

DATASHEET

SMD • Side View LEDs EAPL3811WA0

Features

- Side view white LED.
- White SMT package.
- Lead frame package with individual 2 pins.
- Wide viewing angle
- Soldering methods: IR reflow soldering
- Pb-free
- The product itself will remain within RoHS compliant version.
- Compliance with EU REACH.
- Compliance Halogen Free .(Br <900 ppm ,Cl <900 ppm , Br+Cl < 1500 ppm).

Description

Due to the package design, EAPL3811WA0 has wide viewing angle, low power consumption and white LEDs are devices which are materialized by combing blue chips and special phosphor. This feature makes the LED ideal for light guide application.

Applications

- Mobile phones.
- Indicators.
- Illuminations.
- Switch lights.

Device Selection Guide

Chip	Emitted Color	Resin Color	
Material	Emitted Color		
InGaN	Pure White	Water Clear	

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit
Reverse Voltage	V _R	5	V
Forward Current	$I_{\rm F}$	30	mA
Peak Forward Current (Duty 1/10 @10ms)	$I_{\rm FP}$	100	mA
Power Dissipation	Pd	110	mW
Operating Temperature	Topr	-40 ~ +85	°C
Storage Temperature	Tstg	-40 ~ +90	°C
Soldering Temperature	Tsol	Reflow Soldering : $260 \degree$ for 10 sec.Hand Soldering : $350 \degree$ for 3 sec.	

Note: 1. The products are sensitive to static electricity and must be carefully taken when handling products.

Electro-Optical Characteristics (Ta=25°C)

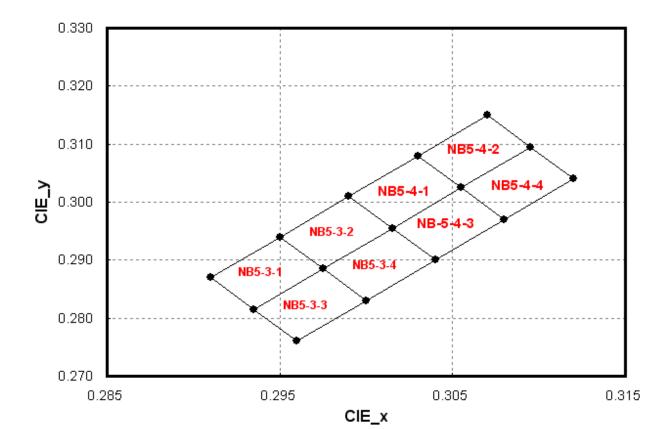
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Luminous Intensity	I_V	1800		2050	mcd	
Viewing Angle	201/2		120		deg	I _F =20mA
Forward Voltage	V _F	2.95		3.25	V	
Reverse Current	I _R			50	μA	V _R =5V

Bin Range of Luminous Intensity

Bin Code	Mcd (Min.)	Mcd (Max.)	Unit	Condition
34	1800	1850		
35	1850	1900	mcd	I _F =20mA
36	1900	1950		
37	1950	2000		
38	2000	2050		

