

SB520 – SB5100

5.0A Axial Leaded Schottky Barrier Diode

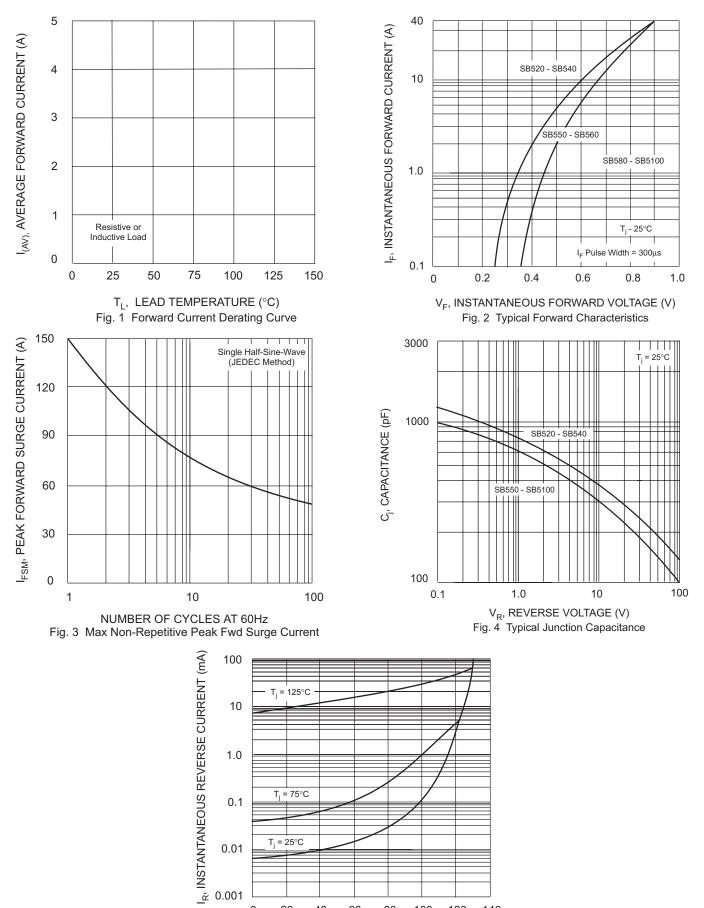
Features

- Schottky Barrier Chip
- Guard Ring Die Construction for Transient Protection
- High Current Capability
- Low Power Loss, High Efficiency
- High Surge Current Capability
- For Use in Low Voltage, High Frequency Inverters, Free Wheeling, and Polarity Protection Applications

Mechanical Data

- Case: DO-201AD, Molded Plastic
- Terminals: Plated Leads Solderable per MIL-STD-202, Method 208
- Polarity: Cathode Band
- Weight: 1.2 grams (approx.)
- Mounting Position: Any
- Marking: Type Number
- Lead Free: For RoHS / Lead Free Version, Add "-LF" Suffix to Part Number, See Page 4

DO-201AD Min Dim Max 25.4 Α В 7.20 9.50 С 1.20 1.30 D 4.80 5.30 All Dimensions in mm


Maximum Ratings and Electrical Characteristics @T_A=25°C unless otherwise specified

Single Phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Characteristic	Symbol	SB520	SB530	SB540	SB550	SB560	SB580	SB5100	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	Vrrm Vrwm Vr	20	30	40	50	60	80	100	V
RMS Reverse Voltage	VR(RMS)	14	21	28	35	42	56	70	V
Average Rectified Output Current $@T_L = 100^{\circ}C$ (Note 1)	lo	5.0							А
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150							A
Forward Voltage @I _F = 5.0A	Vfm	0.55			0.70		0.85		V
Peak Reverse Current $@T_A = 25^{\circ}C$ At Rated DC Blocking Voltage $@T_A = 100^{\circ}C$	IRM	0.5 50						mA	
Typical Junction Capacitance (Note 2)	Cj	500 400					pF		
Typical Thermal Resistance (Note 1)	RθJA	10						°C/W	
Operating and Storage Temperature Range	Tj, Tstg	-65 to +150							°C

Note: 1. Valid provided that leads are kept at ambient temperature at a distance of 9.5mm from the case. 2. Measured at 1.0 MHz and applied reverse voltage of 4.0V D.C.

PERCENT OF RATED PEAK REVERSE VOLTAGE (%) Fig. 5 Typical Reverse Characteristics