400 V DC$
DC REVERSE OR FORWARD BLOCKING	I _{RO} or I _{FO}	en reasons societies	1 - 4 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	A STATE OF THE STA	To the last	$T_0 = +120^{\circ}C$
CURRENT (1) C140F (2N3649)			5.0	6.0*	mAde	$V_{BO} = V_{PO} = 50 \text{V DC}$
C141F (2N3654) C140A (2N3650)		<u>-</u>	5.0	6.0*	mAdc	$V_{BO} = V_{PO} = 100 \text{V DC}$
C141A (2N3655) C140B (2N3651)			5.0	6.0*	mAdc	V ₈₀ = V ₇₀ = 200V DC
C141B (2N3656) C140C (2N3652)			5.0	5.5*	mAde	$V_{20} = V_{P0} = 300 \text{V DC}$
C141C (2N3657) C140D (2N3653)	(• · · · · · · · · · · · · · · · · · ·		3.5	4.0*	mAde	$V_{R0} = V_{P0} = 400 \text{V DC}$
C141D (2N3658)	T		80	180	mAdc	$T_{\rm c}=+25^{\circ}{ m C}, V_{\rm FX}=6{ m Vdc},$
GATE TRIGGER CURRENT	Іст		80	180	III/Auc	$R_{\rm L} = 4 \text{ ohms}$
		_	150	500*	mAdc	$T_c = -65$ °C, $V_{FX} = 6Vdc$, $R_L = 2$ ohms
GATE TRIGGER VOLTAGE	V _{GT}	_	1.5	3.0	Vde	T ₀ = +25°C, V _{yx} = 6 Vdc, R _L = 4 ohms
	· · · · · · · · · · · · · · · · · · ·	0.25*	_		Vde	$T_0 = +120$ °C, $V_{Fx} = Rated$, $R_L = 200$ ohms
		_	2.0	4.5*	Vdc	$T_c = -65$ °C, $V_{FX} = 6$ Vdc, $R_L = 2$ ohms
PEAK ON-VOLTAGE	$V_{\mathbf{F}}$	_	1.8	2.05*	v	$T_{\rm c}=+25^{\circ}{ m C},~I_{\rm FM}=25{ m A}$ 1msec. pulse. Duty cycle = 1%
HOLDING CURRENT	رکردی لا افرانسیان و موانید اوردودی			21.7		Anode supply = 24 Vdc Initial forward current pulse, 0.1ms to 10ms wide, = 3.0A & 3.2 3.2 3.2
	W. Park	Andrews Control of the Control of th	75	150	mAde	Tc = +25°C. Gate supply: 10V open six- cuit, 20 ohms, 45 µsec min. pulse width:
	January Salaman		150	350*	mAde (To = -65°C, Gate supply: 20V open circuit, 20 ohms, 45 µsec min: pulse wifth:
EFFECTIVE THERMAL RESISTANCE (DC)	$ heta_{ exttt{J-C}}$	_	0.85	1.7*	°C/watt	
RATE OF RISE OF FORWARD BLOCKING VOLTAGE THAT WILL NOT TURN ON SCR	dv/dt	200*		The state of the s	volts/ #Sec	$T_{c}=+120^{\circ}\text{C}.$ Gate open circuited. $V_{ro}=\text{Rated}$