Note: Tolerance of Luminous Intensity : $\pm 7\%$

Bin Range of Forward Voltage

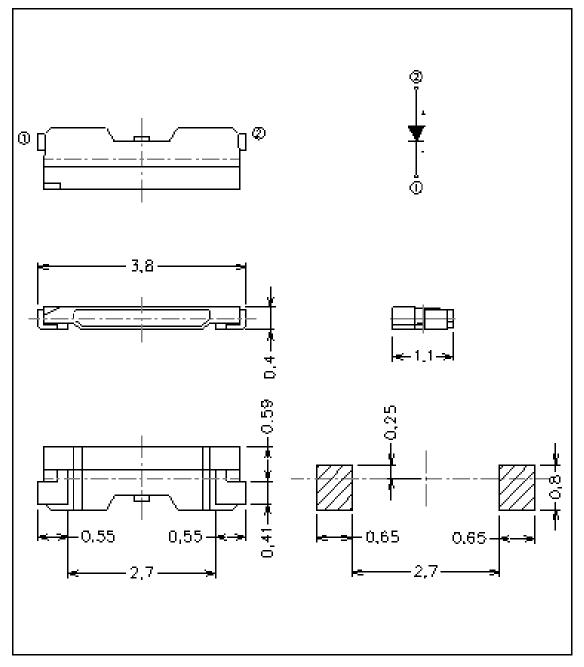

Group	Bin Code	Min.	Max.	Unit	Condition	
	6-1	2.95	3.05	v		
7	6-2	3.05	3.15		I _F =20mA	
	7-1	3.15	3.25			

Note: Tolerance of Forward Voltage: $\pm 0.05V$

Chromaticity Coordinates of Bin Code

Bin Code	CIE_x	CIE_y	Bin Code	CIE_x	CIE_y
NB5-3-1	0.2935	0.2815		0.2975	0.2885
	0.2910	0.2870	NB5-3-2	0.2950	0.2940
1125 5 1	0.2950	0.2940		0.2990	0.3010
	0.2975	0.2885		0.3015	0.2955
-	0.2960	0.2760		0.3000	0.2830
NB5-3-3	0.2935	0.2815	NB5-3-4	0.2975	0.2885
1125 5 5	0.2975	0.2885		0.3015	0.2955
	0.3000	0.2830		0.3040	0.2900
-	0.3015	0.2955		0.3055	0.3025
NB5-4-1	0.2990	0.3010	NB5-4-2	0.3030	0.3080
1125 1 1	0.3030	0.3080		0.3070	0.3150
	0.3055	0.3025		0.3095	0.3095
	0.3040	0.2900		0.3080	0.2970
	0.3015	0.2955		0.3055	0.3025
NB5-4-3	0.3055	0.3025	NB5-4-4	0.3095	0.3095
	0.3080	0.2970		0.3120	0.3040

Note: Tolerance of Chromaticity Coordinates: ± 0.01


The C.I.E. 1931 Chromaticity Diagram

5 Copyright © 2014, Everlight All Rights Reserved. Release Date : 19.May.2015. Issue No: V3

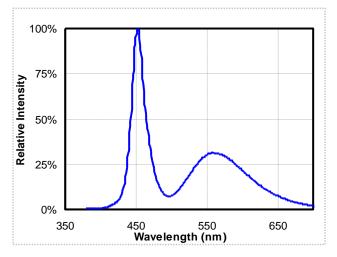
DATASHEET SMD • Side View LEDs EAPL3811WA0

Package Outline Dimensions

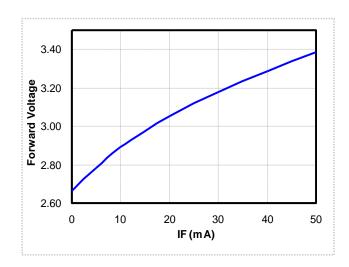
Note:

The tolerances unless mentioned is ± 0.1 mm, Unit = mm.

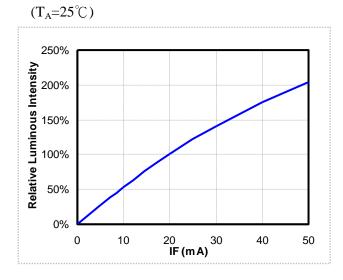
6 Copyright © 2014, Everlight All Rights Reserved. Release Date : 19.May.2015. Issue No: V3


