

NPN Silicon High-Frequency Transistor

Qualified per MIL-PRF-19500/398

Qualified Levels: JAN, JANTX, JANTXV and JANS

DESCRIPTION

This 2N3866(A) silicon VHF-UHF amplifier transistor is military qualified up to the JANS level for high-reliability applications. It is also available in a low profile UB package.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N3866 number
- JAN, JANTX, JANTXV and JANS qualifications also available per MIL-PRF-19500/398
- RoHS compliant

APPLICATIONS / BENEFITS

- Short leaded TO-205AD package
- Lightweight
- · Military and other high-reliability applications

MAXIMUM RATINGS @ $T_A = +25$ °C unless otherwise noted

Parameters / Test Conditions	Symbol	Value	Unit	
Junction & Storage Temperature		T_J , T_{stg}	-65 to +200	°C
Thermal Resistance Junction-to-Case		R _{eJC}	60	°C/W
Thermal Resistance Junction-to-Ambient		$R_{\Theta JA}$	175	°C/W
Collector – Emitter Voltage		V_{CEO}	30	V
Collector – Base Voltage		V _{CBO}	60	V
Emitter - Base Voltage		V _{EBO}	3.5	V
Total Power Dissipation (1)	@ $T_A = +25 {}^{\circ}C^{(1)}$	P⊤	1.0	W
	@ $T_C = +25 {}^{\circ}C^{(2)}$	гт	2.9	v v
Collector Current		Ic	0.4	Α

Notes: 1. Derated linearly 5.71 mW/°C for T_A > +25 °C

2. Derated at 16.6 mW/°C for $T_C > +25$ °C

TO-205AD (formerly TO-39) Package

Also available in:

UB package (surface mount) 2N3866(A)UB

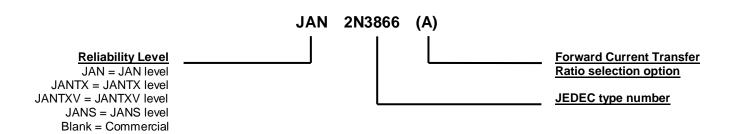
MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

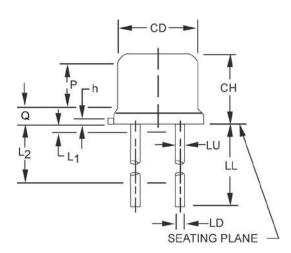

www.microsemi.com

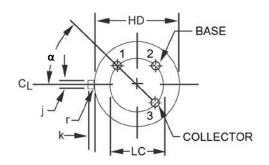
MECHANICAL and PACKAGING

- CASE: Hermetically sealed, kovar base, nickel cap
- TERMINALS: Gold plate, solder dip (Sn63/Pb37) available upon request. NOTE: Solder dip will eliminate RoHS compliance.
- MARKING: Part number, date code, manufacturer's ID and serial number
- POLARITY: NPN
- WEIGHT: Approximately 1.064 grams
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS				
Symbol	Definition			
I _B	Base current: The value of the dc current into the base terminal.			
I _C	Collector current: The value of the dc current into the collector terminal.			
V_{BE}	Base-emitter voltage: The dc voltage between the base and the emitter.			
V _{CB}	Collector-base voltage: The dc voltage between the collector and the base.			
V _{CBO}	Collector-base voltage, base open: The voltage between the collector and base terminals when the emitter terminal is open-circuited.			
V _{CE}	Collector-emitter voltage: The dc voltage between the collector and the emitter.			
V _{CEO}	Collector-emitter voltage, base open: The voltage between the collector and the emitter terminals when the base terminal is open-circuited.			
V _{CC}	Collector-supply voltage: The supply voltage applied to a circuit connected to the collector.			
V _{EBO}	Emitter-base voltage, collector open: The voltage between the emitter and base terminals with the collector terminal open-circuited.			


ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted


Characteristics	Symbol	Min	Max	Unit
Cital acteristics	Symbol	IVIIII	IVIAX	Offic
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage				
$I_C = 5 \text{ mA}$	V _{(BR)CEO}	30		V
Collector-Base Breakdown Voltage	.,			
$I_{C} = 100 \mu A$	V _{(BR)CBO}	60		V
Emitter-Base Breakdown Voltage		2.5		.,
I _E = 100 μA	V _{(BR)EBO}	3.5		V
Collector-Emitter Cutoff Current	I _{CEO}		20	μΑ
V _{CE} = 28 V				•
Collector-Emitter Cutoff Current	I _{CES1}		100	μΑ
V _{CE} = 55 V				<u> </u>
ON CHARACTERISTICS (1)				
Forward-Current Transfer Ratio				
$I_C = 50 \text{ mA}, V_{CE} = 5.0 \text{ V}$ 2N3866		15	200	
2N3866		25	200	
$I_C = 360 \text{ mA}, V_{CE} = 5.0 \text{ V}$ 2N3866 2N3866A		5		
	`	8		
Collector-Emitter Saturation Voltage	V _{CE(sat)}		1.0	V
I _C = 100 mA, I _B = 10 mA Collector-Emitter Cutoff Current – High Temp Operation				
$V_{CE} = 55 \text{ V}, T_A = +150 ^{\circ}\text{C}$	I _{CES2}		2.0	mA
Forward-Current Transfer Ratio –				
Low Temperature Operation 2N3866	h	7		
$V_{CE} = 5.0 \text{ V}, I_{C} = 50 \text{ mA}, T_{A} = -55 \text{ °C}$ 2N3866A	1 20	12		
7 CE 010 17, 10 00 1111 1, 1A 00 0 2 21100001	•			
DYNAMIC CHARACTERISTICS				
Magnitude of Common Emitter Small-Signal				
Short-Circuit Forward Current Transfer Ratio 2N3866	1 '-1	2.5	8.0	
I _C = 50 mA, V _{CE} = 15 V, f = 200 MHz 2N3866A	A	4.0	7.5	
Output Capacitance	C_obo		3.5	pF
$V_{CB} = 28 \text{ V}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	- 000		0.0	ρ.
POWER OUTPUT CHARACTERISTICS				
Power Output				
$V_{CC} = 28 \text{ V}; P_{in} = 0.15 \text{ W}; f = 400 \text{ MHz} *$	P _{1out}	1.0	2.0	W
V _{CC} = 28 V; P _{in} = 0.075 W; f = 400 MHz *	P _{2out}	0.5		VV
* See Figure 4 on MIL-PRF-19500/398				
Collector Efficiency	n1	15		
$V_{CC} = 28 \text{ V}; P_{in} = 0.15 \text{ W}; f = 400 \text{ MHz}$	n1 n2	45 40		%
$V_{CC} = 28 \text{ V}; P_{in} = 0.075 \text{ W}; f = 400 \text{ MHz}$	112	40		
Clamp Inductive				
Collector-Emitter Breakdown Voltage	V _{(BR)CEX}	55		V
$V_{BE} = -1.5 \text{ V}, I_{C} = 40 \text{ mA}$				

⁽¹⁾ Pulse Test: pulse width = 300 μs , duty cycle $\leq 2.0\%$

PACKAGE DIMENSIONS

	Dimensions				
Ltr	Inch		Millimeters		Notes
	Min	Max	Min	Max	
CD	0.305	0.335	7.75	8.51	
СН	0.240	0.260	6.10	6.60	
HD	0.335	0.370	8.51	9.40	
h	0.009	0.041	0.23	1.04	
j	0.028	0.034	0.71	0.86	3
k	0.029	0.045	0.74	1.14	3, 4
LD	0.016	0.021	0.41	0.53	8, 9
LL	0.500	0.750	12.7	19.05	
LC	0.200 TP		5.08 TP		7
LU	0.016	0.019	0.41	0.48	8, 9
L1	-	0.050	-	1.27	8, 9
L2	0.250	-	6.35	1	8, 9
Р	0.100	-	2.54	-	7
Q	-	0.030	•	0.76	5
r	-	0.010	-	0.25	10
α	45° TP		45° TP		7

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for information only.
- 3. Beyond r (radius) maximum, TL shall be held for a minimum length of 0.011 inch (0.28 mm).
- 4. Dimension TL measured from maximum HD.
- 5. Body contour optional within zone defined by HD, CD, and Q.
- 6. CD shall not vary more than .010 inch (0.25 mm) in zone P. This zone is controlled for automatic handling.
- 7. Leads at gauge plane 0.054 +0.001 -0.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within 0.007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
- 8. Dimension LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
- 9. All three leads.
- 10. The collector shall be internally connected to the case.
- 11. Dimension r (radius) applies to both inside corners of tab.
- 12. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 13. Lead 1 = emitter, lead 2 = base, lead 3 = collector.