

PNP SWITCHING SILICON TRANSISTOR

Qualified per MIL-PRF-19500/290

Qualified Levels: JAN, JANTX, JANTXV and JANS


DESCRIPTION

This family of 2N2904 and 2N2905A switching transistors are military qualified up to the JANS level for high-reliability applications. These devices are also available in a TO-5 package. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N2904 through 2N2905A series.
- JAN, JANTX, JANTXV, and JANS qualifications are available per MIL-PRF-19500/290.
 (See part nomenclature for all available options.)
- RoHS compliant versions available (commercial grade only).

TO-39 (TO-205AD) Package

Also available in:

TO-5 package (long-leaded) 2N2904AL & 2N2905AL

APPLICATIONS / BENEFITS

- General purpose transistors for high speed switching applications.
- Military and other high-reliability applications.

MAXIMUM RATINGS

		Value		
Parameters / Test Conditions		2N2904 2N2905	2N2904A 2N2905A	Unit
Collector-Emitter Voltage	V_{CEO}	40	60	V
Collector-Base Voltage	V_{CBO}	60		V
Emitter-Base Voltage	V_{EBO}	5.0		V
Thermal Resistance Junction-to-Ambient	$R_{\Theta JA}$	195		°C/W
Thermal Resistance Junction-to-Case	R _{OJC}	50		°C/W
Collector Current	Ic	600		mA
Total Power Dissipation @ $T_A = +25 ^{\circ}\text{C}^{(1)}$ @ $T_C = +25 ^{\circ}\text{C}^{(2)}$	P _T	0.8 3.0		W
Operating & Storage Junction Temperature Range		-65 to	+200	°C

Notes: 1. For derating, see figures 1 and 2.

2. For thermal impedance, see figures 3 and 4.

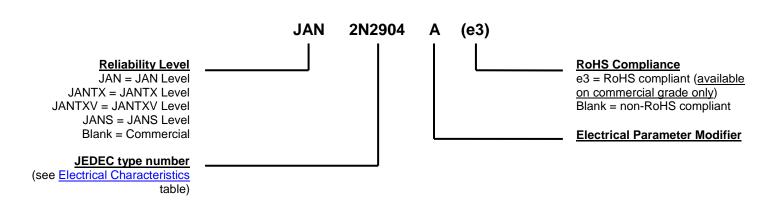
MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed, kovar base, nickel cap.
- TERMINALS: Leads are kovar, nickel plated, and finish is solder dip (Sn63/Pb37). Can be RoHS compliant with pure matte-tin (commercial grade only).
- MARKING: Part number, date code, manufacturer's ID.
- POLARITY: PNP (see package outline).
- WEIGHT: Approximately 1.064 grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS			
Symbol	Definition			
C_obo	Common-base open-circuit output capacitance.			
I _{CEO}	Collector cutoff current, base open.			
I _{CEX}	Collector cutoff current, circuit between base and emitter.			
I _{EBO}	Emitter cutoff current, collector open.			
h_{FE}	Common-emitter static forward current transfer ratio.			
V_{CEO}	Collector-emitter voltage, base open.			
V_{CBO}	Collector-emitter voltage, emitter open.			
V_{EBO}	Emitter-base voltage, collector open.			

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown	Current				
$I_C = 10 \text{ mA}$	2N2904, 2N2905	$V_{(BR)CEO}$	40		V
	2N2904A, 2N2905A	, ,	60		
Collector-Emitter Cutoff Volta	ge				
$V_{CE} = 40 \text{ V}$	2N2904, 2N2905			1.0	
V _{CE} = 60 V	2N2904A, 2N2905A	I _{CES}		1.0	μΑ
Collector-Base Cutoff Current					
$V_{CB} = 60 \text{ V}$	All Types	I _{CBO1}		10	μΑ
V _{CB} = 50 V	2N2904, 2N2905 2N2904A, 2N2905A	I _{CBO2}		20 10	nA nA
V _{CB} = 50 V @ T _A = +150 °C	2N2904, 2N2905 2N2904A, 2N2905A	I _{CBO3}		20 10	μA μA
Emitter-Base Cutoff Current					
$V_{EB} = 3.5 \text{ V}$		I _{EBO}		50	nA
V _{EB} = 5.0 V				10	μA