Issue No: DSE-0012959

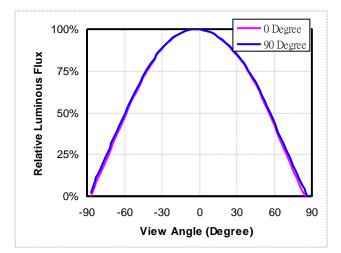
www.everlightamericas.com


Typical Electro-Optical-Thermal Characteristics Curves

1. Spectrum Distribution


 $(T_A=25^{\circ}C, I_F=20mA)$

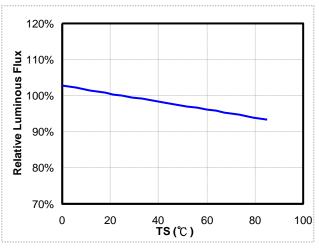
3. Relative Forward Voltage vs. Forward Current $(T_A=25^{\circ}C)$



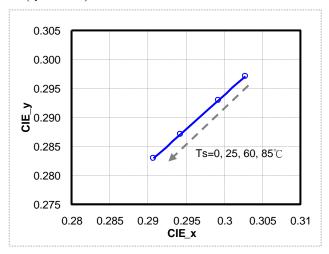
2. Relative Luminous Flux vs. Forward Current

4. Radiation Diagram

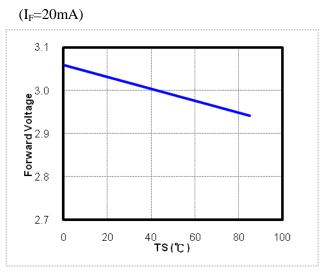
 $(T_A=25^{\circ}C, I_F=20mA)$

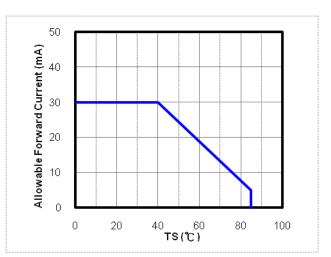


www.everlightamericas.com


Typical Electro-Optical-Thermal Characteristics Curves

5. Relative Luminous Flux vs. Solder Temperature

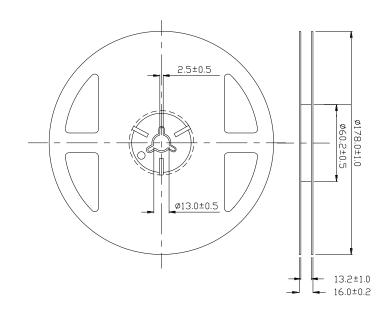



7. Chromaticity Coordinates vs. Solder Temperature (I_F=20mA)

6. Forward Voltage vs. Solder Temperature

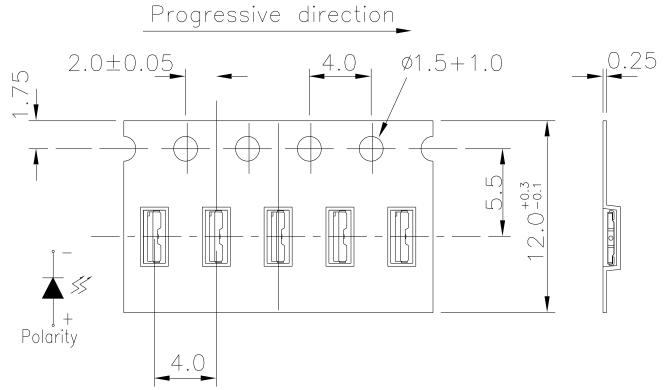
8. Forward Current De-rating Curve

www.everlightamericas.com

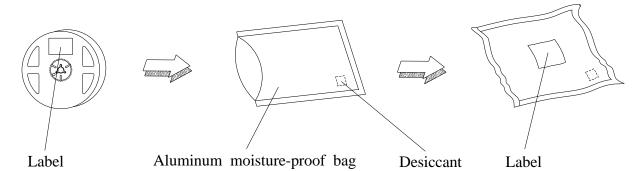


Label Explanation

- CAT: Luminous Intensity Rank
- HUE: Chromaticity Coordinates
- REF: Forward Voltage Rank


Reel Dimensions

Note:


The tolerances unless mentioned is ± 0.1 mm, Unit = mm.

