N-Type Fixed Attenuator

 50Ω DC to 6000 MHz 1dB

Maximum Ratings

Operating Temperature -45°C to 100°C Storage Temperature -55°C to 100°C

Permanent damage may occur if any of these limits are exceeded

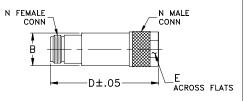
Features

- wideband coverage, DC to 6000 MHz
- 1 watt rating
- rugged unibody construction
- · off-the-shelf availability
- · very low cost

Applications

- impedance matching
- · signal level adjustment

UNAT-1+


CASE STYLE: FF779

Connectors Model UNAT-1+ N-Type

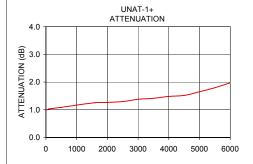
+RoHS Compliant

The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

Outline Drawing

Outline Dimensions (inch)

wt	Е	D	В
grams	.718	2.11	.68
72.5	18.24	53.59	17.27


Electrical Specifications

FREQ. RANGE (MHz)	GE (dB)			VSWR (:1)					MAX. INPUT POWER		
		DC-3 GHz	3-4.5 GHz	4.5-6 GHz	DC-6 GHz	DC-3	GHz	3-4.5	GHz	4.5-6 GHz	(W)
f _L -f _U	Nom.	Тур.	Тур.	Тур.	Тур.	Тур.	Max.	Тур.	Max.	Тур.	
DC-6000	1±0.3	0.20	0.15	0.10	0.45	1.05	1.20	1.10	1.43	1.40	1.0

^{*} Attenuation varies by 0.3 dB max. over temperature.

Typical Performance Data

Frequency (MHz)	Attenuation (dB)	VSWR (:1)
10	0.99	1.00
50	1.01	1.01
100	1.03	1.02
500	1.09	1.07
1000	1.17	1.11
1600	1.25	1.12
2000	1.27	1.10
2500	1.30	1.09
3000	1.38	1.11
3500	1.41	1.16
4000	1.48	1.20
4500	1.52	1.19
5000	1.65	1.19
5500	1.80	1.31
6000	1.97	1.53

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement ins.

C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively: "Standard Terms"): Purchases of this part. Ferrormance and updany authorities and contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. The parts covered by this specification document are subject to Mini-Circuit's standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

^{**} Flatness= variation over band divided by 2.