ON CHARACTERISTICS (1)						
Forward-Current Transfer Ra						
$I_C = 0.1 \text{ mA}, V_{CE} = 10 \text{ V}$	2N2904 2N2905 2N2904A 2N2905A		20 35 40 75			
$I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}$	2N2904 2N2905 2N2904A 2N2905A		25 50 40 100	175 450 175 450		
$I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}$	2N2904 2N2905 2N2904A 2N2905A	h _{FE}	35 75 40 100			
$I_C = 150 \text{ mA}, V_{CE} = 10 \text{ V}$	2N2904, 2N2904A 2N2905, 2N2905A		40 100	120 300		
$I_{C} = 500 \text{ mA}, V_{CE} = 10 \text{ V}$	2N2904 2N2905 2N2904A 2N2905A		20 30 40 50			

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted (continued)

Parameters / Test Conditions		Min.	Max.	Unit	
ON CHARACTERISTICS (1) (continued)					
Collector-Emitter Saturation Voltage					
$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$	V _{CE(sat)}		0.4	V	
$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$	3 = (53.1)		1.6		
Base-Emitter Saturation Voltage					
$I_{\rm C} = 150 \text{mA}, I_{\rm B} = 15 \text{mA}$	$V_{BE(sat)}$		1.3	V	
$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$			2.6		

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, duty cycle \leq 2.0%.

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Small-Signal Short-Circuit Forward-Current					
Transfer Ratio	0110004			0.5	
$I_{\rm C} = 1.0 \text{mA}, V_{\rm CE} = 10$	2N2904			25	
V, f = 1.0 kHz	2N2905	h _{fe}		50	
	2N2904A, 2N2905A			40	
Small-Signal Short-Circuit F	orward-Current				
Transfer Ratio		lh l		2.0	
$I_{\rm C} = 50 \text{mA}, V_{\rm CE} = 20 \text{V},$		h _{fe}		2.0	
f = 100 MHz					
Output Capacitance					
$V_{CB} = 10 \text{ V}, I_{E} = 0,$		C_obo		8.0	pF
$100 \text{ kHz} \le \text{f} \le 1.0 \text{MHz}$					
lutput Capacitance					
$V_{EB} = 2.0 \text{ V}, I_{C} = 0,$		C_{ibo}		30	pF
100 kHz ≤ f ≤ 1.0MHz					

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-On Time	^t on		45	ns
Turn-Off Time	t _{off}		300	ns

GRAPHS

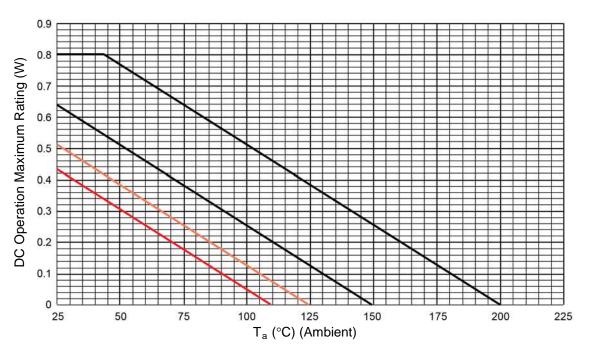


FIGURE 1

Derating (R_{0JA}) PCB

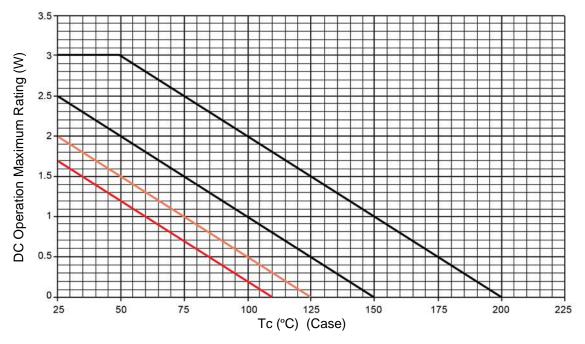


FIGURE 2

Derating (R_{0JA}) PCB

GRAPHS (continued)