Carrier Tape Dimensions: Loaded Quantity 250 up/500/1000/2000 pcs. Per Reel

Note: The tolerances unless mentioned is ± 0.1 mm, Unit = mm.

Moisture Resistant Packaging

10 Copyright © 2014, Everlight All Rights Reserved. Release Date : 19.May.2015. Issue No: V3

Reliability Test Items and Conditions

The reliability of products shall be satisfied with items listed below. Confidence level : 90%

LTPD : 10%

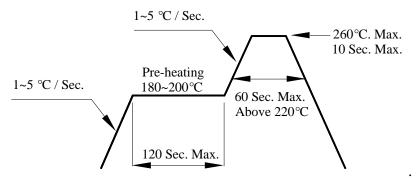
		Test Conditio	n	Test Hours	Crit	Criteria	
NO	Item	Temp./ Humidity	I _F (mA)	/ Times	Iv @ 20mA	V _F @ 20mA	
1	Reflow Soldering	$TSld = 260^{\circ}C$, Max.	10sec.	2 times	<±5% <±5%		
2	Temperature Cycle	-40°C ~ 1 30min. (5min.)	200 cycles				
3	Thermal Shock	-10°C ~ 1 20min. (<15sec.)	00°C 20min.	200 cycles			
4	Low Temp. Storage	Ta= -40°C		1000 hrs			
5	High Temp. Storage	Ta= 100°C		1000 hrs			
6	Temp. Humidity Storage	Ta= 60°C/90%RH	$= 60^{\circ}C / 90\%$ RH 1000 hrs		Iv > 70%,		
7	Steady State Operating Life of Low Temp.	Ta= -40°C	20	1000 hrs	VF <	110%,	
8	Steady State Operating Life Condition 1	Ta= 25°C/ Room Humidity	20	1000 hrs			
9	Steady State Operating Life Condition 2	Ta= 60°C	20	1000 hrs			
10	Steady State Operating Life of High Temp.	Ta= 85℃	5	1000 hrs			
11	Steady State Operating Life of High Humidity Heat	Ta= 60°C/90%RH	20	1000 hrs			

Notes:

1. Sampling for each test item: 22 (pcs.)

2. Test board: PCB board thickness=1.0mm, copper layer thickness=0.07mm, Rth j-a= 380° C/W.

3. Measurements are performed after allowing the LEDs to return to room temperature



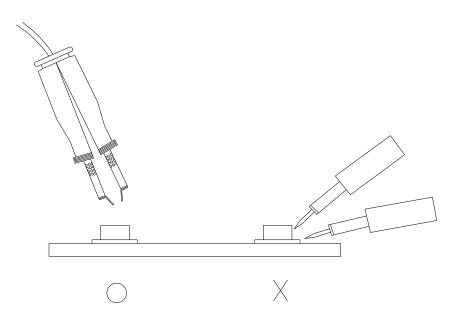
Precautions for Use

1. Over-current-proof

Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).

2. Soldering Condition

- 2.1 Pb-free solder temperature profile
- 2.2 Reflow soldering should not be done more than two times.
- 2.3 When soldering, do not put stress on the LEDs during heating.
- 2.4 After soldering, do not warp the circuit board.
- 3. Soldering Iron


Each terminal is to go to the tip of soldering iron temperature less than 350° C for 3 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

4. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

- 5. Storage
- 5.1 Do not open moisture proof bag before the products are ready to use.
- 5.2 Before opening the package: The LEDs should be used within one year and kept at 30° C or less and 70% RH or less.
- 5.3 After opening the package: We recommend that the LED should be soldered quickly (within 3 days). The soldering condition is 30° C or less and 60° RH or less. If unused LEDs remain, it should be stored in moisture proof.
- 5.4 If the moisture absorbent material (silica gel) has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions.Baking treatment: 60±5°C for 24 hours. (One time only)

6. Handling Indications

During processing, mechanical stress on the surface should be minimized as much as possible. Sharp objects of all types should not be used to pierce the sealing compound.