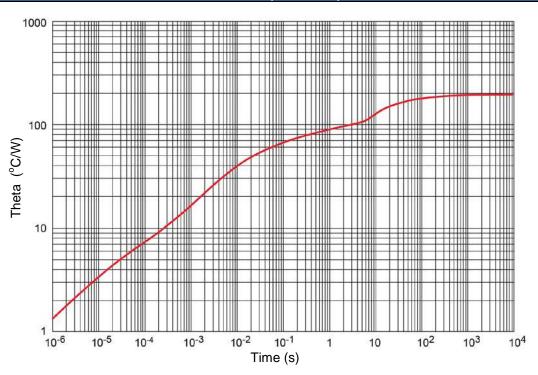


FIGURE 3 Thermal impedance graph ($R_{\theta JA}$)

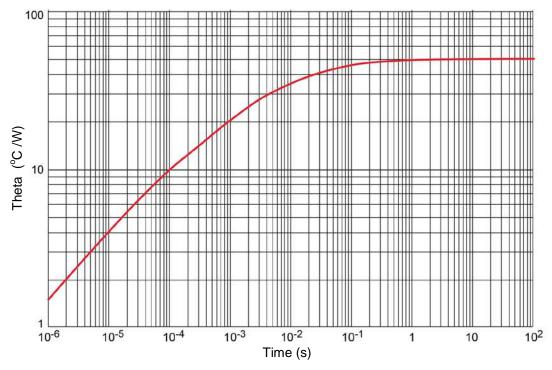
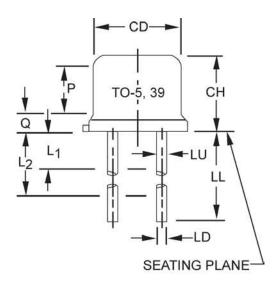
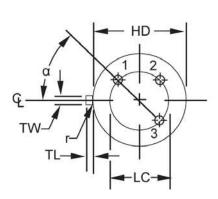




FIGURE 4 Thermal impedance graph ($R_{\theta JA}$)

PACKAGE DIMENSIONS

	Dimensions				
Symbol	Inch		Millimeters		Note
	Min	Max	Min	Max	
CD	0.305	0.335	7.75	8.51	
СН	0.240	0.260	6.10	6.60	
HD	0.335	0.370	8.51	9.40	
LC	0.20	00 TP	5.08	3 TP	6
LD	0.016	0.021	0.41	0.53	7, 8
LL	0.500	0.750	12.70	19.05	7, 8, 12
LU	0.016	0.019	0.41	0.48	7, 8
L1		0.050		1.27	7, 8
L2	0.250		6.35		7, 8
Р	0.100		2.54		
Q		0.050		1.27	5
TL	0.029	0.045	0.74	1.14	4
TW	0.028	0.034	0.71	0.86	3
r		0.010		0.25	10
α	45° TP		45° TP		6

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Beyond r (radius) maximum, TW shall be held for a minimum length of .011 (0.28 mm).
- 4. Dimension TL measured from maximum HD.
- 5. Body contour optional within zone defined by HD, CD, and Q.
- 6. Leads at gauge plane .054 +.001 -.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
- 7. Dimension LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
- 8. All three leads.
- 9. The collector shall be internally connected to the case.
- 10. Dimension r (radius) applies to both inside corners of tab.
- 11. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 12. For "L" suffix devices, dimension LL is 1.50 (38.10 mm) minimum, 1.75 (44.45 mm) maximum.
- 13. Lead 1 = emitter, lead 2 = base, lead 3 = collector.